Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Rozměr: px
Začít zobrazení ze stránky:

Download "Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha."

Transkript

1 Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní oázk ČVUT v Praze, Fakula archiekur 7. března 2016

2 Saika 1 Pru je konsrukční prvek, u kerého je délka L mnohem věší než šířka b i výška h. Pruem je např. rám, sloup, průvlak nebo prvek příhradové sousav. je var příčného řezu pruu. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk D h L L b

3 průřezu Základní jednoka: m 2 ȳ da ȳ A 3 Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk A 2 A 1 A = da A = i A i A

4 Saický momen průřezu Saika 1 Základní jednoka: m 3 ȳ ȳ Saický momen Těžišě Momen servačnosi ȳ da 3 3 Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi ȳ ȳ Konrolní oázk S = A ȳ = A ȳ da S = A ȳ = i A i ȳ i Sȳ = A = A da Sȳ = A = i A i i

5 Těžišě průřezu Saika 1 ȳ Poloha ěžišě se u složeného průřezu vpoče: Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi 3 3 = Sȳ A = Ai i Ai Elipsa servačnosi Konrolní oázk ȳ ȳ = S A = Ai ȳ i Ai Do ěžišě umis ujeme počáek ěžiš ového ssému souřadnic.

6 Těžišě průřezu Saika 1 Saický momen k ěžiš ové ose je nulový. Pokud má průřez 1 osu smerie, leží ěžišě na éo ose. Pokud má průřez 2 a více os smerie, leží ěžišě v průsečíku ěcho os. U průřezu sředově smerického leží ěžišě ve sředu smerie. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

7 Momen servačnosi průřezu Základní jednoka: m 4 da Momen servačnosi: I = 2 da A I = 2 da A Deviační momen: D = da A Momen servačnosi ploch (A > 0) k ěžiš ovým osám je vžd kladný (I R +, I R + ). Deviační momen k ěžiš ovým osám může bý kladný, záporný i nulový (D R). Saika 1 Saický momen Těžišě Pro základní geomerické obrazce (čverec, obdélník, rojúhelník, kruh, půlkruh, čvrkruh,... ) jsou inegrál spočíán a abelován. Viz odborná lieraura nebo viz hp://15122.fa.cvu.cz. Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

8 Momen servačnosi Saika 1 Čverec a ȳ ȳ A = a 2 = ȳ = 1 2 a I = I = 1 12 a4 D = 0 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk a Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

9 Momen servačnosi Saika 1 Obdélník ȳ Saický momen Těžišě Momen servačnosi h ȳ A = bh = 1 2 b ȳ = 1 2 h I = 1 12 bh3 I = 1 12 hb3 D = 0 Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk b Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

10 Momen servačnosi Saika 1 Kruh r d A = πr 2 = 1 4 πd 2 I = I = 1 4 πr 4 = 1 64 πd 4 D = 0 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

11 Momen servačnosi Saika 1 Pravoúhlý rojúhelník ȳ Saický momen Těžišě Momen servačnosi h ȳ b A = 1 2 bh = 1 3 b ȳ = 1 3 h I = 1 36 bh3 I = 1 36 hb3 D = 1 72 b2 h 2 Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

12 Momen servačnosi Saika 1 h Rovnoramenný rojúhelník ȳ ȳ b A = 1 2 bh = 1 2 b ȳ = 1 3 h I = 1 36 bh3 I = 1 48 hb3 D = 0 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

13 Momen servačnosi Saika 1 r Půlkruh ȳ ȳ r d A = 1 2 πr 2 = 1 2 d = r ȳ = 4r 3π I = r 4 ( π 8 8 I = 1 8 πr 4 D = 0 9π ) Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D! Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

14 Momen servačnosi Saika 1 Čvrkruh ȳ r ȳ r r A = 1 4 πr 2 = r(1 4 3π ) ȳ = 4r 3π I = I = 1 2 r 4 ( π 8 8 D = +r 4 ( 4 9π 1 8 ) 9π ) Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Při naočení průřezu nebo souřadného ssému o 90 je řeba zaměni výraz pro I a I a změni znaménko výrazu pro D!

15 Momen servačnosi Saika 1 Ocelové válcované průřez Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Pro ocelové válcované průřez jsou abulk s polohou ěžišě, plochou a momen servačnosi v odpovídajících normách, saických abulkách nebo ocelářských abulkách.

