Spojovací prostředky kolíkového typu jsou: hřebíky, sponky, svorníky, kolíky a vruty.

Rozměr: px
Začít zobrazení ze stránky:

Download "Spojovací prostředky kolíkového typu jsou: hřebíky, sponky, svorníky, kolíky a vruty."

Transkript

1 SPOJE S KOVOVÝMI SPOJOVACÍMI PROSTŘEDKY Spojovací prosřey olíovéo ypu jsou: řebíy spony svorníy olíy a vruy. Spoje řevo-řevo a esa-řevo (obecně Spoje: jeno-sřižné vou-sřižné Caraerisicá únosnos pro jeen sři jenoo spojovacío prosřeu se má u řebíů spone svorníů a vruů uvažova jao nejmenší onoa sanovená pole násleujícíc vzaů: Spojovací prosřey jenosřižně namáané = 5 ( ( 05 ( ( 05 min 3 R R y R R y R R y R R v M M M vr caraerisicá únosnos jenoo sřiu jenoo spojovacío prosřeu i loušťa řeva nebo esy nebo louba vniu i caraerisicá pevnos v olačení v řevěném prvu průměr spojovacío prosřeu M yr caraerisicý plasicý momen únosnosi spojovacío prosřeu poměr mezi pevnosmi v olačení prvů R caraerisicá osová únosnos na vyažení spojovacío prosřeu Poznáma: První člen na pravé sraně ve vzazíc pro spojovací prosřey jenosřižné a voj-sřižné je únosnos pole Joansenovy eorie zaímco člen R je příspěve o účinu sepnuí. Příspěve únosnosi o účinu sepnuí spoje se má omezi na násleující procena z Joansenovy čási: - Hřebíy ruovéo průřezu 5 % - Hřebíy čvercovéo průřezu a rážované 5 % - Osaní řebíy 50 %

2 - Vruy 00 % - Svorníy 5 % - Kolíy 0 % Jesliže R není známa pa příspěve účinu sepnuí spoje se má uvažova nula. Způsoby porušení pro spoje ze řeva a ese - jenosřižný spoj (Popis opovíá příslušným vzorcům Spojovací prosřey vojsřižně namáané v R 05 ( M = min 05 ( R 5 M y R y R Způsoby porušení pro spoje ze řeva a ese - vojsřižný spoj (Popis opovíá příslušným vzorcům R

3 Spoje ocel-řevo (obecně Caraerisicá únosnos spoje ocel-řevo je závislá na loušťce ocelovýc ese. Ocelové esy loušťy menší nebo rovné 05 jsou lasiiovány jao ené esy a ocelové esy loušťy věší nebo rovné s olerancí rozměru íry menší než 0 jsou lasiiovány jao lusé esy. Caraerisicá únosnos spojů s loušťou ocelové esy mezi enou a lusou esou se má počía pomocí lineární inerpolace mezi liminími onoami pro enou a lusou esu. Poznáma: Musí se posoui pevnos ocelové esy. Caraerisicá únosnos řebíů svorníů olíů a vruů pro jeen sři jenoo spojovacío prosřeu se má uvažova jao nejmenší onoa sanovená z násleujícíc vzaů: Pro enou ocelovou esu jenosřižně namáanou: 0 = min 5 M y v R R R Pro lusou ocelovou esu jenosřižně namáanou: M y R R = R v R min 3 M y R Hřebíové spoje Poznáma : Značy pro loušťy v jenosřižnýc a vojsřižnýc spojíc jsou einovány ao: je: - loušťa na sraně lavičy v jenosřižném spoji - menší z loušě řeva na sraně lavičy a vniu rou v vojsřižném spoji je: - vni rou v jenosřižném spoji - loušťa sřenío prvu v vojsřižném spoji

4 Poznáma : Dřevo se má převra yž: - caraerisicá usoa řeva je věší než 500 g.m -3 - průměr řebíu je věší než 6 mm Pro laé řebíy eré jsou vyrobeny z ráu s minimální pevnosí v au 600 N.mm - se mají používa násleující onoy plasicéo momenu únosnosi: M yr = 03. u. 6 M yr = 05. u. 6 pro řebíy ruovéo průřezu pro řebíy čvercovéo průřezu a rážované Pro řebíy čvercovéo průřezu a rážované řebíy se má průměr řebíu uvažova rozměr srany. M yr caraerisicý plasicý momen únosnosi spojovacío prosřeu v N.mm - průměr řebíů u pevnos ráu v au v N mm - Pro řebíy o průměrec o 8 mm plaí násleující caraerisicé pevnosi v olačení ve řevu a LVL: - bez převranýc ovorů: = 008. ρ. -03 N.mm - - s převranými ovory: = 008. ( 00.. ρ N.mm - Pro řebíy s průměry věšími než 8 mm se použijí onoy caraerisicýc pevnosí v olačení pro svorníy. Hřebíové spoje a řevo-řevo b esa-řevo c ocel-řevo a a spoje řevo-řevo - Pro laé řebíy má bý éla vniu rou nejméně 8. - Pro řebíy jiné než laé má bý éla vniu rou nejméně 6. Minimální rozeče a vzálenosi o onců a orajů jsou uveeny v abulce. a a a 3c a 3 a c a α je rozeč řebíů v jené řaě rovnoběžně s vlány rozeč řa řebíů olmo vlánům vzálenos mezi řebíem a nezaíženým oncem vzálenos mezi řebíem a zaíženým oncem vzálenos mezi řebíem a nezaíženým orajem vzálenos mezi řebíem a zaíženým orajem úel mezi silou a směrem vláen

