5.4. EXPONENCIÁLNÍ TVAR KOMPLEXNÍHO ČÍSLA

Rozměr: px
Začít zobrazení ze stránky:

Download "5.4. EXPONENCIÁLNÍ TVAR KOMPLEXNÍHO ČÍSLA"

Transkript

1 5.4. EXPONENCIÁLNÍ TVAR KOMPLEXNÍHO ČÍSLA V této kaptole se dozvíte: jak je defnována exponencální funkce v komplexním oboru a jaké má vlastnost; jak vypadá důležtý Eulerův vzorec a jakým výpočetním vzorcem počítáme hodnoty exponencální funkce komplexní proměnné; jak je defnován exponencální tvar komplexního čísla a jaké má výhody; jak se převádí komplexní čísla z algebrackého tvaru na exponencální a naopak a jak je to s přechodem mez exponencálním a gonometrckým tvarem; jak vypadá násobení a dělení komplexních čísel v exponencálním tvaru; co jsou to fázory a jak používáme komplexních čísel k popsu reálných harmonckých velčn. Klíčová slova této kaptoly: komplexní exponencální funkce, Eulerův vzorec, exponencální tvar komplexního čísla, násobení a dělení komplexních čísel v exponencálním tvaru, fázory. Čas potřebný k prostudování učva kaptoly: 0,5 + 1,25 hodny (teore + řešení příkladů)

2 Komplexní exponencála. Pomocí dferencálního počtu se dá odvodt pro exponencální funkc reálné proměnné x vztah n x x e =. Obdobně defnujeme exponencální funkc v komplexním oboru. n! n= 0 Defnce. Exponencální funkc komplexní proměnné z defnujeme nekonečnou mocnnnou řadou n z z e =, n= 0 n! kde e 2, je známé Eulerovo číslo (základ přrozených logartmů). Př aplkacích nebudeme počítat konkrétní hodnoty e z podle defnce, ale daleko jednodušším způsobem. Uvedená defnce má pro nás pouze teoretcký význam. Věta. Všechny věty uvedené v kaptole o reálné exponencální funkc platí pro exponencálu komplexní, např. e z + z = e z e z apod. Eulerův vzorec. Věta. Exponencální funkc magnárního argumentu ( z = ϕ, ϕ R) lze vyjádřt tzv. Eulerovým vzorcem ϕ e cos sn = ϕ + ϕ. V učebncích se často uvádí ještě vzorec důsledkem vzorce předchozího. -ϕ e cos sn = ϕ ϕ, který je jednoduchým Věta. Hodnotu e z lze v lbovolném čísle z = x+ y vypočítat pomocí reálné exponencály a reálných funkcí snus a kosnus podle vzorce ( y y) z x e = e cos + sn. Důkaz. z x+ y Nejprve rozepíšeme exponent na algebracký tvar e = e, pak aplkujeme větu o součtu x+ y x y v exponentu e = e e a nakonec použjeme Eulerův vzorec (to můžeme, protože y R) ( y y) x y x e e e cos sn = +. Cbd. Komplexní exponencální funkce má ovšem vlastnost, které bychom u reálné exponencální funkce hledal marně. Následující věta plyne z věty předchozí a z 2π -perodcty funkcí snus a kosnus.