16 Momen servačnosi průřezu Seinerova věa Saika 1 Seinerova věa: Momen servačnosi k mimoěžiš ové ose rovnoběžné s ěžiš ovou osou se rovná ěžiš ovému momenu servačnosi I zvěšenému o součin ploch A a čverce vzdálenosi obou os ỹ 2. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi ỹ Elipsa servačnosi Konrolní oázk ỹ ỹ da I = I + Aỹ 2 Analogick plaí: Iỹ = I + A 2 D ỹ = D + A ỹ

17 Momen servačnosi průřezu Seinerova věa - důkaz ỹ Saika 1 Saický momen ỹ ỹ da Transformační vzah při posunu souřadných os: = + ỹ = + ỹ Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Důkaz Seinerov vě: I = ỹ 2 da = ( + ỹ ) 2 da = A A = 2 2 da+2ỹ da+ỹ A A A da = = I + 2ỹ S + Aỹ 2 = I + Aỹ 2 Podobně lze odvodi: Iỹ = I + A 2 a D ỹ = D + A ỹ

18 Momen servačnosi průřezu Těžiš ové momen servačnosi složeného průřezu Saika 1 Saický momen Těžišě Momen servačnosi [ 3, 3 ] [ 2, 2 ] 1 [ 1, 1 ] Podle Seinerov vě plaí: I = (I i + A i 2 i ) i I = (I i + A i 2 i ) i D = (D i i + A i i i ) i Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Při výpoču D pozor na znaménka D i i, i a i!

19 Hlavní ěžiš ové os průřezu Saika 1 Saický momen Těžišě Těžiš ových souřadných ssémů je nekonečně mnoho. Nejdůležiější jsou ěžiš ové os, ke kerým je momen servačnosi maimální a minimální. To os nazýváme hlavní ěžiš ové (cenrální) os servačnosi a budeme je označova c a c. Je řeba nají úhel naočení ěžiš ových os α 0, pro kerý jsou momen servačnosi maimální, resp. minimální. Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

20 Hlavní ěžiš ové os průřezu Transformace momenů při naočení ěžiš ových os v v da u +α u S vužiím ransformačních vzorců u = cosα+ sinα v = cosα sinα Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk plaí: I u = v 2 da = ( cosα sinα) 2 da = A A = cos 2 α 2 da 2 sinαcosα da+sin 2 α 2 da = A A A = I cos 2 α+i sin 2 α D sin 2α Podobně lze odvodi vzorce pro I v a D uv.

21 Hlavní ěžiš ové os průřezu Transformace momenů při naočení ěžiš ových os v Saika 1 Saický momen v da u +α u Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk Pro naočené os u a v plaí: I u = I cos 2 α+i sin 2 α D sin 2α I v = I sin 2 α+i cos 2 α+d sin 2α D uv = 1 2 (I I ) sin 2α+D cos 2α

22 Hlavní ěžiš ové os průřezu Maimalizace, resp. minimalizace, momenu servačnosi I v Úhel naočení hlavních cenrálních os servačnosi α 0 se určí např. maimalizací, resp. minimalizací, ransformačního vzahu pro I v, kerý derivujeme podle α a položíme rovno nule. I v = I sin 2 α+i cos 2 α+d sin 2α I v(α) = 2I sinαcosα 2I cosαsinα+2d cos 2α = 0 I v(α) = 2 { 1 2 (I I ) sin 2α+D cos 2α } = 2D uv (α) = 0 Řešením éo rovnice získáme úhel naočení hlavních ěžiš ových os servačnosi α 0. Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk g 2α 0 = 2D I I Z rovnice I v(α) = 2D uv (α) = 0 aké plne, že deviační momen k hlavním ěžiš ovým osám je nulový.

23 Hlavní ěžiš ové os a hlavní cenrální momen servačnosi c Úhel naočení hlavních cenrálních os servačnosi: Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi α 0 g 2α 0 = 2D I I Elipsa servačnosi Konrolní oázk c Hlavní cenrální momen servačnosi: I c = I cos 2 α 0 + I sin 2 α 0 D sin 2α 0 I c = I sin 2 α 0 + I cos 2 α 0 + D sin 2α 0 D c c = 0

24 Hlavní ěžiš ové os a momen servačnosi α 0 c c Pokud plaí I c I c a I I, poom musí plai I c I I I c. Souče momenů servačnosi je invarianní veličina, proo se oočením souřadného ssému jeho hodnoa nemění. Musí ed plai I c + I c = I + I. Deviační momen k hlavním ěžiš ovým osám je nulový (D c c = 0). Hlavní cenrální momen servačnosi lze vpočía i podle vzorce I c, c = I (I ) 2 + I I ± + D Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