5 Rozeče nebo vzálenosi Úel α Minimální rozeče nebo vzálenosi o onců/orajů Bez převranýc ovorů S převranými ovory ρ 0 g.m -3 0 < ρ 500 g.m -3 Rozeč a < 5 mm; (rovnoběžně (5 5 cosα s vlány 0 α 360 (7 8 cosα (7 8 cosα 5 mm; (5 7 cosα Rozeč a (olmo 0 α (3 sinα vlánům Vzálenos a 3 (zaížený onec -90 α 90 ( 0 5cosα ( 5 5cosα ( 7 5cosα Vzálenos a 3c 90 α (nezaížený 70 onec Vzálenos a < 5 mm; < 5 mm; < 5 mm; (zaížený (5 sinα (7 sinα (3 sin oraj 0 α 80 5 mm; 5 mm; 5 mm; (5 5sinα (7 5sinα (3 sinα Vzálenos a c (nezaížený oraj 80 α

6 Příla: Hřebíový spoj Posuďe únosnos spoje ažené pásnice. Osová síla N E = 0 N (sřeněobá. Maeriál říy S0 řía provozu. (vojsřižný spoj. Hřebíy: = mm éla 0 mm u = 600 MPa. = 35 mm = 50 mm Maeriálové a průřezové caraerisiy ρ = 350 g.m -3 0 = MPa mo = 08 A p = 0006 m A př = 0008 m 0 = 86 MPa Únosnos pásnice R p = A p. 0 = > N E VYHOVUJE 3 Únosnos přílože (musí přenés 5 násobe osové síly R př = A př. 0 5 = > N E VYHOVUJE Olačení řebíu = 008. ρ. -03 = M yr = 03. u. 6 = 5 Únosnos jenoo řebíu ve sřiu = = Pomína: 8. = 8. = < 35 VYHOVUJE

7 vr =.. = vr = vr3 = [.. (.. (. M yr - ] R.. vr = 5. 6 Poče řebíů ve spoji n ř = N E. vr = 7 Minimální rozeče 8 Náres a = (5 5 cosα. = a = 5. = a 3 = (0 5 cosα. = a c = 5. =... M yr.. R =

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY

SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY SPOJE OCEL-DŘEVO SE SVORNÍKY NEBO KOLÍKY Charakteristická únosnost spoje ocel-řevo je závislá na tloušťce ocelových esek t s. Ocelové esky lze klasiikovat jako tenké a tlusté: t s t s 0, 5 tenká eska,

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

(Německý ústav pro stavební techn veřejně-právní ústav OBECNĚ PLATNÉ POVOLENÍ ORGÁNU STA. Dammstraße Duisburg

(Německý ústav pro stavební techn veřejně-právní ústav OBECNĚ PLATNÉ POVOLENÍ ORGÁNU STA. Dammstraße Duisburg 3 4 5 6 7 8 ojovací Třía použií Tloušťa v,0, v N/mm pro vzálenos spojovacích prosřeů sřee esy (mm) 50 mm 75 mm 00 mm 50 mm 0 4, (7,84) 4, (5,3) 3,9,6,5 6,40 (9,8) 6,9 4,64 3,09 5 8,96 (9,50) 6,33 4,75

Více

Posouzení vyztužené stěny podle ČSN EN (Boulení stěn)

Posouzení vyztužené stěny podle ČSN EN (Boulení stěn) 9. Únosnos ve smu Posouzení vzužené sěn podle ČSN EN 99--5 (Boulení sěn) Používá se eorie roovanýc napěí. liv výzu je zarnu úměrně vššímu riicému napěí - po mírné úpravě soulasí s experimen. Únosnos ve

Více

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab

LindabCoverline. Tabulky únosností. Pokyny k montáži trapézových plechů Lindab LindabCoverline Tabulky únosnosí Pokyny k monáži rapézových plechů Lindab abulky únosnosi rapézových plechů Úvod Přípusné plošné zaížení je určeno v souladu s normou ČSN P ENV 1993-1-3 Navrhování ocelových

Více

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky. 5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny

Více

BO03 / BO06 DŘEVĚNÉ KONSTRUKCE

BO03 / BO06 DŘEVĚNÉ KONSTRUKCE BO03 / BO06 DŘEVĚNÉ KONSTRUKCE PODKLADY DO CVIČENÍ Tento aterál slouží výhraně jao poůca o cvčení a v žáné přípaě objee an type norací nenahrazuje náplň přenáše. Obsah NORMY PRO NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ...