3 Věta. Komplexní exponencální funkce je 2π -perodcká, tj. Exponencální tvar komplexního čísla. e = e. z z+ 2π Defnce. Exponencálním tvarem komplexního čísla z rozumíme jeho vyjádření ve formě z ϕ = r e, kde r = z a ϕ = arg z jsou jž známé velčny modul (absolutní hodnota) a argument komplexního čísla z. a) K odůvodnění, že uvedený tvar je vůbec možný, stačí vyjít z gonometrckého tvaru z = r cosϕ + snϕ a dosadt za závorku podle Eulerova vzorce ( cosϕ + snϕ = e ϕ ). ( ) b) Exponencální tvar je velm blízký gonometrckému, v obou vystupují tytéž velčny r a ϕ. Výhodou exponencálního tvaru je především jeho stručnost (záps je tvořen pouze čtyřm znaky oprot zhruba třnáct znakům u gonometrckého tvaru). Gonometrcký tvar je v podstatě jakás přechodová forma mez tvarem algebrackým a exponencálním a př aplkacích vyšší matematky se používá z uvedených tří tvarů nejméně. Přechod mez exponencálním tvarem a ostatním tvary komplexních čísel. Přechod mez exponencálním a algebrackým tvarem (v obou směrech) je v podstatě stejný problém jako přechod mez gonometrckým a algebrackým tvarem. Jedná se vždy o vztah mez reálnou a magnární složkou komplexního čísla na jedné straně a modulem a argumentem tohoto čísla na druhé straně. Přechod mez exponencálním a gonometrckým tvarem je trvální záležtost (jde jen o jný přeps, není nutné nc počítat). Součn a podíl komplexních čísel v exponencálním tvaru. Exponencální tvar je nejvýhodnější pro vyjádření součnů a podílů komplexních čísel. Vzorce ( ϕ1+ ϕ2) 1 1 zz 1 2= rr 1 2e, e ϕ z1 r1 ( ϕ1 ϕ2) =, = e z r z r 2 2 plynou přrozeně ze známých vlastností exponencální funkce a není je třeba je už dále odůvodňovat (jako tomu bylo u gonometrckého tvaru). Fázory. Exponencální tvar komplexních čísel je v přírodních vědách hojně používán, např. k popsu perodckých harmonckých dějů v mechance, teor střídavých obvodů, optce apod. Lbovolné reálné harmoncké velčně a() t Acos( ωt+ φ), kterou může být např. výchylka ( ) kmtajícího osclátoru, přřazujeme komplexní velčnu aˆ () t = Ae ωt+ φ, jejíž reálná část je

4 totožná s původní reálnou velčnou a() t (dokažte!). Dále platí (ověřte!), že arg aˆ () t = ωt+ φ, což znamená, že velčna â() t se v čase otáčí kolem bodu nula s úhlovou rychlostí ω a počáteční fází φ. t Komplexní velčnu â() t je často výhodné rozepsat na součn aˆ () t = Ae φ e ω, kde první čntel Ae φ nezávsí na čase a obsahuje nformac o ampltudě a počáteční fáz; nazývá se fázorem velčny a() t. Druhý člen e ωt je funkcí času a je původcem výše uvedené rotace. Často se v rovncích vyskytuje více harmonckých velčn, které mají stejnou frekvenc ω ; pak lze členem e ωt celou rovnc krátt. Obdrží se tím rovnce pro fázory, která jž neobsahuje časovou proměnnou, což výrazně zjednodušuje řešení. Shrnutí kaptoly: V komplexním oboru defnujeme exponencální funkc e z komplexní proměnné z = x+ y pomocí jsté nekonečné mocnnné řady. Pro aplkace je výhodné, že všechny vzorce probírané u exponencální funkce v reálném oboru platí také pro exponencální funkc v komplexním oboru. Výpočet hodnot exponencální funkce neprovádíme podle defnce, ale e z x = e cosy+ sn y. využíváme výpočetního vztahu ( ) Důležtý je dále tzv. Eulerův vzorec ϕ R. ϕ e cos sn = ϕ + ϕ, platný pro lbovolné ϕ Exponencálním tvarem komplexního čísla rozumíme tvar z = r e, kde r = z a ϕ = argz. Tento tvar úzce souvsí s gonometrckým tvarem, je však v prax daleko používanější. Je nezbytně nutné umět převádět komplexní čísla z jednoho tvaru na jný. Přechod mez gonometrckým a exponencálním tvarem je trvální, přechod mez algebrackým a exponencálním tvarem je praktcky totéž jako jž probraný převod mez tvarem algebrackým a gonometrckým. Exponencální tvar je stručný a vhodný zejména pro násobení a dělení komplexních čísel. Př těchto operacích totž nemusíme znát žádné specální vzorce, stačí aplkovat jž známé vzorce z teore reálné exponencální funkce. Příkladem konkrétní praktcké aplkace komplexní exponencály je tzv. fázorový počet. Fázorem rozumíme komplexní velčnu, která nese nformac o ampltudě a počáteční fáz určté reálné harmoncké velčny. Otázky: Jak je defnována exponencální funkce v komplexním oboru? Má defnce význam pro praktcké výpočty? Jak zní tzv. Eulerův vzorec? Pro jaký obor proměnné je platný? Podle jakého vzorce počítáme hodnoty exponencální funkce komplexního argumentu e z? Jaké reálné funkce k výpočtu potřebujeme? Defnujte exponencální tvar komplexních čísel. K jakému jnému tvaru má nejblíže? Jaké jsou výhody exponencálního tvaru? Jak vypadá násobení a dělení v tomto tvaru? Co s představujete pod pojmem fázor (fázorový počet)? Jak můžeme popsat harmoncké velčny pomocí komplexních čísel?