25 Hlavní ěžiš ové os a momen servačnosi Saika 1 Pokud má průřez 1 osu smerie, leží na éo ose jedna hlavní ěžiš ová osa průřezu. Pokud má průřez 2 os smerie, jsou o os aké hlavní cenrální os servačnosi. Pokud má průřez 3 a více os smerie, je každý ěžiš ový souřadný ssém aké hlavní cenrální. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk c c c c c c c c c c c c c c c c

26 Elipsa servačnosi průřezu Saika 1 Poloměr servačnosi průřezu i k ěžiš ové ose je definován jako vzdálenos od ěžišě, kde má hmoný bod, do kerého je sousředěna veškerá hmoa průřezu, sejný momen servačnosi k ose jako průřez. Množina akových bodů pro všechn ěžiš ové os průřezu je nazývána elipsa servačnosi. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk i I = Ai 2

27 Elipsa servačnosi průřezu Saika 1 Saický momen i c i c c Hlavní poloos elips servačnosi jsou poloměr servačnosi k hlavním cenrálním osám servačnosi: i c = Ic A Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk c i c = Ic A

28 Elipsa servačnosi průřezu Naočení elips servačnosi odpovídá znaménku deviačního momenu D. D > 0 D < 0 D = 0 Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk c c

29 Elipsa servačnosi průřezu Saika 1 Pokud má průřez 3 a více os smerie, elipsa servačnosi má var kružnice. Pokud elipsa servačnosi má var kružnice, poom každý ěžiš ový ssém souřadnic je hlavní cenrální. Hlavních cenrálních souřadných ssémů souřadnic je v akovém případě nekonečně mnoho. Příkladem může bý kruhový průřez, čverec nebo pravidelný n-úhelník. Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk c c c c c c c c c c c c

30 Konrolní oázka Kerý průřez má věší momen servačnosi I? Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

31 Konrolní oázka Saika 1 Určee, zda pro daný průřez plaí: a) D = 0 b) D < 0 c) D > 0 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Konrolní oázk

32 Konec přednášk Saika 1 Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Děkuji za pozornos. Konrolní oázk Vsázeno ssémem L A T E X. Obrázk vvořen v ssému.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury. 2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října

Více

Téma 10: Momenty setrvačnosti a deviační momenty

Téma 10: Momenty setrvačnosti a deviační momenty Savení saika, ročník akalářskéo sudia Téma : Momeny servačnosi a deviační momeny Cenrální kvadraické momeny ákladníc průřeů Cenrální kvadraické momeny složenýc průřeů Kvadraické momeny k pooočeným osám

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Příklad 19 Střed smyku

Příklad 19 Střed smyku Příklad 19 řed smku Zadání Určee polohu sředu smku průřezu na obrázku. Posup: 1) Určí se průběh smkových napěí po sřednici enkosěnného průřezu podle V I ) Inegrací napěí po ploše se určí smkové síl v jednolivých

Více

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =

EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g = NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08

= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08 Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Příklad 4 Ohýbaný nosník napětí

Příklad 4 Ohýbaný nosník napětí Příklad 4 Oýaný nosník napěí Zadání Nosník s převislým koncem je aížen spojiým aížení q = 4 kn/m a osamělou silou F = 40 kn. Průře nosníku je ocelový svařovaný proil. Roměr nosníku jsou: L =,6 m L =, m

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky.

Hodnoty pro trubkový vazník předpokládají styčníky s průniky trubek, v jiných případech budou vzpěrné délky stejné jako pro úhelníkové vazníky. 5. Vazník posuek pruů 5. Vzpěrné élky Tab.: Vzpěrné élky pruů příhraových vazníků Úhelníkový vazník v rovině vzálenos uzlů Horní pás z roviny vzálenos vaznic vzálenos svislého zužení Dolní pás z roviny

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro

Více

10. Analytická geometrie kuželoseček 1 bod

10. Analytická geometrie kuželoseček 1 bod 10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické

Více

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu.

4. Kroucení prutů Otevřené a uzavřené průřezy, prosté a vázané kroucení, interakce, přístup podle Eurokódu. 4. Kroucení pruů Oevřené a uzavřené průřezy, prosé a vázané kroucení, inerakce, přísup podle Eurokódu. Obvyklé je pružné řešení (plasické nelineární řešení - např. Srelbická) Podle Eurokódu lze kombinova

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I 6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Statika 2. Prosté případy pružnosti: Prostý ohyb. Prosté kroucení vybraných průřezů. Miroslav Vokáč 7.

