M8502 Vybrané partie školské matematiky 1. doc. RNDr. Jaromíra Šimši, CSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "M8502 Vybrané partie školské matematiky 1. doc. RNDr. Jaromíra Šimši, CSc."

Transkript

1 Řešené příklady k předmětu M850 Vybrané partie školské matematiky 1 Řešení příkladů z přednášky doc. RNDr. Jaromíra Šimši, CSc. Sázecím systémem TEX připravil MAREK SAS podzim 011

2 DIRICHLETŮV PRINCIP V této kapitole se budou vyskytovat následující typy příkladů: U... úvodní úlohy D... úlohy na dělitelnost C... úlohy s čísly G... geometrické úlohy K... kombinatorické úlohy U1. Dirichletův princip 1 a jeho důkaz. Dirichletův princip: Necht n, k N. Je-li alespoň nk + 1 předmětů rozděleno do n skupin (přihrádek), pak v některé z nich je alespoň k + 1 předmětů. (Často k = 1, někdy některé skupiny mohou být prázdné.) Důkaz: Sporem. Připustíme, že závěr neplatí, tj. pro počet m i předmětů v i-té skupině platí 0 m i k, a to pro každé i = 1,..., n. Sečtením n pravých nerovností dostaneme m 1 + m + + m n k } + k + {{ + } k = nk n neboli počet m m n všech rozdělených předmětů je nejvýše nk a to je spor. U. Na konferenci 70 delegátů hovoří 11 různými jazyky, jedním jazykem nejvíce 15 z nich. Za oficiální je považován takový jazyk, kterým hovoří nejméně 5 delegátů. Dokažte, že jsou to alespoň tři jazyky. Platí 70 : 11 = 6 (zb. 4). Podle Dirichletova principu některým jazykem, řekněme A, hovoří alespoň 7 delegátů (rozdělíme 70 delegátů do 11 skupin podle toho, kterým jazykem delegát hovoří). A je tedy oficiální jazyk. Dáme stranou všechny delegáty, kteří hovoří jazykem A; je jich nejvýše 15, takže zůstane alespoň = 55 delegátů hovořících 10 jazyky. Pak 55 : 10 = 5 (zb. 5), a tedy podle Dirichletova principu existuje jazyk B, kterým hovoří alespoň 6 delegátů, tj. B je oficiální jazyk. Zase dáme stranou všechny ty delegáty, kteří hovoří jazykem B je jich nejvýše 15. Zůstane nám alespoň 40 delegátů hovořících 9 jazyky. Platí 40 : 9 = 4 (zb. 4), a proto podle Dirichletova principu mezi uvažovanými delegáty hovoří alespoň 5 delegátů jazykem C, který je tak oficiální. Dále už Dirichletův princip nestačí, nebot = 5 a 5 : 8 = 3 (zb. 1) čili máme alespoň 4 delegáty hovořící jazykem D. Mohlo se však stát, že oficiální jazyky byly právě tři. Ze 70 delegátů každý hovoří jedním jazykem: jazykem A 15, jazykem B 15, jazykem C 15, jazykem D 4 a dále sedmi dalšími jazyky vždy po třech delegátech. Následují příklady na dělitelnost, a proto rozdělíme celá čísla do zbytkových tříd. Celé číslo x při dělení přirozeným číslem m dává jeden ze zbytků z = 0, 1,..., m 1: x = q m + z, q Z. Množinu Z všech celých čísel pak můžeme zapsat jako sjednocení všech zbytkových tříd: Z = T 0 T 1 T m 1, 1 Formuloval Lejeune Dirichlet ( ) v teorii čísel.

3 přičemž x T i, právě když m x i. Mezi celými čísly x, y lze zavést relaci předpisem x, y T i, právě když m x y. V tomto případě píšeme x y a jde o relaci ekvivalence. D1. Z libovolných 8 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte. 8 čísel rozdělíme podle zbytku při dělení číslem 81 do 81 skupin (zb. 0, 1,..., 80). Podle Dirichletova principu jsou pak alespoň dvě čísla v jedné skupině, protože je jich více než samotných skupin. Pak podle předchozího jsou tato dvě čísla v ekvivalenci, nebot jejich rozdíl je dělitelný číslem 81. D. Vybereme-li z množiny {1,, 3,..., 100} libovolně 1 různých čísel, pak rozdíl některých dvou z nich bude dvojmístné číslo zapsané dvěma stejnými číslicemi. Dokažte. Při dělení 11 dvě z vybraných 1 čísel dávají podle Dirichletova principu stejný zbytek. Řekněme, že jde o vybraná čísla x a y, kde 1 x < y 100. Rozdíl y x je pak dělitelný 11, je to kladné číslo, jež nepřevyšuje = 99, takže je to jedno z čísel 11,, 33,..., 99. Je tedy zapsáno dvěma stejnými číslicemi. D3. Součin (a b) (a c) (a d) (b c) (b d) (c d) je dělitelný číslem 1, at jsou čísla a, b, c, d zvolena jakkoliv. Dokažte. Máme tedy dokázat, že pro všechna a, b, c, d Z platí 1 (a b) (a c) (a d) (b c) (b d) (c d). Dokážeme zvlášt dělitelnost třemi a čtyřmi. Dělitelnost třemi: Čísla a, b, c mohou mít tři různé zbytky 0, 1,. Podle Dirichletova principu dvě z čísel a, b, c, d mají stejný zbytek, takže jejich rozdíl, a tedy i zadaný součin jsou násobkem 3. Dělitelnost čtyřmi: Dávají-li čísla a, b, c, d při dělení čtyřmi navzájem různé zbytky (v opačném případě lze užít Dirichletův princip jako v první části řešení), musí to být všechny zbytky 0, 1,, 3. Na pořadí nezáleží, necht tedy např. a, b, c, d dávají po řadě zbytky 0, 1,, 3. Pak obě čísla c a a b d jsou sudá, takže jejich součin je číslo dělitelné 4. D4. Žádné z daných 17 celých čísel není dělitelné číslem 17. Dokažte, že součet několika z těchto daných čísel je násobkem čísla 17. Označme daná čísla a 1, a,..., a 17 Z a vytvořme 17 součtů s 1 = a 1, s = a 1 + a,..., s 17 = a 1 + a a 17. Je-li mezi nimi číslo dělitelné 17, je to součet požadované vlastnosti (součet s 1 = a 1 to nemůže být). V opačném případě 17 součtů s 1, s,..., s 17 může při dělení 17 dávat pouze 16 zbytků 1,,..., 16. Podle Dirichletova principu některé dva součty s i, s j, kde 1 i < j 17, dávají stejný zbytek. D5. Některé z čísel 1, 11, 111, 1 111,... je dělitelné číslem 009. Dokažte. 3