Více

Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah:

Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah: SOUPY PŘÍČE TROJOUBOVÁ H Vpěné él: Po vojloubové a tojloubové á se slone stoje enší než cca 5 (v obáe), le po vpěnou élu stoje použít tento přblžný vtah: l s h 4+ 3, + E e, s. h h Opovíající vpěná éla

Více

ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie

ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie Navrhněe sropní průvla průřeu IPE oceli S35, aížený podle obráu reacemi e sropnic. Nosní je ajišěn proi ráě příčné a orní sabili (lopení) v podporách a v působiších osamělých břemen. haraerisicá hodnoa

Více

Úloha 4 - Návrh vazníku

Úloha 4 - Návrh vazníku Úloha 4 - Návrh vazníku 0 V 06 6:7:37-04_Navrh_vazniku.sm Zatížení a součinitele: Třía_provozu Délka_trvání_zatížení Stálé zatížení (vztažené k élce horní hrany střechy): g k Užitné zatížení: Zatížení

Více

NCCI: Výběr styku sloupu příložkami bez kontaktu

NCCI: Výběr styku sloupu příložkami bez kontaktu NCCI: Výběr syku sloupu příložkami bez konaku NCCI: Výběr syku sloupu příložkami bez konaku Teno NCCI uvádí zjednodušený návod k předběžnému návrhu komponen nekonakního syku sloupu pomocí příložek na pásnicích

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 Mezní stavy únosnosti U dřevěných onstrucí musíme ověřit jejich mezní stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce, při nichž může být ohrožena bezpečnost lidí. 6. Navrhování

Více

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE OBECNÁ LOÁLNĚ PODEPŘENÁ ŽELEZOBETONOÁ STROPNÍ ONSTRUCE Je dán železobeonový monoliický skele (viz schéma konsrukce). Sousední desková pole jsou zaížena rozdílným užiným zaížením. Meodou součových momenů

Více

kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1.

kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1. 6 DŘEVĚNÉ KONSTRUKCE Petr Kulí Kapitola je zaměřena na oblematiu navrhování vů a spojů dřevěných onstrucí na účiny požáru. Postupy výpočtu jsou uázány na příladu návrhu nosníu a sloupu. 6. VLASTNOSTI DŘEVA

Více

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE

P Ř Í K L A D Č. 2 OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE P Ř Í K L A D Č. OBECNÁ LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ STROPNÍ KONSTRUKCE Projek : FRVŠ 0 - Analýza meod výpoču železobeonových lokálně podepřených desek Řešielský kolekiv : Ing. Marin Tipka Ing. Josef

Více

900 - Připojení na konstrukci

900 - Připojení na konstrukci Součási pro připojení na konsrukci Slouží k přenosu sil z áhla závěsu na nosnou konsrukci profily nebo sropy. Typy 95x, 96x a 971 slouží k podložení a uchycení podpěr porubí. Připojení podle ypů pomocí

Více

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin.

Tabulky únosnosti tvarovaných / trapézových plechů z hliníku a jeho slitin. Tabulky únosnosi varovaných / rapézových plechů z hliníku a jeho sliin. Obsah: Úvod Základní pojmy Příklad použií abulek Vysvělivky 4 5 6 Tvarovaný plech KOB 00 7 Trapézové plechy z Al a jeho sliin KOB

Více

Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek.

Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Tento materál slouží výhradně jao pomůca do cvčení a v žádném případě objemem an typem normací nenahrazuje náplň přednáše. Obsah NORMY PRO NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ... NÁVRHOVÁ PEVNOST DŘEVA... MEZNÍ

Více

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická

Více

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu. 4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova

Více

NCCI: Návrhový model svařovaných styčníků ve vaznících z uzavřených profilů. Obsah

NCCI: Návrhový model svařovaných styčníků ve vaznících z uzavřených profilů. Obsah NCCI: Návrhový moel svařovaných syčníků ve vaznících z uzavřených proilů Teno NCCI se zaývá posupem ověření svařovaných syčníků v příhraových vaznících z uzavřených proilů neo při kominaci uzavřených a

Více

Frézování - řezné podmínky - výpočet

Frézování - řezné podmínky - výpočet Předmě: Ročník: Vyvořil: Daum: Základy výroby 2 M. Geisová 10. červen 2012 Název zpracovaného celku: Frézování - řezné podmínky - výpoče Posup při určování řezných podmínek, výpoče řezné síly Fř, výkonu