5 Příklad 1. Převeďte komplexní číslo v algebrackém tvaru na exponencální tvar: a) z = 1+. b) z = 1. c) 3 1 z =. d) z =. e) z = Příklad 2. Vyjádřete výraz s komplexním čísly v exponencálním tvaru v algebrackém tvaru: a) 5 4e π ; b) π 5π 8 8 2e 3e ; c) 3e 4π 1 e ; d) 2 ; e) e π 8e 3 10π π 7π 3 e 2e 15π Návod. Nejprve výraz upravte pomocí vzorců pro prác s exponencálním funkcem na exponencální tvar (tj. tvar s jednou exponencálou) a pak teprve převádějte na algebracký tvar.. Řešení příkladů: 1a) 2e π 4 z = ; 1b) π 4 z = 2e ; 1c) π z = e ; 1d) 5π z = e ; 1e) 2 2e π 3 z =. Ve všech výsledcích byly použty hlavní hodnoty argumentu, což ale není nezbytně nutné. 2a) ; 2b) ; 2c) ; 2d) ; 2e) Další zdroje: 1. POLÁK, J. Přehled středoškolské matematky.. vyd. Praha: Prometheus, POLÁK, J. Středoškolská matematka v úlohách I. 1. vyd. Praha: Prometheus, POLÁK, J. Středoškolská matematka v úlohách II. 1. vyd. Praha: Prometheus, REKTORYS, K. a spol. Přehled užté matematky.. přepr. vyd. Praha: Prometheus, ZÁVĚR:

6

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Identifikátor materiálu: VY_32_INOVACE_353

Identifikátor materiálu: VY_32_INOVACE_353 dentifikátor materiálu: VY_32_NOVACE_353 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

10. Polynomy a racionálně lomenné funkce

10. Polynomy a racionálně lomenné funkce 10 Polynomy a racionálně lomenné funkce A Polynomy Definice 101 Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru p(x) = a n x n + a n 1 x n 1 + + a 0, kde a 1,, a n R, a n 0, která každému komplexnímu

Více

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

Finanční matematika Vypracovala: Mgr. Zuzana Kopečková

Finanční matematika Vypracovala: Mgr. Zuzana Kopečková Finanční matematika Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Důkazové metody. Teoretická informatika Tomáš Foltýnek Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

1.2.26 Přepočet přes jednotku - podruhé II

1.2.26 Přepočet přes jednotku - podruhé II 1.2.26 Přepočet přes jednotku - podruhé II Předpoklady: 010225 Pedagogická poznámka: První příklad nechávám řešit žáky, pak diskutujeme důvodech dělení. Př. 1: Za 0,85 hodiny zalévání spotřebovalo zavlažovací

Více

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce

Více

Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz

Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz 14. 4. 2004 1. Algoritmus RSA Asymetrické šifrování. Existuje dvojice tajného a veřejného klíče, takže není nutné předat klíč

Více

2.1.13 Funkce rostoucí, funkce klesající I

2.1.13 Funkce rostoucí, funkce klesající I .1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Využití EduBase ve výuce 2

Využití EduBase ve výuce 2 B.I.B.S., a. s. Využití EduBase ve výuce 2 Projekt Vzdělávání pedagogů v prostředí cloudu reg. č. CZ.1.07/1.3.00/51.0011 Mgr. Jitka Kominácká, Ph.D. a kol. 2015 1 Obsah 1 Obsah... 2 2 Úvod... 3 3 Aktivita:

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

M - Příprava na 2. zápočtový test pro třídu 2D

M - Příprava na 2. zápočtový test pro třídu 2D M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován

Více

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště Funkce Liché a, periodické funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah Sudé a 1 Sudé a 3 Sudé a Sudá funkce f má vzhledem k ose o y symetrický definiční

Více

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Základní informace. Kolín, Leden/Únor 2016 1

Základní informace. Kolín, Leden/Únor 2016 1 Základní informace Projekt E-názor má za cíl pomoci obcím zajistit dostupnost a reprezentativnost názorů obyvatel prostřednictvím elektronického sociologického nástroje pro e-participaci. Projekt realizuje

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B .3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

2.8.10 Rovnice s neznámou pod odmocninou a parametrem

2.8.10 Rovnice s neznámou pod odmocninou a parametrem .8.10 Rovnie s neznámou pod odmoninou a parametrem Předpoklady: 806, 808 Budeme postupovat stejně jako v předhozíh hodináh. Nejdříve si zopakujeme obený postup při řešení rovni s neznámou pod odmoninou

Více

R 1 = 2 Ω, R 2 = 1 Ω R 3 = 0,5 Ω, R 4 = 1 Ω U = 2 V, I z = 2 A

R 1 = 2 Ω, R 2 = 1 Ω R 3 = 0,5 Ω, R 4 = 1 Ω U = 2 V, I z = 2 A A 4:00 hod. Elektrotechnika Metodou uzlových napětí (MN) vypočtěte napětí 0 a 0 v uvedeném obvodu. = Ω, = Ω 3 = 0,5 Ω, 4 = Ω = V, I z = A I = = A 4 G+ G + G4 G G4 0 I + I Z = G G4 G G3 G4 + + 0 I,5 0 4

Více

NEKONEČNÉ GEOMETRICKÉ ŘADY

NEKONEČNÉ GEOMETRICKÉ ŘADY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol NEKONEČNÉ GEOMETRICKÉ

Více

4.5.2 Magnetické pole vodiče s proudem

4.5.2 Magnetické pole vodiče s proudem 4.5.2 Magnetické pole vodiče s proudem Předpoklady: 4501 1820 H. Ch. Oersted objevil, že vodič s proudem působí na magnetku elektrický proud vytváří ve svém okolí magnetické pole (dříve nebyly k dispozici

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra Matematky Řetězové zlomky Dplomová práce Brno 04 Autor práce: Bc. Petra Dvořáčková Vedoucí práce: doc. RNDr. Jaroslav Beránek, CSc. Bblografcký záznam

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

AUTORKA Barbora Sýkorová

AUTORKA Barbora Sýkorová ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy

Více

Vrtání závitů bez vyrovnávací hlavičky (G331, G332)

Vrtání závitů bez vyrovnávací hlavičky (G331, G332) Předpoklady Funkce Technickým předpokladem pro vrtání závitů bez vyrovnávací hlavičky je vřeteno s regulací polohy a systémem pro měření dráhy. Vrtání závitů bez vyrovnávací hlavičky se programuje pomocí

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:

Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY: Vytvořili Odet L Homer a Roberto Fraga Velikonoční ostrov je tajemný ostrov v jižním Pacifiku. Jeho původní obyvatelé již před mnoha lety zmizeli a jediné, co po nich zůstalo, jsou obří sochy Moai. Tyto

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S

1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S 1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik

Více

Registrace Vašeho spotřebiče do akce Prodloužená záruka

Registrace Vašeho spotřebiče do akce Prodloužená záruka Registrace Vašeho spotřebiče do akce Prodloužená záruka 1. Registraci je možné provést na našich webových stránkách určených přímo pro registraci výrobků: www.registrace zaruka.cz (Česká republika) www.registracia

Více

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3]. Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Použitelnost. Petr Šavelka

Použitelnost. Petr Šavelka Použitelnost Petr Šavelka Úvod 1/23 Nenuťte uživatele přemýšlet! Steve Krug Úvod 2/23 Design is not just what it looks like and feels like. Design is how it works. (Steve Jobs) Good artists copy. Great

Více

Rozklad nabídkové ceny servisních služeb ve znění II. opatření k nápravě ze dne 1. 11. 2012