4 Tvrzení dokážeme nejen pro n = 009, ale obecně pro každé přirozené n, které je nesoudělné s číslem 10 (tato podmínka plyne z toho, že žádné z čísel není dělitelné ani dvěma, ani pěti). Ukážeme tedy, že jedno z čísel a k = }{{} k je takovým n dělitelné. Uvážíme n + 1 prvních čísel a 1, a,..., a n+1. Podle Dirichletova principu mají dvě z nich, řekněme a i, a k, 1 i < k n + 1, stejný zbytek při dělení číslem n (všech možných zbytků je totiž n, čísel je n + 1). To znamená, že rozdíl a k a i = 11 }{{... 1} k }{{} i = 11 }{{... 1} 00 }{{... 0} = 10 i a k i k i i je dělitelný číslem n, které je s prvním číslem nesoudělné, takže číslo a k i je násobkem n, což jsme měli dokázat. (Číslo má k i jedniček, k i n.) Podobně lze např. dokázat, že jedno z čísel je dělitelné např. číslem D6. Dokažte, že z 3 celých čísel se vždy dají vybrat dvě taková, že jejich druhé mocniny končí stejným dvojčíslím. Víme, že poslední dvojčíslí čísla x závisí pouze na posledním dvojčíslí čísla x. Stačí proto ukázat, že čísla 00, 01, 0,..., 99 mají nejvýše různých posledních dvojčíslí. U 3 čísel zafunguje Dirichletův princip. Dvojčíslí 00 mají na konci čísla x pro Dvojčíslí 5 mají na konci čísla x pro x = 00, 10, 0,..., 90. x = 05, 15, 5,..., 95 (nebot pro x = 10k + 5 platí x = 100k + 100k + 5 čili 5 je poslední dvojčíslí). Ted ukážeme, že stejná dvojčíslí mají na konci čtyří čísla tvaru Užijeme pro x, (50 x), (50 + x), (100 x). x {0, 1,,..., 5} {0, 5, 10, 15, 0, 5}. Je to 6 6 = 0 hodnot x a uvedenými čtveřicemi vyčerpáme všechna zbylá dvojčíslí z čísel 00, 01,..., 99. Tím bude úloha vyřešena, nebot celkem všech posledních dvojčíslí čísla x je nejvýše =. Proč tedy čísla x, (50 x), (50 + x), (100 x) dávají stejný zbytek po dělení stem? Odpověd je zde: (50 ± x) = 500 ± 100x + x, (100 x) = x + x. 4

5 Vždy první dva členy trojčlenů na pravých stranách jsou dělitelné stem, proto poslední dvojčíslí těchto čísel závisí pouze na posledním dvojčíslí čísla x. Všechny tedy mají stejné poslední dvojčíslí. D7. Je-li přirozené číslo k nesoudělné s číslem 10, pak zápis některé mocniny čísla k v desítkové soustavě končí pětičíslím Dokažte. Jinými slovy lze říci, že číslo k n 1 je dělitelné Uvážíme prvních mocnin k 1, k, k 3,..., k Podle Dirichletova principu některé dvě z nich, řekněme k i a k j, 1 i < j , dávají při dělení číslem 10 5 stejný zbytek. Jejich rozdíl ( ) k j k i = k i k j i + 1 je proto dělitelný číslem 10 5, jež je s prvním číslem nesoudělné. Proto tedy 10 5 dělí číslo k j i 1 a závěr platí pro n = j i, dokonce 1 n D8. Pro každé celé n > 1 dokažte, že z libovolných n + různých celých čísel lze vybrat dvě čísla x = y tak, aby alespoň jedno z čísel x y, x + y bylo dělitelné číslem n. Chceme najít mezi vybranými čísly taková dvě x = y, aby platilo n x y nebo n x + y. Všechna celá čísla rozdělíme podle zbytků při dělení n na zbytkové třídy Jestliže x T i, y T j, potom T 0, T 1,..., T n 1. n x y, právě když i = j, n x + y, právě když n i + j, tzn. i + j = n nebo i = j = 0. Odtud plyne, že čísla x, y mají požadovanou vlastnost právě když leží ve stejné skupině čísel Kolik těch skupin je? n sudé: n = k, k N. Skupiny: n x y n x + y, T 0, T 1 T n 1, T T n, T 3 T n 3,... T 0, T 1 T n 1, T T n,..., T k 1 T k+1, T k. Jejich počet je n k + 1 = + 1. Podle Dirichletova principu dvě z vybraných čísel leží ve stejné skupině, když je vybraných čísel o jedno více, tj. n +. 5