Více

ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z členěných prutů

ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z členěných prutů Dokumen: SX07a-E-EU Srana ázev: z 3 Eurokód: E 993--, E 993--8 & E 990 ŘŘešený příklad: Příhradový nosník malého sklonu s pasy z V řešeném příkladu je navržena konsrukce sedlové konsrukce sřechy s malým

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena

Ploché výrobky válcované za tepla z ocelí s vyšší mezí kluzu pro tváření za studena Ploché výrobky válcované za epla z ocelí s vyšší mezí kluzu pro váření za sudena ČSN EN 10149-1 Obecné echnické dodací podmínky Dodací podmínky pro ermomechanicky válcované Podle ČSN EN 10149-12-2013 ČSN

Více

I. Soustavy s jedním stupněm volnosti

I. Soustavy s jedním stupněm volnosti Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé

Více

Schöck Isokorb typ KST

Schöck Isokorb typ KST Schöck Isokorb yp Obsah Srana Základní uspořádání a ypy přípojů 194-195 Pohledy/rozměry 196-199 Dimenzační abulky 200 Ohybová uhos přípoje/pokyny pro návrh 201 Dilaování/únavová odolnos 202-203 Konsrukční

Více

ecosyn -plast Šroub pro termoplasty

ecosyn -plast Šroub pro termoplasty ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný

Více

Stojina ohýbaného nosníku vyztužená příčnými výztuhami a jednou a podélnou výztuhou

Stojina ohýbaného nosníku vyztužená příčnými výztuhami a jednou a podélnou výztuhou Pro. ng. Jose aháče DrS. Sojina ohýbaného nosníu vyzužená říčnými výzuhami a jednou a odélnou výzuhou Přílad Posuďe rosý nosní se sojinou vyzuženou říčnými i odélnými výzuhami. Rozěí nosníu L m zaížení

Více

Ocelové nosné konstrukce Požární bezpečnost pro ocelové sloupy a nosníky

Ocelové nosné konstrukce Požární bezpečnost pro ocelové sloupy a nosníky Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Požární bezpečnos saveb 57 Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Ocel je anorganická savební hmoa

Více

Návrh žebrové desky vystavené účinku požáru (řešený příklad)

Návrh žebrové desky vystavené účinku požáru (řešený příklad) Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je

Více

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury. 2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října

Více

1 Přípoj v rámovém rohu Detaily a údaje. Řešený příklad: Rámová konstrukce momentový přípoj v rámovém rohu

1 Přípoj v rámovém rohu Detaily a údaje. Řešený příklad: Rámová konstrukce momentový přípoj v rámovém rohu Dokumen: SX031a-CZ-EU Srana 1 z 3 Vyracoval Edurne Núñez Daum lisoad 005 Konroloval Abdul alik Daum únor 00 Řešený říklad: Rámová konsrukce momenový říoj v Teno říklad oisuje zůsob výoču ohybové a smykové

Více

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář. / 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,

Více

Řešený příklad: Parametrická křivka teplotní křivka

Řešený příklad: Parametrická křivka teplotní křivka Dokumen: SX04a-CZ-EU Srana 1 z 5 Řešený příklad: Paramerická křivka eploní křivka Eurokód EN 1991-1-:00 Vypracoval Z Sokol Daum Leden 006 Konroloval F Wald Daum Leden 006 Řešený příklad: Paramerická křivka

Více

NCCI: Určení bezrozměrné štíhlosti I a H průřezů

NCCI: Určení bezrozměrné štíhlosti I a H průřezů Teno N předládá meodu pro určení beroměrné šíhlosi při ohbu be určení riicého momenu M cr. Záladní onervaivní meodu le přesni a, že se uváží eomerie průřeu a var momenového obrace. Obsah. Zjednodušená

Více

Ocelové nosné konstrukce

Ocelové nosné konstrukce Proma Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky 56 Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Ocel je anorganická savební hmoa a lze ji ey bez zvlášních

Více

Hřebíkové spoje. Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR.

Hřebíkové spoje. Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR. Hřebíkové spoje JMÉNO PŘEDMĚT Ing. Milan Pilgr, Ph.D. DŘEVĚNÉ KONSTR. TŘÍDA 3. ročník ROK 28 Bibliografická citace: PILGR, M. Dřevěné konstrukce. Hřebíkové spoje. Pracovní verze příkladu do cvičení rozpracovaného

Více

Při distorzím vzpěru dochází k přetvoření příčného řezu (viz obr.2.1). Problém se převádí na výpočet výztuh a) okrajových, b) vnitřních.

Při distorzím vzpěru dochází k přetvoření příčného řezu (viz obr.2.1). Problém se převádí na výpočet výztuh a) okrajových, b) vnitřních. . Diorzní vzpěr Při iorzím vzpěru ochází k převoření příčného řezu (viz obr..). Problém e převáí na výpoče výzuh a) okrajových, b) vniřních. Obr.. Příklay iorzního vyboulení. Kriické namáhání a poměrná

Více

PRVKY KOVOVÝCH KONSTRUKCÍ

PRVKY KOVOVÝCH KONSTRUKCÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO0-M06 ÚNOSNOST ŠTÍHLÝCH STĚN STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

POZNÁMKA Návod na výpočet interakce podloží a konstrukce je uveden v EN 1997.