Rozklad nabídkové ceny servisních služeb ve znění II. opatření k nápravě ze dne 1. 11. 2012 Příloha č. 5 Servisní smlouvy Rozklad nabídkové ceny servisních ve znění II. opatření k nápravě ze dne 1. 11. 2012 Část P2_5 1 Obsah 1 OBSAH... 2 2 INSTRUKCE... 3 3 ZÁVAZNÝ FORMULÁŘ PRO ROZKLAD NABÍDKOVÉ

Více

První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu

První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu Podle tohoto návodu postupujte tehdy, pokud jste osoba zacházející se zdravotnickými prostředky,

Více

Plánování a řízení zásob

Plánování a řízení zásob Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Vzdělávací okruh Druh učebního materiálu Ekonomika plánování a řízení zásob SŠHS Kroměříž

Více

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3.

Př. 3: Dláždíme čtverec 12 x 12. a) dlaždice 2 x 3 12 je dělitelné 2 i 3 čtverec 12 x 12 můžeme vydláždit dlaždicemi 2 x 3. 1..20 Dláždění III Předpoklady: 01019 Př. 1: Najdi n ( 84,96), ( 84,96) D. 84 = 4 21 = 2 2 7 96 = 2 = 4 8 = 2 2 2 2 2 D 84,96 = 2 2 = 12 (společné části rozkladů) ( ) n ( 84,96) = 2 2 2 2 2 7 = 672 (nejmenší

Více

Motivace, zvyšování energie lidstva a smysl života

Motivace, zvyšování energie lidstva a smysl života Motivace, zvyšování energie lidstva a smysl života 3. přednáška z cyklu Jak se dělá sociální síť Implementace, Startup, Motivace David Čápka, 2015 Co je to motivace? Motivace Definice: Motivace je vnitřní

Více

V týmové spolupráci jsou komentáře nezbytností. V komentářích se může např. kolega vyjadřovat k textu, který jsme napsali atd.

V týmové spolupráci jsou komentáře nezbytností. V komentářích se může např. kolega vyjadřovat k textu, který jsme napsali atd. Týmová spolupráce Word 2010 Kapitola užitečné nástroje popisuje užitečné dovednosti, bez kterých se v kancelářské práci neobejdeme. Naučíme se poznávat, kdo, kdy a jakou změnu provedl v dokumentu. Změny

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Příloha č. 1 Vzor smlouvy o založení svěřenského fondu a statutu svěřenského fondu

Příloha č. 1 Vzor smlouvy o založení svěřenského fondu a statutu svěřenského fondu Příloha č. 1 Vzor smlouvy o založení svěřenského fondu a statutu svěřenského fondu Strana první. NZ [ ]/[ ] N [ ]/[ ] Notářský zápis sepsaný dne [ ] (slovy: [ ])[jméno a příjmení], notářem v [ ], na adrese

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

Orientovaná úseka. Vektory. Souadnice vektor

Orientovaná úseka. Vektory. Souadnice vektor Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k

Více

Euro a stabilizační role měnové politiky. 95. Žofínské fórum Euro s otazníky? V Česku v představách, na Slovensku realita Praha, 13.

Euro a stabilizační role měnové politiky. 95. Žofínské fórum Euro s otazníky? V Česku v představách, na Slovensku realita Praha, 13. Euro a stabilizační role měnové politiky Zdeněk k TůmaT 95. Žofínské fórum Euro s otazníky? V Česku v představách, na Slovensku realita Praha, 13. listopadu 2008 Co nás spojuje a v čem se lišíme Režim

Více

Jemný úvod do numerických metod

Jemný úvod do numerických metod Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35

Více

16. února 2015, Brno Připravil: David Procházka

16. února 2015, Brno Připravil: David Procházka 16. února 2015, Brno Připravil: David Procházka Skrývání implementace Základy objektového návrhu Připomenutí návrhu použitelných tříd Strana 2 / 17 Obsah přednášky 1 Připomenutí návrhu použitelných tříd

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

když n < 100, n N, pak r(n) = n,

když n < 100, n N, pak r(n) = n, Zúžená aritmetika úvod Nad a Stehlíková Autorem netradiční aritmetické struktury, v rámci které se budeme nadále pohybovat, je Prof. Milan Hejný. Nejdříve si zavedeme základní pojmy. Základem zúžené aritmetiky

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více