6 n liché: n = k + 1, k N. Skupiny: T 0, T 1 T n 1, T T n,..., T k T k+1. Jejich počet je n k + 1 = + 1, nebot n = k + 1. Závěr je stejný. V posledních dvou příkladech na dělitelnost budeme počítat s prvočísly, proto uvedeme větu o rozkladu na prvočinitele: Každé n N lze zapsat ve tvaru n = p α 1 1 pα pα k k, kde p 1, p,..., p k jsou navzájem různá prvočísla a α 1, α,..., α k N. Tento rozklad je až na pořadí činitelů pro dané n jediný. (Můžeme psát i nezastoupená prvočísla p i s exponentem α i = 0.) U těchto rozkladů si všimneme naprosto zřejmého jevu: n je kvadrát (1, 4, 9, 16, 5,...), právě když všechny exponenty α i jsou sudé, n je trojmoc (1, 8, 7, 64, 15,...), právě když všechny exponenty α i jsou násobky tří. D9. Součin devíti různých přirozených čísel je roven číslu Dokažte, že součin některých dvou z nich je druhá mocnina přirozeného čísla. Nejprve rozložme číslo 150 na prvočinitele: 150 = 3 5. Každé z devíti zadaných různých čísel je tvaru x i = α i 3 β i 5 γ i, kde α i, β i, γ i 0 jsou celá, i = 1,..., 9. Zjistíme, kdy je součin x i x j, i = j, kvadrát. Číslo x i x j = α i+αj 3 β i+βj 5 γ i+γ j je kvadrát, právě když všechna tři čísla α i + α j, β i + β j, γ i + γ j jsou sudá, což je ekvivalentní s kongruencemi α i α j, β i β j, γ i γ j (mod ). (1) Znamená to, že dvojice exponentů ( α i, α j ), ( βi, β j ), ( γi, γ j ) mají stejnou paritu. Podle parity exponentů α, β, γ můžeme všechna čísla α 3 β 5 γ rozdělit do osmi skupin (S sudá, L lichá) (L, L, L), (S, L, L), (L, S, L),..., (S, S, S). Podle Dirichletova principu dvě z 9 zadaných čísel leží ve stejné skupině, takže podmínka (1) je splněna. Závěr z předchozího příkladu se dá zobecnit: Má-li N různých přirozených čísel ve svých rozkladech na prvočinitele celkem k různých prvočísel, pak v případě N k + 1 je součin některých dvou z N zadaných čísel kvadrátem. 6

7 D10. Množina X je tvořena 37 přirozenými čísly, přičemž jejich součin má právě tři různé prvočinitele. Dokažte, že součin tří vhodných různých čísel z X je třetí mocnina přirozeného čísla. Máme tedy 37 různých prvočísel, z nichž každé je tvaru x i = p α i q β i r γ i, kde p, q, r jsou tři různá prvočísla, α i, β i, γ i 0 jsou celá a i = 1,..., 37. Necht i, j, k jsou různá. Pak x i x j x k = p α i+α j +α k q β i+β j +β k r γ i+γ j +γ k je trojmoc, právě když α i + α j + α k, β i + β j + β k, γ i + γ j + γ k jsou násobky tří. Obecně platí, že podmínka 3 u + v + w závisí pouze na zbytcích čísel u, v, w. V našem případě jsou možné zbytky 0, 1,. Jsou proto možnosti , , + +, a žádné jiné. 37 čísel rozdělíme podle zbytků exponentů α i do tří skupin. Platí 37 : 3 = 1 (zb. 1) a podle Dirichletova principu můžeme z daných čísel x i vybrat 13, jejichž exponenty α i všechny leží ve stejné zbytkové třídě. Těchto 13 čísel rozdělujeme do tří skupin podle zbytků exponentů β i. Platí 13 : 3 = 4 (zb. 1) a opět podle Dirichletova principu můžeme vybrat 5 čísel, jejichž exponenty β i leží ve stejné zbytkové třídě. Můžeme předpokládat, že jde o čísla x i, i = 1,..., 5, takže máme 3 α i + α j + α k, 3 β i + β j + β k pro libovolná i, j, k {1,..., 5}. Stačí tedy ukázat, že z čísel γ 1, γ, γ 3, γ 4, γ 5 lze vybrat tři s různými indexy i, j, k tak, že 3 γ i + γ j + γ k. Rozdělíme je to tří skupin podle zbytků při dělení třemi. Není-li žádná skupina prázdná, vybereme γ i + γ j + γ k typu V opačném případě je pět čísel v nejvýše dvou skupinách, takže podle Dirichletova principu jsou tři ve stejné skupině a vybereme γ i + γ j + γ k typu nebo nebo + +. C1. Vybereme-li z množiny A = {1, 4, 7,..., 97, 100} libovolně 19 různých čísel, pak součet některých dvou z nich bude roven 104. Dokažte. Součet 104 dávají právě tyto dvojice čísel z A: 104 = = = = , celkem je to = 16 dvojic. Nezařazená do dvojic zůstala pouze dvě čísla z A, totiž 1 a 5. Vybereme-li tedy 19 čísel z A, aspoň 17 jich bude různých od 1 a 5, a proto dvě z nich (podle Dirichletova principu) budou ležet ve stejné z 16 přihrádek Tím je důkaz hotov. Dodatek: Vezmeme-li ještě P 1 = {4, 100}, P = {7, 97},..., P 16 = {49, 55}. P 17 = {1}, P 18 = {5}, Důvod, proč se přičítá číslo 1, si ozřejmíme na posloupnosti 1,,..., 100. Odečtením krajních hodnot dojdeme k číslu 99, což zřejmě není pravda. Proto (100 1)