POZNÁMKA Návod na výpočet interakce podloží a konstrukce je uveden v EN 1997. 5 Analýza konsruke 5.1 Modelování konsruke pro analýzu 5.1.1 Modelování konsruke a základní předpoklady (1)P Analýza musí bý založena na výpočením modelu konsruke, kerý je vhodný pro příslušný mezní sav.

Více

Řešený příklad - Chráněný nosník se ztrátou stability při ohybu

Řešený příklad - Chráněný nosník se ztrátou stability při ohybu Řešený říl - Chráněný nosní se ráou sbili ři ohbu Posuďe nosní I oeli S 5 n ožární oolnos R 9. Nosní ole obráu je ížený osmělými břemen, sálé ížení G 6 N, roměnné ížení Q 8, N. Proi ožáru je nosní hráněn

Více

7. NAVRHOVÁNÍ STYČNÍKŮ V EN

7. NAVRHOVÁNÍ STYČNÍKŮ V EN 7. AVRHOVÁÍ STYČÍKŮ V E 993-- Pro. Ing. Franišek Wal, CSc., Ing. Zeněk Sokol, Ph.D. Shrnuí ávrh sčníků v připravované evropské normě E 993-- vchází z kapiol 6 přeběžné norm EV 993--, z příloh J pro sčník

Více

Ocelové nosné konstrukce

Ocelové nosné konstrukce Proma Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky 6 Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Ocel je anorganická savební hmoa a lze ji ey bez zvlášních

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Materiál: Lepené lamelové dřevo (GL 24h) stojka 2 x 120x1480 mm příčel 1 x 200x1480 mm Třída provozu: 1 Spojovací prostředek: kolíky ϕ24 mm

Materiál: Lepené lamelové dřevo (GL 24h) stojka 2 x 120x1480 mm příčel 1 x 200x1480 mm Třída provozu: 1 Spojovací prostředek: kolíky ϕ24 mm RÁOÝ ROH TROJKLOUBOÁ HALA Náv oje ojy a říčle ojloubovéo ámu (viz obáze): aeiál: Leeé lamelové řevo (GL 4) oja x 0x480 mm říčel x 00x480 mm Třía ovozu: Sojovací ořee: olíy ϕ4 mm Nejeřízivější ombiace (áoobýc)

Více

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly)

pro napojení ocelových nosníků velkého průřezu na ocelovou konstrukci (s více než dvěma moduly) Schöck Isokorb Moduly pro napojení ocelových nosníků velkého průřezu na ocelovou konsrukci (s více než dvěma moduly) 190 Schöck Isokorb yp (= 1 ZST Modul + 1 QST Modul) pro napojení volně vyložených ocelových

Více

Betonářská výztuž svařování: základní, návazné a rušené normy. J. Šmejkal a J. Procházka

Betonářská výztuž svařování: základní, návazné a rušené normy. J. Šmejkal a J. Procházka Beonářská výzuž svařování: základní, návazné a rušené normy J. Šmejkal a J. Procházka ISO EN ČSN ČSN EN 1992-1 Navrhování beonových konsrukcí ČSN EN 10080 Ocel pro výzuž do beonu Svařielná žebírková beonářská

Více

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5

Tento NCCI dokument poskytuje návod pro posouzení prutů namáhaných kroucením. 2. Anlýza prvků namáhaných kroucením Uzavřený průřez v kroucení 5 NCC: Kroucení Teno NCC dokumen poskyuje návod pro posouzení pruů namáhaných kroucením. Obsah 1. Obecně. Anlýza prvků namáhaných kroucením. Uzavřený průřez v kroucení 5 4. Oevřený průřez v kroucení 6 5.

Více

12.1 Návrhové hodnoty vlastností materiálu

12.1 Návrhové hodnoty vlastností materiálu 12 Prvy za požáru Chování prvů ze dřeva a materiálů na bázi dřeva při požáru není možné jednoduše popsat. Odlišuje se chování při rozhořívání a při plně rozvinutém požáru. Při rozhořívání se uplatní hořlavost

Více

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový

Před zahájením vlastních výpočtů je potřeba analyzovat konstrukci a zvolit vhodný návrhový 2 Zásady navrhování Před zahájením vlastních výpočtů je potřeba analyzovat onstruci a zvolit vhodný návrhový model. Model musí být dostatečně přesný, aby výstižně popsal chování onstruce s přihlédnutím

Více

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík

7.1 Úvod. 7 Dimenzování prvků dřevěných konstrukcí. σ max σ allow. σ allow = σ crit / k. Petr Kuklík Petr Kulí Dimenzování prvů dřevěných onstrucí 7 Dimenzování prvů dřevěných onstrucí 7.1 Úvod U dřevěných onstrucí musíme ověřit jejich stavy, teré se vztahují e zřícení nebo jiným způsobům pošození onstruce,

