M - Příprava na 2. zápočtový test pro třídu 2D

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na 2. zápočtový test pro třídu 2D"

Transkript

1 M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Nerovnice s absolutní hodnotou Nerovnice s absolutní hodnotou Postup řešení nerovnic s absolutní hodnotou je vlastně jakousi kombinací postupu řešení rovnic s absolutní hodnotou a řešení nerovnic. Ukázkové příklady: Příklad 1: Řešte v oboru reálných čísel nerovnici x +2 < 8 Řešení: 1. Stanovíme nulové body; v tomto případě jím je číslo (-2) 2. Nulové body znázorníme na číselné ose 3. Řešíme nerovnici pro případ, že x Î (- ; -2); v tomto případě je vnitřek absolutní hodnoty záporný, proto ji změníme na závorku a u všech členů v této závorce změníme znaménko: (-x - 2) < 8 -x - 2 < 8 -x < 10 x > -10 Řešili jsme ale za předpokladu výše uvedeného intervalu, proto musíme udělat průnik obou intervalů: Řešením této části je tedy otevřený interval (-10; -2) (1) 4. Řešíme nerovnici pro případ, že x Î <-2; + ); v tomto případě je vnitřek absolutní hodnoty kladný, proto ji změníme na závorku a u všech členů v této závorce nezměníme znaménko: (x + 2) < 8 x + 2 < 8 x < 6 Řešili jsme ale za předpokladu výše uvedeného intervalu, proto musíme udělat průnik obou intervalů: Řešením této části je tedy zleva uzavřený interval <-2; 6) (2) 5. Nyní uděláme sjednocení výsledků (1) a (2), protože nerovnice má řešení, pokud platí kterýkoliv z nich: Celkovým řešením je tedy K = (-10; 6). Příklad 2: Řešte v oboru reálných čísel nerovnici x x < 2 Řešení: Nulovým bodem je číslo 1. 1 z 42

3 1. x Î (- ; 1) (-x + 1) + x < 2 -x x < 2 0x < 1 0 < 1... platí vždy Celkovým řešením první části je tedy K 1 = (- ; 1) (1) 2. x Î <1; + ) (x - 1) + x < 2 x x < 2 2x < 3 x < 1,5 Celkovým řešením druhé části je tedy K 2 = <1; 1,5) (2) 3. Provedeme sjednocení výsledků (1) a (2): Celkovým řešením je tedy K = (- ; 1,5) Příklad 3: Řešte v oboru reálných čísel nerovnici: 1 ³ 5 2x - 3 Řešení: Nulovým bodem je číslo 1,5 1. x Î (- ; 1,5) 1 ³ 5-2x ³ 0-2x ( -2x + 3) ³ 0-2x x -15 ³ 0-2x x -14 ³ 0-2x + 3 Celou nerovnici můžeme vykrátit dvěma; jedná se o kladné číslo, proto znak nerovnice se nezmění. 5x - 7 ³ 0 3-2x a) 5x - 7 ³ 0 Ù 3-2x > 0 b) 5x Ù 3-2x < 0 x ³ 7/5 Ù x < 3/2 x 7/5 Ù x > 3/2 x Î <7/5; 3/2) x Î { } Celkovým řešením částí a), b) je x Î <7/5; 3/2); je to ale za předpokladu, že platí interval x Î (- ; 1,5), proto musíme provést průnik: Tím je K 1 = <7/5; 3/2) 2. x Î (1,5; + ) 1 ³ 5 2x ³ 0 2x z 42

4 1-5.(2x - 3) ³ 0 2x x + 15 ³ 0 2x x ³ 0 2x - 3 Celou nerovnici můžeme vykrátit dvěma; jedná se o kladné číslo, proto znak nerovnice se nezmění. 8-5x ³ 0 2x - 3 a) 8-5x ³ 0 Ù 2x - 3 > 0 b) 8-5x 0 Ù 2x - 3 < 0 x 8/5 Ù x > 3/2 x ³ 8/5 Ù x < 3/2 x Î (3/2; 8/5> x Î { } Celkovým řešením částí a), b) je x Î (3/2; 8/5> ; je to ale za předpokladu, že platí interval x Î (1,5; + ), proto musíme provést průnik: Tím je K 2 = (3/2; 8/5> 3. Celkovým řešením je tedy sjednocení K 1 a K 2, což je K = <7/5; 3/2) È (3/2; 8/5> ± Nerovnice s absolutní hodnotou - procvičovací příklady K = R K = R K = { } 3 z 42