8 pak lze užít Dirichletův princip přímo pro 19 vybraných čísel rozdělených do 18 přihrádek. C. Vybereme-li z množiny A = {1,, 3,..., 119, 10} libovolných pět složených čísel, pak některá dvě z nich budou určitě soudělná. Dokažte. Každé složené číslo n 10 je dělitelné alespoň jedním z prvočísel, 3, 5, 7, nebot další prvočíslo 3 je 11 a 11 = 11 > n. Všechna složená čísla nepřevyšující 10 tedy můžeme rozdělit do čtyř skupin S, S 3, S 5, S 7, kde index značí nejmenší prvočíslo, které dané n dělí. (Např. 1 S, 35 S 5, S 7 = {49, 77, 91, 119} atd.) Z vybraných pěti složených čísel tedy podle Dirichletova principu leží dvě ve stejné skupině S p, takže jsou soudělná, protože obě dělí totéž p. C3. Je možné 36 soch o hmotnostech 490 kg, 495 kg, 500 kg,..., 665 kg naložit na sedm aut, má-li každé z nich nosnost 3 tuny? Je 36 = , proto podle Dirichletova principu musíme na jedno auto naložit alespoň 6 soch. Ale 6 nejlehčích soch má celkovou hmotnost kg = kg = kg > 3 t. Úkol nelze splnit, i když všech 36 soch váží méně než 7 3 t. Vskutku kg = kg = kg < 1 t. C4. Tabulka 6 6 je zaplněna čísly 1, 0, 1. Sečteme-li čísla v jednotlivých řádcích, sloupcích i obou úhlopříčkách, dostaneme = 14 součtů. Dokažte, že některé dva z nich se sobě rovnají. Každý ze 14 uvažovaných součtů je tvořen 6 sčítanci, takže je vždy roven celému číslu z intervalu [ 6, 6]. Tedy leží v množině { 6, 5,..., 0,..., 5, 6}, jež má 13 prvků. Podle Dirichletova principu se některé dva z těchto součtů rovnají. C5. V každém poli tabulky je zapsáno jedno z čísel 1,, 3,..., 008. Dokažte, že v tabulce lze vyznačit dva pravoúhelníky 4 P a Q, jejichž vrcholy se nacházejí ve středech polí a jejichž strany jsou rovnoběžné se stranami polí, a to tak, že součty čtyř čísel v polích vrcholů P se rovná obdobnému součtu pro pole vrcholů Q. 3 Číslo n je složené, právě když má prvočinitele p n. 4 Obdélníky a čtverce. 8

9 Součet s čtyř čísel tabulky jistě splňuje nerovnosti s = 4, s = 803, takže je to jedno z čísel 4, 5, 6,..., 803, kterých je 809. Všech uvažovaných pravoúhelníků je ( ) ( ) ( ) = = 91 = 881, což je více, než je možných hodnot součtů čísel v rohových polích. Proto dva různé pravoúhelníky musejí mít tyto součty stejné. C6. Do políček tabulky zapíšeme libovolná celá čísla tak, aby se žádná čísla, která spolu sousedí ve stejném řádku nebo sloupci, nelišila o více než 5. Dokažte, že v tabulce se vždy najdou dvě stejná čísla. Nejmenší číslo m a největší číslo M (tzv. metoda extrémů) zapsaná v tabulce spojíme cestou tvořenou posloupností sousedních polí. Posloupnost čísel na této cestě je Podle zadání platí nerovnosti m, x 1, x,..., x k, M. x 1 m + 5, x x m + 10, x 3 x + 5 m + 15,. x k m + 5k, M m + 5 (k + 1). Jistě je k 17, takže M m = m Každé číslo v tabulce je rovno některému z čísel m, m + 1, m +,..., m + 90, kterých je 91. Podle Dirichletova principu dvě ze sta čísel tabulky se rovnají. C7. Vybereme-li z množiny A = {1,, 3,..., 99, 100} libovolných 1 různých čísel, najdou se mezi vybranými čtyři různá čísla x, y, u, v taková, že x + y = u + v. Dokažte. Označme M A množinu 1 vybraných čísel. 9

10 Každé dvouprvkové množině T = {x, y} M přiřadíme součet s = x + y. Jistě platí s 1 + = 3, s = 199, tedy s {3, 4, 5,..., 199} množina mající 197 prvků. Uvažovaných dvouprvkových podmnožin T M je ( ) = = 10. Podle Dirichletova principu existují dvě různé podmnožiny T 1 = {x, y} a T = {u, v} takové, že x + y = u + v. Proč jde o čtyři navzájem různá čísla? Jistě je x = y a u = v. Kdyby ale např. x = u, pak z rovnosti x + y = u + v by nutně plynulo y = v, takže by platilo T 1 = T a to je spor. Podobně se vyloučí x = v, y = u, y = v (plyne ze symetrie). C8. Pro každou desetiprvkovou množinu M {1,, 3,..., 99} se najdou takové dvě neprázdné disjunktní podmnožiny X M a Y M, že součet všech čísel z X se rovná součtu všech čísel z Y. Dokažte. Označme s (X) součet všech prvků libovolné neprázdné podmnožiny X M. Všech takových (neprázdných) množin je 10 1 = 103. Jistě platí s (X) 1, s (X) = 945, a tedy s {1,, 3,..., 945} má 945 prvků. Podle Dirichletova principu existují dvě různé neprázdné podmnožiny M takové, že s (X) = s (Y). Platí tedy X = {x 1, x,..., x n } a Y = {y 1, y,..., y m } x 1 + x + + x n = y 1 + y + + y m. () Kdyby X a Y nebyly disjunktní (viz zadání), měly by společné prvky, které můžeme na obou stranách rovnosti () vyškrtnout, aniž bychom narušili rovnost. Všechno poškrtat nemůžeme, protože X = Y a na každé straně musí zůstat alespoň jeden sčítanec. (Kdyby ne, rovnala by se nula kladnému číslu.) Po této úpravě dostaneme rovnost součtu prvků prvních dvou neprázdných disjunktních podmnožin M. C9. Karel se 50 dní za sebou připravoval k maturitě z matematiky. Každý den vyřešil aspoň jednu úlohu, celkem to bylo 79 úloh. Dokažte, že existuje jeden nebo několik po sobě jdoucích dní, ve kterých Karel celkem vyřešil právě 0 úloh. Pro každé i = 1,..., 50 označme p i počet úloh vyřešených za prvních i dnů dohromady. Podle zadání platí Odtud po přičtení 0 dostáváme 1 p 1 < p < p 3 < < p 50 = p < p + 0 < p < < p =