Více

a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3.

a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3. Řešené úlohy na ohnisové vlasnosi uželoseče Řešené úlohy onsruce uželosečy z daných podmíne řílad: Sesroje uželoseču, je-li dáno její ohniso F 1, ečna = T s bodem T doyu a excenricia e; F 1 [0; 0], T [5;

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Spolehlivost nosné konstrukce

Spolehlivost nosné konstrukce Spolehlivost nosné onstruce Zatížení: -stálé G součinitel zatížení γ G - proměnné Q.součinitel zatíženíγ Q Zatížení: -charateristicé F F,V, M -návrhové F d F d F γ + F γ G G Q Q,V, M Pevnost - charateristicá

Více

(Německý ústav pro stavební techniku) veřejně-právní ústav OBECNĚ PLATNÉ POVOLENÍ ORGÁNU STAVEBNÍHO DOZORU. Dammstraße 25 47119 Duisburg

(Německý ústav pro stavební techniku) veřejně-právní ústav OBECNĚ PLATNÉ POVOLENÍ ORGÁNU STAVEBNÍHO DOZORU. Dammstraße 25 47119 Duisburg 0G04_7-05.qx 5.7.005 3:4 SrÆna 3 4 5 6 7 8 jvací Třía pužií Tlušťa v,0, v N/mm pr vzálens spjvacích prsřeů sřee esy (mm) 50 mm 75 mm 00 mm 50 mm 0 4, (7,84) 4, (5,3) 3,9,6,5 6,40 (9,8) 6,9 4,64 3,09 5

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

7. ZPĚTNÉ VLIVY MĚNIČŮ NA NAPÁJECÍ SÍŤ Harmonické proudy řízených usměrňovačů

7. ZPĚTNÉ VLIVY MĚNIČŮ NA NAPÁJECÍ SÍŤ Harmonické proudy řízených usměrňovačů 7. ZPĚTNÉ VLVY MĚNČŮ NA NAPÁJECÍ SÍŤ 7.. Haroncé prouy řízenýc usěrňovačů L L L3 Př zjenoušenýc poínác Syercá napájecí sousava Syercé řízení ěnče ve všec fázíc Haroncé napájecí napěí nučnos v sejnosěrné

Více

VYZKOUŠEJTE RŮZNÉ MATERIÁLY

VYZKOUŠEJTE RŮZNÉ MATERIÁLY ATILA STÝL s.r.o. +420 601 581 817, obcho@atilastyl.cz, www.atilastyl.cz VYZKOUŠEJTE RŮZNÉ MATERIÁLY Šrouby, matice a položky jsou vyráběny v násleujících materiálech. Kažý z těchto materiálů má celou

Více

OZUBENÉ METRÁŽE M OZUBENÉ METRÁŽE. Oblast použití. Dodávané typy, varianty. Konstrukce OZUBENÉ. Standardně. Na poptávku

OZUBENÉ METRÁŽE M OZUBENÉ METRÁŽE. Oblast použití. Dodávané typy, varianty. Konstrukce OZUBENÉ. Standardně. Na poptávku OZUBEÉ METRÁŽE ÚVOD OZUBEÉ METRÁŽE PU - plyureanové CR - ové Ozubené jsou primárně určeny pro pohony lineárních zařízení. Vyrábí se z polyureanu nebo u ve sejných profilech jako běžné nekonečné řemeny.

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

8 Spoje s kovovými spojovacími prostředky

8 Spoje s kovovými spojovacími prostředky 8 Spoje s kovovými spojovacími prostředky U dřevěných konstrukcí závisí jejich použitelnost a trvanlivost především na návrhu spojů mezi jednotlivými konstrukčními prvky. U běžně používaných spojů se rozlišují

Více

Zatížení konstrukcí namáhaných požárem

Zatížení konstrukcí namáhaných požárem Zaížení konsrukcí namáhaných požárem 1. Požární bezpečnos saveb - obecně Požární ochrana má dvě základní složky: požární prevenci zaměřenou na předcházení vzniku požárů a omezení následků již vzniklých

Více

studentska kopie =0,9 (rostlé dřevo, krátkodobé zatížení, třída vlhkosti 1) MPa Posudek krokve Průřezové charakteristiky Krokev 80/180

studentska kopie =0,9 (rostlé dřevo, krátkodobé zatížení, třída vlhkosti 1) MPa Posudek krokve Průřezové charakteristiky Krokev 80/180 Posue rove Průřezové charateristi Kroev 80/180 A 14400 W I i 5 3 4,3 10 7 3,888*10 I 5, 0 A Materiálové charateristi 0, 0MPa MPa v,, 4 MPa 4 mo 0,9 (rostlé řevo, rátoobé zatížení, třía vlhosti 1) Pozn.:

Více

2. Přídavky na obrábění

2. Přídavky na obrábění 2. Přídavy na obrábění Abyco oli z oloovaru vyrobi součás ředesanýc geoericýc varů a rozěrů, v ředesané výrobní oleranci a jaosi obrobené locy, usíe zvoli oloovar s dosaečnýi řídavy na obrábění. U oloovarů

Více

ALUMINI. Skrytý držák bez otvorů Tří rozměrová děrovaná deska z hliníkové slitiny ALUMINI - 01 OBSAH BALENÍ OCEL - HLINÍK TENKÉ KONSTRUKCE

ALUMINI. Skrytý držák bez otvorů Tří rozměrová děrovaná deska z hliníkové slitiny ALUMINI - 01 OBSAH BALENÍ OCEL - HLINÍK TENKÉ KONSTRUKCE ALUMINI Skrytý držák bez otvorů Tří rozměrová děrovaná deska z hliníkové slitiny OBSA BALENÍ Vruty BS+ evo dodané v balení OBLASTI POUŽITÍ Spoje ve střihu dřevo-dřevo a to jak kolmé, tak i šikmé vzhledem

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

ř ř ŘÁ ÉÚ ř ó ó ř ó Ř Á Á ŘÁ ř š ý Č Č Č ý Č ř ý Č Č Č ř ř ý ý Ž š ř š ř š ř š Á Ú ř ó ř ó Ř Á Á ŘÁ ř š ř ř ř ř ř ř ř ř ý š ř ř ý ř š š ú Č ř š ř ř ř Č ý ý ř ř ř ý ř ř ř ý ř ý ř ř ň š ř ý ř ý ř ř ú ř ý

Více

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami. cvičení Dřevěné konstrukce Hřebíkové spoje Základní pojmy. Návrh spojovacího prostředku Na hřebíkové spoje se nejčastěji používají ocelové stavební hřebíky s hladkým dříkem kruhového průřezu se zápustnou

Více

3 Návrhové hodnoty materiálových vlastností

3 Návrhové hodnoty materiálových vlastností 3 Návrhové hodnoty materiálových vlastností Eurokód 5 společně s ostatními eurokódy neuvádí žádné hodnoty pevnostních a tuhostních vlastností materiálů. Tyto hodnoty se určují podle příslušných zkušebních

Více

ALUMAXI. Držák pro skrytý spoj Tří rozměrová děrovaná deska z hliníkové slitiny ALUMAXI - 01 HORNÍ ODOLNOSTI OCEL - HLINÍK DŘEVO A BETON

ALUMAXI. Držák pro skrytý spoj Tří rozměrová děrovaná deska z hliníkové slitiny ALUMAXI - 01 HORNÍ ODOLNOSTI OCEL - HLINÍK DŘEVO A BETON ALUMAXI Držák pro skrytý spoj Tří rozměrová děrovaná deska z hliníkové slitiny ORNÍ ODOLNOSTI Standardní připojení navržené k zajištění mimořádné odolnosti vůči požáru. Certifikované a vypočítané hodnoty

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

Linearní teplotní gradient

Linearní teplotní gradient Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz

Více

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE

VZÁJEMNÉ SILOVÉ PŮSOBENÍ VODIČŮ S PROUDEM A MAGNETICKÉ POLE Příklady: 1A. Jakou silou působí homogenní magnetické pole na přímý vodič o délce 15 cm, kterým prochází proud 4 A, a svírá s vektorem magnetické indukce úhel 60? Velikost vektoru magnetické indukce je

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování

MECHANIKA PODZEMNÍCH KONSTRUKCÍ Základní vztahy z reologie a reologického modelování STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTRSKÉHO PROGRAMU STAVBNÍ INŽNÝRSTVÍ -GOTCHNIKA A PODZMNÍ STAVITLSTVÍ MCHANIKA PODZMNÍCH KONSTRUKCÍ Základní vzahy z reologie a reologického

Více

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce

OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce OCELOVÉ A DŘEVĚNÉ PRVKY A KONSTRUKCE Část: Dřevěné konstrukce Přednáška č. 3 Doc. Ing. Antonín Lokaj, Ph.D. VŠB Technická univerzita Ostrava, Fakulta stavební, Katedra konstrukcí, Ludvíka Podéště 1875,

Více

BO02 PRVKY KOVOVÝCH KONSTRUKCÍ

BO02 PRVKY KOVOVÝCH KONSTRUKCÍ BO0 PRVKY KOVOVÝCH KONSTRUKCÍ PODKLADY DO CVIČENÍ Obsah NORMY PRO NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ... KONVENCE ZNAČENÍ OS PRUTŮ... 3 KONSTRUKČNÍ OCEL... 3 DÍLČÍ SOUČINITEL SPOLEHLIVOSTI MATERIÁLU... 3 KATEGORIE