5 K = { } K = {2,5} K = R K = { } ± Soustava kvadratické a lineární rovnice Soustava kvadratické a lineární rovnice 4 z 42

6 Soustava kvadratické a lineární rovnice je soustava dvou rovnic, z nichž jedna rovnice je lineární a druhá rovnice je kvadratická. Takovouto soustavu řešíme zpravidla tak, že z lineární rovnice vyjádříme jednu neznámou a tu pak dosadíme do rovnice kvadratické. Využíváme tedy metodu dosazovací. Po vyřešení získané kvadratické rovnice o jedné neznámé dosadíme získané řešení do výrazu, kde jsme z původní lineární rovnice vyjádřili první neznámou a vypočteme ji. Výsledek zapíšeme tradičně uspořádanou dvojicí. Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x 2 + y 2 = 74 3x - 2y = 1 Řešení: x 2 + y 2 = 74 3x - 2y = y x = æ + 2y ö ç è 3 ø ( + 2y) 9 + y y + 4y + 4y 9 = 74 = y (1) = y + 4y 2 + 9y 2 = y 2 + 4y = 0 y 1,2 - = 4 2 ± æ ç è 2 4 ö ø 13 (- 665) y 1 = 7 y 2 = -95/13 Dosadíme do rovnice (1) a vypočteme x: x x = 5 3 æ 95 ö ç - è 13 = ø = 3 1 = 2 - Závěr: ì P = í î [ 5;7 ], Příklad 2: é 59 95ùü ê - ;- úý ë 13 13ûþ Řešte soustavu rovnic: x 2 - y 2 = 640 x : y = 7 : 3 Podmínka řešitelnosti je, že y ¹ 0 Z druhé rovnice vyjádříme x: - 2 ± 8649 = 13 = - 2 ± z 42

7 x = 7y/3 (1) Dosadíme do rovnice první: 2 æ 7 y ö ç - y 2 = 640 è 3 ø 49 2 y - y 2 = y 2-9y 2 = y 2 = y 2 = 576 y 2 = 144 y 1 = 12 y 2 = -12 Dosadíme do rovnice (1) a dopočteme x: x 1 = : 3 = 28 x 2 = 7. (-12) : 3 = -28 Závěr: K = {[ 28;12 ]; [- 28; -12]} ± Soustava lineární a kvadratické rovnice - procvičovací příklady K = {[3; 0]} z 42

8 5. Řešte soustavu rovnic: K = {[0; -1]} K = {[0; 0], [2; 4]} ± Iracionální rovnice Iracionální rovnice Iracionální rovnicí nazýváme takovou rovnici, která má neznámou pod odmocninou. Při řešení iracionálních rovnic používáme zpravidla neekvivalentní úpravy (tj. takové úpravy, po jejichž provedení se může změnit řešení rovnice), proto musíme vždy provést zkoušku. Mezi neekvivalentní úpravy, které budeme u těchto typů příkladů používat, patří nejčastěji umocnění rovnice na druhou. Umocnění rovnice provedeme tak, že umocníme levou i pravou stranu rovnice. Pozn.: Umocněním obou stran rovnice na druhou dostaneme rovnici, pro kterou platí: Každý kořen původní rovnice je i kořenem této nové rovnice. Obráceně to ale neplatí! Ukázkové příklady: Příklad 1: 7 z 42

9 Řešte rovnici: x 2 Řešení: - 2x + 10 = x -10 Umocněním rovnice na druhou dostaneme: x 2-2x + 10 = (x - 10) 2 x 2-2x + 10 = x 2-20x po úpravě: x = 5 Zkouška: L = = 5 P = 5-10 = -5 L ¹ P Daná rovnice tedy nemá řešení. Příklad 2: Řešte rovnici: x + 7 = x - 5 Řešení: Umocněním dostaneme rovnici: x + 7 = (x - 5) 2 Po úpravě x + 7 = x 2-10x + 25 Dostali jsme kvadratickou rovnici, u níž zjistíme, že má kořeny 2 a 9. Zkouška: L(2) = = P(2) = 2-5 = -3 L(2) ¹ P(2) 9 = 3 Kořen 2 tedy není řešením. L(9) = = 16 = 4 P(9) = 9-5 = 4 L(9) = P(9) Kořen 9 tedy je řešením zadané iracionální rovnice. Příklad 3: Řešte rovnici: 5-5x = 3x z 42