11 Máme tedy 100 čísel p 1, p,..., p 50 (označme sk. I), p 1 + 0, p + 0,..., p (označme sk. II), která všechna leží v množině {1,,..., 99}, jež má 99 prvků. Podle Dirichletova principu dvě z těchto čísel jsou stejná. Podle ostrých nerovností to nemohou být dvě čísla ze skupiny I ani dvě čísla ze skupiny II. Proto se některé číslo p j ze sk. I rovná některému číslu p i + 0 ze sk. II. Z rovnosti p j = p i + 0 neboli p j p i = 0 plyne, že j > i a že Karel vyřešil právě 0 úloh ve dnech s pořadovými čísly i + 1, i +,..., j. C10. Dokažte, že pro každé n N platí: Vybereme-li z množiny {1,, 3,..., n} libovolných n + 1 čísel, bude některé vybrané číslo dělitelné jiným vybraným číslem. Nejprve si uvědomme, že vybrat n čísel nestačí jestliže vybereme například čísla n + 1, n +,..., n, nebude žádné vybrané číslo dělitelné jiným vybraným číslem, nebot dvojnásobek nejmenšího čísla n + 1 je větší než největší číslo n: Každé k N lze zapsat ve tvaru (n + 1) = n + > n. k = α l, kde α 0 je celé (α je počet dvojek v rozkladu čísla k na prvočinitele) a l je liché číslo, např. 16 = 4 1, 15 = 0 15 apod. Jestliže vybereme n + 1 čísel k i {1,,..., n}, kde i = 1,,..., n + 1, a zapíšeme každé z nich jako k i = α i l i, bude n + 1 lichých čísel l i ležet v množině {1, 3, 5,..., n 1}, která má n prvků. Podle Dirichletova principu najdeme indexy i = j s vlastností l i = l j = l. O číslech k i = α i l a k j = αj l to znamená, že α i = α j (vybraná čísla k i, k j jsou různá podle zadání), takže bud α i < α j, pak k i k j je celé číslo, nebo α i > α j (naopak). a k j k i = α j α i Tvrzení jsme dokázali dokonce v silnější podobě: Mezi vybranými čísly se vždy najdou taková dvě různá čísla, jejichž podíl je mocnina dvou. C11. Pro libovolná daná reálná čísla x 1, x,..., x n existuje reálné číslo x takové, že všech n součtů x + x 1, x + x,..., x + x n jsou iracionální čísla. Dokažte. Vezmeme libovolné iracionální 5 číslo a, např. a =, a ukážeme, že požadovanou vlastnost má x rovné jednomu z čísel 0, a, a,..., na, at už jsou čísla x 1, x,..., x n jakákoliv. Připust me, že pro některá x 1,..., x n R to neplatí, takže v každém řádku tabulky x x x n + 0 x 1 + a x + a... x n + a x 1 + na x + na... x n + na 5 Pro jednoduchost budeme množinu všech iracionálních čísel (tedy čísel reálných, která nejsou racionální) označovat symbolem I, i když to není zrovna obvyklé. 11

12 leží aspoň jedno číslo z Q. Řádků je n + 1, takže v celé tabulce, která má pouze n sloupců, je aspoň n + 1 čísel z Q. Odtud podle Dirichletova principu některá dvě čísla z Q leží ve stejném sloupci řekněme s indexem j. Existují tedy různé indexy i, k {0, 1,..., n} takové, že x j + ia, x j + ka Q. Rozdíl těchto čísel rovněž leží v Q: ( xj + ka ) ( x j + ia ) = (k i) a Q. Jelikož k i Z, pak a Q a to je spor. Ve posledních úlohách s čísly se budeme věnovat kapitole zvané aproximace. Každé x R lze přibližně vyjádřit ve tvaru x. = m n pro n = 10 k, jejž nazýváme desetinný zlomek. Můžeme pak hovořit o tzv. garanci, která je dána vztahem x m 1 n n. Pro dané x však může některý jmenovatel n poskytnout daleko přesnější odhad, např. π =. 7, nebot π 7 < < , kde číslo 100 ve jmenovateli posledního zlomku určuje tzv. kvalitu přiblížení dané aproximace. Přesnější vyjádření je tvaru π = ověřte si sami. C1. Dokažte, že pro každé reálné číslo x a každé přirozené číslo k existují celá čísla m, n taková, že 1 n k a x m < 1 n kn. Pro daná x, k uvážíme k + 1 reálných čísel x 1 = x x, x = x x,..., x k+1 = (k + 1) x (k + 1) x, jsou to čísla z intervalu [0, 1), který rozdělíme na k menších intervalů délky 1 k [ 0, 1 ) [ 1, k k, ) [ ) k 1,...,, 1. k k Podle Dirichletova principu dvě z uvažovaných čísel, řekněme x i a x j, 1 i < j k + 1, leží ve stejném intervalu, takže xj x i < 1 k. Platí x j x i = (jx jx ) (ix ix ) = (j i) x + ix jx. Označíme-li n = j i {1,,..., k} a m = jx ix, pak nx m < 1 k. 1