Statika 2. Prosté případy pružnosti: Prostý ohyb. Prosté kroucení vybraných průřezů. Miroslav Vokáč 7. 1. přednáška : vbraných průřeů Miroslav Vokáč miroslav.vokac@klok.cvu.c ČVUT v Prae, Fakula archiekur 7. října 2015 Konulační hodin Ing. Miroslav Vokáč, Ph.D. Klonerův úsav, ČVUT v Prae Šolínova 7 166

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4..0 Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 40, 408 Pedagogická poznámka: Tato kapitola nepřináší nic nového. Sám autor si myslí, že by bylo lepší, kdyby si studenti metodu rychlého

Více

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :

Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence : Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář.

GONIOMETRIE. 1) Doplň tabulky hodnot: 2) Doplň, zda je daná funkce v daném kvadrantu kladná, či záporná: PRACOVNÍ LISTY Matematický seminář. / 9 GONIOMETRIE ) Doplň tabulk hodnot: α ( ) 0 0 5 60 90 0 5 50 80 α (ra sin α cos α tg α cotg α α ( ) 0 5 0 70 00 5 0 60 α (ra sin α cos α tg α cotg α ) Doplň, zda je daná funkce v daném kvadrantu kladná,

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

III Určování hodnot funkcí sinus a cosinus

III Určování hodnot funkcí sinus a cosinus ..7 Určování hodnot funkcí sinus a cosinus Poznámka: Obsah této kapitoly nepřináší nic nového. Sám autor si myslí, že by asi bylo lepší, kdyby si studenti nějako metodu rychlého určování hodnot vymysleli

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.

Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. 1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C) VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzia omáše Bai ve Zlíně Úsav elekroechniky a měření Sřídavý proud Přednáška č. 5 Milan Adámek adamek@f.ub.cz U5 A711 +4057603551 Sřídavý proud 1 Obecná charakerisika periodických funkcí zákl. vlasnosí

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Inverzní kinematická a statická úloha manipulátoru AGEBOT

Inverzní kinematická a statická úloha manipulátoru AGEBOT Technická zpráva Kaedra kyberneiky, Fakula aplikovaných věd Západočeská univerzia v Plzni Inverzní kinemaická a saická úloha manipuláoru AGEBOT 1. 1. 212 Marin Švejda msvejda@kky.zcu.cz Obsah 1 Úvod 3

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projek realizovaný na SPŠ Nové Měso nad Meují s finanční podporou v Operační prograu Vzdělávání pro konkurenceschopnos Královéhradeckého kraje Modul 3 - Technické předěy ng. Jan Jeelík 4. Pohybová energie

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c. Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.

Více

ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie

ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie Navrhněe sropní průvla průřeu IPE oceli S35, aížený podle obráu reacemi e sropnic. Nosní je ajišěn proi ráě příčné a orní sabili (lopení) v podporách a v působiších osamělých břemen. haraerisicá hodnoa

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

4.3.3 Základní goniometrické vzorce I

4.3.3 Základní goniometrické vzorce I 4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

2. ZÁKLADY KINEMATIKY

2. ZÁKLADY KINEMATIKY . ZÁKLDY KINEMTIKY Kinemaika se zabýá popisem pohbu čásice nebo ělesa, aniž sleduje příčinné souislosi. Jedním ze základních lasnosí pohbu je, že jeho popis záleží na olbě zažného ělesa ( souřadnicoého

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKIKUM Úsav fyziky FEI VU BRNO Spolupracoval Příprava Šuranský Radek Opravy méno Ročník 1 Škovran an Předn. skup. B Měřeno dne 5.4. Učiel Sud. skupina 1 Kód 17 Odevzdáno dne 16.5. Hodnocení

Více

( ) 1.7.8 Statika I. Předpoklady: 1707

( ) 1.7.8 Statika I. Předpoklady: 1707 .7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL . VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

4.2.9 Vlastnosti funkcí sinus a cosinus

4.2.9 Vlastnosti funkcí sinus a cosinus 4..9 Vlastnosti funkcí sinus a cosinus Předpoklady: 408 Grafy funkcí y = sin a y = cos, které jsme získali vynesením hodnot v minulé hodině. 0,5-0,5 - Obě křivky jsou stejné, jen kosinusoida je o π napřed

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více