10 Řešení: Umocněním dostaneme rovnici: (5-5x) = (3x - 11) Po úpravě: x = 2 Zkouška: L = = - 5 Dále řešit nemusíme, protože v oboru reálných čísel neexistuje druhá odmocnina ze záporného čísla. Závěr tedy je, že iracionální rovnice nemá řešení. Příklad 4: Řešte rovnici: x x = 7 Řešení: Umocněním rovnice na druhou dostaneme: x x x x = 49 Po ekvivalentních úpravách: 3 x x + 9 = 20-5x Umocníme ještě jednou a dostaneme: 9x x = x + 25x 2 Po úpravě: 16x 2-281x = 0 Kořeny této rovnice jsou čísla 16 a 25/16 Zkouškou se přesvědčíme, že kořenem zadané iracionální rovnice je pouze číslo 25/16. Příklad 5: Řešte rovnici: x = 5 Kromě běžného, už uvedeného, postupu můžeme zde použít i následující úvahu: Výraz na levé straně rovnice je definován pro libovolné reálné číslo a je pro libovolné reálné číslo nezáporný, proto rovnice x = 25 je ekvivalentní s rovnicí původní. Rovnice x = 25 má dvě řešení, a to x 1 = 4 a x 2 = -4. Tato řešení jsou tedy i řešeními rovnice původní. S ohledem na to, že jsme provedli pouze ekvivalentní úpravy, nemusíme v podstatě ani dělat zkoušku. Pro nezáporná čísla u, v je totiž u = v právě tehdy, když platí u 2 = v 2. ± Iracionální rovnice - procvičovací příklady 9 z 42

11 ± / Nemá řešení P = {9; -1/3} , P = {8; 4} Nemá řešení ,5 10 z 42

12 14. Řešte rovnici: x + 1. x x = ( )( ) P = {0; 2} 16. Řešte rovnici: x + 3. x -1 - x. 1- x = ( )( ) ( ) Řešte rovnici: Řešte rovnici: 1617 P = {0; 3} ± Rovnice s parametrem Rovnice s parametrem Rovnice s parametrem obsahují kromě neznámé (značíme obvykle x, y, z, apod.) ještě další písmenko zvané parametr (značíme obvykle a, b, c, apod.). Rovnice s parametrem řešíme obdobně jako rovnice klasické, s parametrem pracujeme tak, jako kdyby místo něj bylo zadáno nějaké reálné číslo. V závěru řešení rovnice musíme provést diskusi vzhledem k parametru. Zkoušku u těchto rovnice, vzhledem k tomu, že budeme používat samé ekvivalentní úpravy, provádět nebudeme. Ukázkové příklady: Příklad 1: Řešte rovnici s reálným parametrem m a neznámou x. m. (x - 1) = x + m Řešení: 11 z 42

13 Nejprve se snažíme na levou stranu rovnice soustředit všechny členy obsahující neznámou a na pravou stranu všechny členy zbývající. Roznásobíme tedy nejdříve závorku: mx - m = x + m mx - x = 2m Na levé straně se snažíme osamostatnit neznámou x. Vytkneme ji tedy před závorku: x. (m - 1) = 2m Celou rovnici nyní dělíme závorkou na levé straně. Vše ale můžeme pouze za podmínky, že m ¹ 1 2m x = m -1 Nyní provedeme diskusi vzhledem k parametru m: Příklad 2: Řešte rovnici s reálným parametrem m a neznámou y: 3 = 5 - y m - 2 Řešení: Za podmínky m ¹ 2 můžeme odstarnit zlomek: 3 = (5 - y). (m - 2) Roznásobíme závorky: 3 = 5m my + 2y Na levou stranu soustředíme členy obsahující neznámou, na pravou všechny zbývající: my - 2y = 5m - 13 Na levé straně rovnice vytkneme y: y. (m - 2) = 5m - 13 Celou rovnici vydělíme závorkou na levé straně; vzhledem k platnosti podmínky uvedené v prvním kroku, to můžeme provést snadno: 5m -13 y = m - 2 Provedeme diskusi vzhledem k parametru: Příklad 3: Řešte rovnici s reálným parametrem c a s neznámou x: (x + 3). (x - c) = x 2 +3c - 18 Řešení: x 2 - cx + 3x - 3c = x 2 + 3c x - cx = 6c z 42