13 Po vydělení předchozí nerovnosti číslem n > 0 máme x m < 1 n kn. C13. Zformulujte a dokažte Dirichletovu aproximační větu. Dirichletova aproximační věta: Pro každé iracionální číslo x I existuje nekonečně mnoho zlomků m n (m Z, n N) s vlastností x m < 1 n n. (Tvrzení je triviální pro x Q, potom x m n = 0 pro nekonečně mnoho zlomků.) Důkaz: Připust me, že pro některé x I existuje pouze konečně mnoho zlomků m 1 n 1, m n,..., m p n p s vlastností 0 < x m i n < 1 i n. i Nejmenší z p kladných čísel x m i, n i i = 1,,..., p, označíme jako ε > 0. Zvolíme k N tak, aby 1 k < ε, a uplatníme výsledek příkladu C1 pro toto k. Podle C1 existuje zlomek m n s jmenovatelem n {1,,..., k} a vlastností x m < 1 n kn. Ale 1 kn 1 n, tedy x m < 1 n n. To znamená, že zlomek m n má vlastnost ze zadání, takže je to jeden z vypsaných zlomků m i n pro vhodné i i = 1,,..., p. Podle definice ε proto platí x m = n x m i ε, n i přičemž ε > 1 k (podle volby k). Dohromady x m > 1 n k. Avšak x m n < 1 kn 1 k, nebot n 1. Jenže ted je 1 k < x m n 1 k, což je spor. Dirichletova věta neplatí v obdobě s nerovností x m < 1 n n +ε 13

14 pro žádné ε > 0. Tedy pro každé ε > 0 se najde iracionální číslo x takové, že uvedená nerovnost platí pouze pro konečně mnoho zlomků m n. Stačí vzít číslo ( čím jednodušší číslo, tím hůře se aproximuje ), jak ukazuje následující příklad. C14. Dokažte, že nerovnost m > n 1 ( + ) n platí pro každý zlomek m n, kde m, n N a n < m < n. Podmínka n < m < n je ekvivalentní s vyjádřením 1 < m n <, tedy m n (1, ), kam patří i. Uvědomme si taky, že vždy n = m, nebot jinak by číslo m n = bylo racionální, což není. (Prvočíslo je v čísle n zastoupeno lichý počet-krát, zatímco v m sudý počet-krát.) Celé číslo n m není nula, takže n m 1 a po vydělení n máme neboli ( m n m 1 n n ) ( m ) 1 + n n. Ale + m n < + a po vydělení + m n máme m n 1 n ( + m n ) > 1 n ( + ). C15. Dokažte, že existují čísla a, b, c Z, každé v absolutní hodnotě menší než 10 6, pro která platí 0 < a + b + c 3 < Součtů s = a + b + c 3, kde a, b, c { 0, 1,,..., }, je = Pro každý z nich jistě platí ( ) ( 0 s ) 3 < Máme tedy součtů s ležících v intervalu [ 0, ), který rozdělíme na dílů téže délky d = : [0, d), [d, d), [d, 3d),..., Podle Dirichletova principu dva ze součtů s, řekněme [( ) d, ). a 1 + b 1 + c1 3, a + b + c 3, kde (a1, b 1, c 1 ) = (a, b, c ), leží ve stejném dílu, takže se liší o méně než d, tzn. ) ( ) (a 1 + b 1 + c1 3 a + b + c 3 < d. 14

15 Označíme-li a = a 1 a, b = b 1 b, c = c 1 c, pak bude platit (a, b, c) = (0, 0, 0), a < 10 6, b < 10 6, c < 10 6 a a + b + c 3 < d, kde a, b, c Z. Nerovnost a + b + c 3 < tedy bude platit, pokud d < To je ale snadné: d = ( ) = < 10 11, právě když < < < Zbývá vysvětlit, proč a + b + c 3 > 0, tj. proč a + b + c 3 = 0. Rozlišíme tři možnosti: 1. b = 0 máme dokázat, že a + c 3 = 0. Protože b = 0, je (a, c) = (0, 0), takže z a + c ( 3 = 0 plyne a = c 3) = 3c, což je rovnost dvou přirozených čísel. Rovnost a = 3c je však vyloučena kvůli zastoupení prvočísla 3 v rozkladu na prvočinitele (a sudý počet, 3c 3 lichý počet), jinak 3 = a c.. c = 0 máme dokázat, že a + b = 0, kde (a, b) = (0, 0). Ovšem stejně jako v 1 je vyloučena rovnost a = b kvůli zastoupení prvočísla v rozkladu obou čísel a také neplatí = a b. 3. b = 0 a c = 0 ukážeme sporem. Připustíme, že a + b + c 3 = 0. Potom c 3 = a b 3c 3 = a + ab + b. Jelikož a, b, 3c jsou celá, pak i ab je celé. Ale je iracionální, proto ab = 0. Avšak podle předpokladu b = 0, tedy a = 0. Máme tak 3c = b, což je rovnost dvou přirozených čísel (b = 0, c = 0), která je ovšem sporná jak v zastoupení prvočísla, tak i prvočísla 3. Důkaz je hotov. V závěru jsme ukázali, že pokud pro všechna a, b, c Z platí a + b + c 3 = 0, pak nutně a = b = c = 0, což (jak známe z lineární algebry) značí lineární nezávislost. Zřejmě odtud plyne, že uvedená implikace platí i pro všechna a, b, c Q stačí rovnost a + b + c 3 = 0 vynásobit společným jmenovatelem všech zlomků representujících a, b, c. Jenomže Q je těleso a čísla 1,, 3 jsou lineárně nezávislé vektory vektorového prostoru R nad číselným tělesem Q, tudíž dokázaná skutečnost nikoho nepřekvapí. G1. Jaký největší počet králů můžeme umístit na šachovnici, aby se žádní dva navzájem neohrožovali? Připomeňme, že král na šachovnici tahá pouze o jedno pole v každém směru, tudíž ohrožuje všechna sousední pole (stojí-li uprostřed šachovnice). Hledaný maximální počet králů je 16, nyní ukážeme proč. Rozdělíme celou šachovnici 8 8 na 16 čtverců. Umístíme-li proto na šachovnici 17 nebo více králů, podle 15