Více

Projekční podklady Vybrané technické parametry

Projekční podklady Vybrané technické parametry Projekční podklady Vybrané echnické paramery Projekční podklady Vydání 07/2005 Horkovodní kole Logano S825M a S825M LN a plynové kondenzační kole Logano plus SB825M a SB825M LN Teplo je náš živel Obsah

Více

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY

73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KOMENTÁŘ 1. OBECNĚ 2. ZOHLEDNĚNÍ SKLADBY DOPRAVNÍHO PROUDU KŘIŽOVATKY PŘÍLOHA 73-01 73-01 KONEČNÝ NÁVRH METODIKY VÝPOČTU KAPACITU VJEZDU DO OKRUŽNÍ KŘIŽOVATKY Auor: Ing. Luděk Baroš KOMENTÁŘ Konečný návrh meodiky je zpracován ormou kapioly Technických podmínek a bude upřesněn

Více

ú ú úř úř ú ě úř úř Š ě ě ú ú ž ú ú ú ó Á ú ě ě ť ě ě ň ň ú ó Ť ř ó Éú ž ě Ž ž ě ú ž ř Ž ř Č ňž ě ř Ů ž ó ž ó É ř ě ú ůó ú ú ú ř ů Ž ú ů ě ž ú ú ř ú ú ú ů ú Ž ú ě ž ž ř ř Ž ř ř ř ú ě ě Á řň ř ů ž ř ÁŮ

Více

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali

Vypracoval Datum Hodnocení. V celé úloze jsme používali He-Ne laser s vlnovou délkou λ = 632, 8 nm. Paprsek jsme nasměrovali Název a číslo úlohy - Difrakce světelného záření Datum měření 3.. 011 Měření proveli Tomáš Zikmun, Jakub Kákona Vypracoval Tomáš Zikmun Datum. 3. 011 Honocení 1 Difrakční obrazce V celé úloze jsme používali

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant. Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

MOJE OBLÍBENÉ PŘÍKLADY Z PP II

MOJE OBLÍBENÉ PŘÍKLADY Z PP II MOJE OLÍEÉ PŘÍKLDY Z PP II 1. Tenký křivý pru ve vru čvrkružnie je v bodě uožen koubově v bodě posuvně. Pru je zížen osměým momenem M v bodě. Dáno: M,, E J z = kons. Urči: 1. eke v uožení (,, ).. Momen

Více

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K

Měrné teplo je definováno jako množství tepla, kterým se teplota definované hmoty zvýší o 1 K 1. KAPITOLA TEPELNÉ VLASTNOSTI Tepelné vlasnosi maeriálů jsou charakerizovány pomocí epelných konsan jako měrné eplo, eploní a epelná vodivos, lineární a objemová rozažnos. U polymerních maeriálů má eploa

Více

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0

SPOTŘEBITELSKÝ ÚVĚR. Při rozhodování o splátkové společnosti se budeme řídit výší RPSN. Pro nákup zboží si zvolíme. Dl = >k=0 Úloha 4 - Koupě DVD reoréru SPOTŘEBITELSKÝ ÚVĚR Mlaá roina si chce poříit DVD reorér v honotě 9 900,-Kč. Má možnost se rozhonout mezi třemi splátovými společnosti, teré mají násleující pomíny: a) První

Více

Požárně ochranná manžeta PROMASTOP -U (PROMASTOP -UniCollar ) pro plast. potrubí

Požárně ochranná manžeta PROMASTOP -U (PROMASTOP -UniCollar ) pro plast. potrubí Požárně ochranná manžea PROMASTOP -U (PROMASTOP -UniCollar ) pro plas. porubí EI až EI 90 00.0 PROMASTOP -U - požárně ochranná manžea monážní úchyky ocelová kova nebo urbošroub ocelový šroub s podložkou

Více

Příklad 4 Ohýbaný nosník napětí

Příklad 4 Ohýbaný nosník napětí Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

Dimenzování silnoproudých rozvodů. Návrh napájecího zdroje., obvykle nepracují zároveň při jmenovitém výkonu

Dimenzování silnoproudých rozvodů. Návrh napájecího zdroje., obvykle nepracují zároveň při jmenovitém výkonu Dimenzování silnoproudých rozvodů Návrh napájecího zdroje Supina el. spotřebičů P i Pn, obvyle nepracují zároveň při jmenovitém výonu činitel současnosti Pns s P n P ns současně připojené spotřebiče činitel

Více

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08 Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS =

X 3U U U. Skutečné hodnoty zkratových parametrů v pojmenovaných veličinách pak jsou: Průběh zkratového proudu: SKS = 11. Výpoče poměrů při zkraeh ve vlasní spořebě elekrárny Zkra má v obvodeh shémau smysl pouze v čáseh provozovanýh s účinně uzemněným sředem zdroje, čili mimo alernáor, vyvedení výkonu a přilehlá vinuí

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1) Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.

Více