14 x. (3 - c) = 6. (c - 3) Celou rovnici vydělíme (3 - c), avšak za předpokladu, že stanovíme podmínku c ¹ 3: x = -6 Provedeme diskusi vzhledem k parametru: Příklad 4: Řešení: Uvážíme-li m ¹ 0, pak můžeme odstranit zlomky: 12y + 16y - 18y = 5m - 10my 10y + 10my = 5m Celou rovnici vydělíme číslem 5: 2y + 2my = m 2y. (1 + m) = m Uvážíme-li m ¹ -1, pak celou rovnici můžeme závorkou vydělit: m y = 2.(1 + m) Provedeme diskusi vzhledem k parametru: ± Rovnice s parametrem - procvičovací příklady z 42

15 z 42

16 z 42

17 Rovnice nemá smysl x - = x 2 a a ( 4 1) z 42

18 ± Kvadratické rovnice s parametrem Kvadratické rovnice s parametrem Kvadratické rovnice s parametrem řešíme úplně stejným způsobem jako lineární rovnice s parametrem. Opět vždy provádíme diskusi řešení vzhledem k parametru. V této diskusi zpravidla uvedeme, pro jakou hodnotu parametru má rovnice dvě různá reálná řešení, pro jakou hodnotu parametru má jeden dvojnásobný kořen a pro jakou hodnotu nemá v oboru reálných čísel řešení. Někdy je nutno také uvést, pro jakou hodnotu parametru 17 z 42

19 vyjde lineární rovnice. Příklad: Proveďte úplnou diskusi následující kvadratické rovnice s parametrem m a neznámou x: (m - 3)x 2 - (3m + 9)x + 9m = 0 Řešení: 1. Pro m = 3... lineární rovnice 2. Předpokládejme, že m ¹ 3 Vypočteme diskriminant této kvadratické rovnice: D = b 2-4ac = [-(3m + 9)] 2-4.(m - 3).9m = 9m m m m = = -27m m + 81 a) D > reálné různé kořeny... nastane tehdy, jestliže: -27m m + 81 > 0 :(-9) 3m 2-18m - 9 < 0 : 3 m 2-6m - 3 < 0 Vzniklý trojčlen rozložíme na součin. K tomu si vyřešíme pomocnou kvadratickou rovnici m 2-6m - 3 = ± ( -3) 6 ± 48 6 ± ± 2 3 m1,2 = = = = = 3 ± m 1 = 3 + 2Ö3 m 2 = 3-2Ö3 Hledaný rozklad je tedy: [m - (3 + 2Ö3)]. [m - (3-2Ö3)] < 0 Mohou nastat dvě situace: aa) [m - (3 + 2Ö3)] > 0 [m - (3-2Ö3)] < 0 Odtud: m > 3 + 2Ö3 m < 3-2Ö3 Závěr: Prázdná množina ab) [m - (3 + 2Ö3)] < 0 [m - (3-2Ö3)] > 0 Odtud: m < 3 + 2Ö3 m > 3-2Ö3 Závěr: m Î (3-2Ö3; 3) È (3; 3+2Ö3) b) D = 0... Jeden dvojnásobný kořen... nastane tehdy, jestliže: -27m m + 81 = 0 :(-9) 3m 2-18m - 9 = 0 : 3 m 2-6m - 3 = 0 [m - (3 + 2Ö3)]. [m - (3-2Ö3)] = 0 m 1 = 3 + 2Ö3 m 2 = 3-2Ö3 c) D < 0... V reálném oboru nemá řešení... nastane v doplňku situací a), b), tedy jestliže m Î (- ; 3-2Ö3) È (3+2Ö3; + ) 3 ± Kvadratické rovnice s parametrem - procvičovací příklady 18 z 42