16 Dirichletova principu někteří dva králové budou ve stejném dílu, takže se budou ohrožovat. 16 králů lze umístit například tak, že jednoho krále dáme do levého horního pole každého ze 16 dílů. G. Je-li na šachovnici libovolně rozmístěno 33 věží, pak některých pět má tu vlastnost, že žádné dvě se navzájem neohrožují (po odebrání ostatních, aby nepřekážely). Dokažte. Věž na šachovnici tahá pouze po řadách a sloupcích, tudíž dvě věže se neohrožují, pokud nestojí ve stejném řádku ani sloupci. Všimněme si, že tvrzení neplatí pro 3 věží. Těmi bychom museli zaplnit například 4 sloupce po osmi. Pak by z pěti libovolně vybraných věží některé dvě ležely ve stejném sloupci. Mějme tedy na šachovnici libovolně rozmístěno 33 věží. Užitím Dirichletova principu najdeme postupně 5 různých sloupců S 5, S 4, S 3, S, S 1 tak, že ve sloupci S k leží aspoň k věží, k = 5,..., 1. Pak už bude výběr 5 navzájem se neohrožujících věží snadný: První věž vybereme ze sloupce S 1. Druhou věž vybereme ze sloupce S tak, aby neležela ve stejném řádku jako první věž (to lze, nebot v S jsou aspoň dvě věže a zakázaný řádek je jen jeden). Poté vybereme třetí věž ze sloupce S 3 tak, aby neležela ve stejném řádku ani s první, ani s druhou věží (což opět lze). Podobně vybereme čtvrtou věž z S 4 a nakonec pátou z S 5. Nakonec užijeme Dirichletův princip: Máme 33 věží, 8 sloupců čili 33 : 8 = 4 (zb. 1). Existuje sloupec S 5 s alespoň 5 věžemi. Dáme stranou všechny věže z S 5 je jich nejvýše 8. Zůstane aspoň 33 8 = 5 věží v sedmi sloupcích. Pak 5 : 7 = 3 (zb. 4), tedy existuje sloupec S 4 s alespoň 4 věžemi. Dáme-li je stranou, zůstane aspoň 5 8 = 17 věží a 17 : 6 = (zb. 5) čili existuje sloupec S 3 s alespoň 3 věžemi. Analogicky 17 8 = 9 a 9 : 5 = 1 (zb. 4), tudíž existuje sloupec S s alespoň věžemi. Nakonec 9 8 = 1, a proto existuje sloupec S 1 s alespoň 1 věží. G3. Dokažte, že žádný rovnostranný trojúhelník T nelze úplně pokrýt dvěma menšími rovnostrannými trojúhelníky T 1, T. 16

17 Čtverec o straně a rozdělíme na čtyři menší shodné čtverce o straně a a úhlopříčce 1 a. Podle Dirichletova principu z libovolně vybraných pěti bodů čtverce některé 17 Máme tedy trojúhelník T o straně délky a a dva menší rovnostranné (obecně různé) trojúhelníky T 1 resp. T o stranách délek a 1 resp. a, přičemž a 1 < a a a < a. Připust me, že existuje pokrytí T T 1 T. Pak tři vrcholy A, B, C trojúhelníka T leží v T 1 T a podle Dirichletova principu dva vrcholy leží bud v T 1, nebo v T. Proto v T 1 nebo v T existují dva body o vzdálenosti a, což je spor s a 1 < a a a < a. Z toho plyne závěr, že v rovnostranném trojúhelníku o libovolné straně b neexistují dva body, které by měly vzdálenost větší než b. G4. Rovnostranný trojúhelník je úplně pokryt pěti menšími navzájem shodnými rovnostrannými trojúhelníky. Dokažte, že na pokrytí stačí čtyři z nich. Označme toto pokrytí T T 1 T T 3 T 4 T 5, a délku strany trojúhelníka T a A 1, B 1, C 1 středy stran trojúhelníka T. Pak šest bodů A, B, C, A1, B1, C1 leží v T1 T T3 T4 T5, proto podle Dirichletova principu dva z nich leží ve stejném trojúhelníku T i. Jenomže každé dva body z množiny {A, B, C, A1, B1, C1} mají vzdálenost aspoň a, proto pro stranu b trojúhelníka T i, který takové dva body obsahuje, platí b a. Nyní máme pět trojúhelníků o straně b a stačí vzít čtyři z nich a každým pokrýt jeden ze čtyř trojúhelníků naznačených na obrázku, čímž dostaneme pokrytí celého trojúhelníka T. G5. V zahradě 80 m 90 m roste 365 stromů. Můžeme zaručit, že v některé obdélníkové části 5 m 8 m rostou aspoň 3 stromy? Nejprve zjistíme, na kolik takových částí lze uvažovanou zahradu rozdělit. Platí 80 : 8 = 10 a 90 : 5 = 18 čili celou zahradu lze rozdělit na = 180 částí. Nyní 365 : 180 = (zb. 5), tedy podle Dirichletova principu se v některé části určitě vyskytují aspoň 3 stromy. G6. Zvolíme-li ve čtverci o straně a libovolně 5 bodů, pak některé dva z nich mají vzdálenost nejvýše 1 a. Dokažte.