20 z 42

21 dva reálné různé kořeny m = -0,4 nebo m = 6... jeden dvojnásobný kořen nemá řešení v R ± Lineární funkce s absolutní hodnotou Lineární funkce s absolutní hodnotou Jedná se o funkci lineární, tedy funkci danou rovnicí y = ax + b, která ale ve svém zápise obsahuje absolutní hodnotu. Ukázkové příklady: Příklad 1: Narýsujte graf funkce y = x z 42

22 Řešení: Podobně jako při řešení rovnic nebo nerovnic s absolutní hodnotou nejprve stanovíme nulové body, tj. bod, v nichž jednotlivé absolutní hodnoty nabývají nulových hodnot. V tomto případě je nulový bod pouze jeden, a jím je číslo 1. Řešení máme tedy rozděleno na dvě části: 1. x < 1 V tomto případě je vnitřek absolutní hodnoty záporný, proto absolutní hodnotu odstraníme tak, že ji změníme na závorku, ale před ní bude znaménko minus. Narýsujeme tedy graf funkce y = -(x - 1), neboli y = -x + 1, ale z tohoto grafu využijeme pouze část, kde x < 1 2. x ³ 1 V tomto případě je vnitřek absolutní hodnoty nezáporný, proto ji odstraníme tak, že ji změníme na závorku. Rýsujeme tedy graf funkce y = x - 1, ale z tohoto grafu využijeme pouze část, kde x ³ 1 Závěr: Příklad 2: Narýsujte graf funkce y = 2x - 1 Řešení: Nulovým bodem je 0,5 1. x < 0,5 Rýsujeme graf funkce y = -2x + 1 a využíváme část, kde x < 0,5 2. x ³ 0,5 Rýsujeme graf funkce y = 2x - 1 a využíváme část, kde x ³ 0,5 Závěr: 21 z 42

23 ± Lineární funkce s absolutní hodnotou - procvičovací příklady z 42

24 z 42

25 z 42

26 ± Exponenciální funkce Exponenciální funkce 25 z 42

27 Definice: Exponenciální funkce je funkce, která je dána rovnicí y = a x, kde a > 0 a zároveň a ¹ 1 Grafem exponenciální funkce je křivka, kterou nazýváme exponenciála (exponenciální křivka). její průběh je velmi závislý na velikosti čísla a. Je-li a > 1, pak je průběh následující: Je-li 0 < a < 1, pak je průběh následující: Je-li základ exponenciální funkce číslo 10, pak ji nazýváme dekadickou exponenciální funkcí. Má rovnici y = 10 x Je-li základem exponenciální funkce číslo e (Eulerovo číslo), pak se funkce nazývá přirozená exponenciální funkce. Má rovnici y = e x. Pozn.: Eulerovo číslo e = 2, Vlastnosti exponenciální funkce: ± Exponenciální funkce - procvičovací příklady 26 z 42

28 z 42

29 4. Je dána funkce f: y = 0,5 x-3. Narýsujte graf funkce f( x ) z 42

30 Narýsujte graf funkce y = 0,5 x z 42

31 10. Narýsujte graf funkce y = 0,5 x a > Je dána funkce f: y = 0,5 x-3. Narýsujte graf funkce f(x) a > 2 30 z 42

32 z 42

33 17. Je dána funkce f: y = 0,5 x-3. Narýsujte graf funkce f( x ) z 42

34 ± Logaritmická funkce Logaritmická funkce Definice: Logaritmická funkce je funkce, která je dána rovnicí y = log ax. Jedná se o funkci inverzní k exponenciální funkci o stejném základu. Pozn.: Inverzní funkci získáme záměnou x a y v předpisu funkce. Grafy funkce a funkce k této funkci inverzní jsou souměrné podle osy I. a III. kvadrantu. Pozn.: Zápis y = log ax vyjadřuje totéž jako zápis x = a y Graf logaritmické funkce se nazývá logaritmická křivka (logaritma). Průběh grafu logaritmické funkce v závislosti na velikosti a: 33 z 42

35 Funkční hodnoty logaritmické funkce se nazývají logaritmy. Vlastnosti logaritmické funkce: Při konstrukci grafu logaritmické funkce postupujeme zpravidla tak, že k zadané rovnici logaritmické funkce vytvoříme rovnici funkce k ní exponenciální. Graf vzniklé exponenciální funkce snadno narýsujeme a pak sestrojíme graf souměrný podle osy I. a III. kvadrantu. ± Logaritmická funkce - procvičovací příklady z 42

36 3. Je dána funkce f: y = log1/3(x + 2). Narýsuj graf funkce f(x) Určete definiční obor funkce a narýsujte její graf. f: y = log4x Je dána funkce f: y = log1/3(x + 2). Narýsuj graf funkce f( x ) z 42

37 Určete definiční obor funkce a narýsujte její graf. f: y = log4(-x) Určete definiční obor funkce a narýsujte její graf. f: y = log4x z 42

38 Určete definiční obor funkce a narýsujte její graf. f: y = log4 x z 42

39 Určete definiční obor funkce a narýsujte její graf. f: y = log4 x z 42

40 19. Je dána funkce f: y = log1/3(x + 2). Narýsuj graf funkce f( x ) z 42

41 z 42

42 Určete definiční obor funkce a narýsujte její graf. f: y = -log4x z 42

43 Narýsuj graf funkce y = log1/3(x + 2) z 42

44 Obsah Nerovnice s absolutní hodnotou 1 Nerovnice s absolutní hodnotou - procvičovací příklady 3 Soustava kvadratické a lineární rovnice 4 Soustava lineární a kvadratické rovnice - procvičovací příklady 6 Iracionální rovnice 7 Iracionální rovnice - procvičovací příklady 9 Rovnice s parametrem 11 Rovnice s parametrem - procvičovací příklady 13 Kvadratické rovnice s parametrem 17 Kvadratické rovnice s parametrem - procvičovací příklady 18 Lineární funkce s absolutní hodnotou 20 Lineární funkce s absolutní hodnotou - procvičovací příklady 22 Exponenciální funkce 25 Exponenciální funkce - procvičovací příklady 26 Logaritmická funkce 33 Logaritmická funkce - procvičovací příklady :23:25 Vytištěno v programu dosystem - EduBase (

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1. 1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy: IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1../34.2 Šablona: III/2 Přírodovědné předměty

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení)

KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE A NEROVNICE (početní a grafická řešení) KVADRATICKÉ ROVNICE (početně) Teorie: Kvadratická rovnice o jedné neznámé se nazývá každá taková rovnice, kterou lze ekvivalentními úpravami

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

4 Algebraické rovnice a nerovnice

4 Algebraické rovnice a nerovnice Algebraické rovnice a nerovnice Matematika je stenografie abstraktního myšlení. Je-li používána správně, nenechává prostor žádné neurčitosti ani nepřesné interpretaci. (Louis de Broglie). Základní pojmy

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

2.8.10 Rovnice s neznámou pod odmocninou a parametrem

2.8.10 Rovnice s neznámou pod odmocninou a parametrem .8.10 Rovnie s neznámou pod odmoninou a parametrem Předpoklady: 806, 808 Budeme postupovat stejně jako v předhozíh hodináh. Nejdříve si zopakujeme obený postup při řešení rovni s neznámou pod odmoninou

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149 Průběh funkce Robert Mařík 26. září 28 Obsah y = 1 2............................. y = 1............................. 49 y = 2(2 1).......................... ( 1) 2 11 y =............................. 149

Více

4. R O V N I C E A N E R O V N I C E

4. R O V N I C E A N E R O V N I C E 4. R O V N I C E A N E R O V N I C E 4.1 F U N K C E A J E J Í G R A F Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) Definiční obor funkce (definice, značení)

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Číslo a

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

10. Polynomy a racionálně lomenné funkce

10. Polynomy a racionálně lomenné funkce 10 Polynomy a racionálně lomenné funkce A Polynomy Definice 101 Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru p(x) = a n x n + a n 1 x n 1 + + a 0, kde a 1,, a n R, a n 0, která každému komplexnímu

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace. Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Matematický seminář Edita Kolářová ÚSTAV MATEMATIKY Matematický seminář Obsah Přehled použité symboliky 4 Základní pojmy matematické logiky a teorie množin 5. Elementy matematické logiky.........................

Více

Exponenciální a logaritmická funkce

Exponenciální a logaritmická funkce Variace 1 Exponenciální a logaritmická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Exponenciální

Více

M - Příprava na 2. čtvrtletku pro třídu 4ODK

M - Příprava na 2. čtvrtletku pro třídu 4ODK M - Příprava na. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE Tento dokument

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

Matematická analýza III.

Matematická analýza III. 4. Extrémy funkcí více proměnných Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Tato kapitola nás seznámí s metodami určování lokálních extrémů funkcí více proměnných a ukáže využití těchto metod v praxi.

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Buď (T, +, ) těleso. Pak soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2,................................... a m1 x 1 + a m2 x

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Operační program Vzdělávání pro konkurenceschopnost III/2 ICT INOVACE Matematika 1. ročník Lineární funkce, rovnice a nerovnice Datum vytvoření: říjen 2012 Třída: 1. A, 2. C Autor: PaedDr. Jan Wild Klíčová

Více

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet Pomůcka pro cvičení:. semestr Bc studia Průběh funkce - ruční výpočet Průběh funkce balíček: plots Při vyšetřování průběhu funkce využijte dosavadních příkazů z Maple, které znáte. Nové příkazy budou postupně

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace

Více

M - Příprava na 1. čtvrtletku - třída 3ODK

M - Příprava na 1. čtvrtletku - třída 3ODK M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky

Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

M - Příprava na 3. čtvrtletku třídy 1P, 1VK

M - Příprava na 3. čtvrtletku třídy 1P, 1VK M - Příprava na 3. čtvrtletku třídy P, VK Souhrnný studijní materiál určený k přípravě na 3. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE Tento dokument byl kompletně vytvořen, sestaven

Více

8. Lineární rovnice s parametrem

8. Lineární rovnice s parametrem @08 8. Lineární rovnice s aramerem Příklad: Řeše lineární rovnice v R. a) + = 5 b) + = 5 c) + = 5 d) + 4 = 5 e) + 5 = 5 f) + 6 = 5 g) + 7 = 5 h) + 8 = 5 i) + 9 = 5 Řešení: Všechny rovnice se řeší sejně.

Více

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí

3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,

Více

Matice. Význačné matice. Matice A typu (m, n) je uspořádané schéma m*n prvků, které jsou zapsány do m řádků a n sloupců:

Matice. Význačné matice. Matice A typu (m, n) je uspořádané schéma m*n prvků, které jsou zapsány do m řádků a n sloupců: Matice Matice A typu (m, n) je uspořádané schéma m*n prvků, které jsou zapsány do m řádků a n sloupců: aa 11 aa 12 aa 1nn aa 21 aa 22 aa 2nn AA = aa mm1 aa mm2 aa mmmm Označení matic obvykle velkými písmeny

Více

Tematická oblast: Funkce (VY_32_INOVACE_05_2)

Tematická oblast: Funkce (VY_32_INOVACE_05_2) Tematická oblast: (VY_32_INOVACE_05_2) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží k

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

Variace. Kvadratická funkce

Variace. Kvadratická funkce Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic

Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_2_03 ŠVP Podnikání RVP 64-41-L/51

Více

Stavíme reproduktorové

Stavíme reproduktorové Í ª3³»» ±¼«µ ± ±ª7 ±«ª ø ÎÒÜ ò Þ± «³ Í#µ± Î ¼ ± ³ 7 µ7 µ ª ª ±¾ ± (»¾²3 8?¾ ª²3»»µ ±² ó µ ±«ª» ² 8²7³ & «³«ò Ö» ± ½» ±½ ±» ²7 ª»¼»³ µ ¼± «²± (3 «²7 ± ¾± 3 ª ±¾½ ±¼²3 3 ò X ª¾ «²»ó '» ±«(»¼4²±»µ ª ±«²»²?ª

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

MATEMATIKA 1. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY

MATEMATIKA 1. Sbírka úloh. RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová, Ph.D. ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním tetu Fuchs, Krupkova:

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více