18 dva leží ve stejném ze čtyř dílů, avšak vzdálenost libovolných dvou bodů jednoho dílu je nejvýše rovna délce jeho úhlopříčky. G7. Vybereme-li v rovnostranném trojúhelníku o straně a libovolně 10 bodů, pak vzdálenost některých dvou vybraných bodů je nejvýše 3 1 a. Dokažte. Rozdělíme daný rovnostranný trojúhelník o straně a na 9 menších rovnostranných trojúhelníků o straně 3 a podle obrázku: Z vybraných 10 bodů musí podle Dirichletova principu některé dva ležet ve stejném z 9 menších trojúhelníků, takže jejich vzdálenost je nejvýše 3 a. Hodnotu 3 a ze zadání nelze vylepšit žádnou menší hodnotou. Když vybereme oněch 10 bodů jako na obrázku, vzdálenost každých dvou bude alespoň 3 a. G8. Ve čtvreci o straně 1 m je libovolně rozmístěno 51 bodů. Dokažte, že některé tři z nich leží v kruhu o poloměru 1 7 m. Čtverec o straně 1 m rozdělíme na 5 menších čtverců o straně 1 5 m. Z 51 vybraných bodů celého čtverce některé tři body musí ležet ve stejném z 5 vytvořených čtverců, takže budou ležet ve vnitřní oblasti kružnice tomuto čtverci o straně 1 5 m opsané. Průměr této kružnice je úhlopříčka čtverce, takže má délku a = 5 m. Zbývá vysvětlit, proč 5 < 7. Elementární úpravou máme 7 < 10 neboli 49 < 100, což platí. G9a. Ve čtverci o straně 10 cm je libovolně zvoleno 01 bodů. Dokažte, že některé tři z nich leží v trojúhelníku o obsahu 1 cm. Čtverec rozdělíme na 50 obdélníků 1, každý z nich pak rozdělíme úhlopříčkou na trojúhelníky o obsahu 1. Tak dostaneme rozdělení celého čtverce na 50 = 100 trojúhelníků o obsahu 1. Z 01 vybraných bodů podle Dirichletova principu některé tři leží v jednom ze sestrojených trojúhelníků. G9b. Ve čtverci o straně 10 cm je libovolně zvoleno 01 bodů. Dokažte, že některé tři z nich leží v trojúhelníku o obsahu 1 cm. Čtverec rozdělíme na 100 menších čtverců 1 1. Podle Dirichletova principu z 01 libovolně vybraných bodů některé tři leží ve stejném čtverci 1 1. Dokážeme, že libovolné tři body čtverce KLMN o straně 1 leží v trojúhelníku o obsahu 1. (Obecně: 3 body v pravoúhelníku u v leží v trojúhelníku o obsahu 1 uv.) Tím bude úloha vyřešena. Označme A,B,C libovolně vybrané body čtverce KLMN a předpokládejme, že body A, B, C neleží v jedné přímce (jinak jde o trivialitu). Předpokládejme rovněž, že některé z bodů A, B, C neleží na hranici KLMN. 18

19 Necht například C1 je vnitřní bod strany MN. Pak výška v trojúhelníku A1B1C1 ke straně A1B1 leží svou velikostí mezi vzdálenostmi u, w bodů M, N od strany A1B1. Platí tedy v u nebo v w. To znamená, že obsah A1B1C1 není větší než jeden z obsahů A1B1M a A1B1N (na obrázku jde o A1B1M). Tak od A1B1C1 můžeme přejít k A1B1C, kde C {M, N}. Podobně pak přejdeme k A1BC a nakonec k ABC, který má požadované vlastnosti. G10. Každý bod čtverce o straně 10 cm je obarven jednou ze dvou barev. Dokažte, že některé tři body téže barvy jsou vrcholy trojúhelníku o obsahu aspoň 5 cm. 19 Obsah trojúhelníku ABC se jistě nezmění, když budeme jedním jeho vrcholem pohybovat po přímce rovnoběžné s protější stranou (neměnná výška). Od ABC tak přejdeme k ABC1 o stejném obsahu, jehož vrchol C1 už leží na hranici KLMN. Dále přejdeme podobně od ABC1 k AB1C1 a konečně od AB1C1 k A1B1C1, který má stejný obsah jako původní ABC, avšak všechny tři vrcholy leží na hranici čtverce KLMN. Ukážeme, že pokud některý z vrcholů A1, B1, C1 není z množiny {K, L, M, N}, lze od A1B1C1 přejít k ABC s vrcholy {K, L, M, N}, jehož obsah není menší než obsah A1B1C1. Obsah ABC je 1 obsahu čtverce KLMN, což bude znamenat, že shodné obsahy ABC a A1B1C1 nepřevyšují 1.

20 Mají-li některé ze čtyř vrcholů celého čtverce stejnou barvu, jsou to vrcholy trojúhelníku o obsahu 50 cm. Stačí proto uvažovat opačnou situaci, totiž že dva vrcholy čtverce mají barvu I a druhé dva vrcholy barvu II. Rozlišíme ještě, zda vrcholy téže barvy jsou sousední, či protilehlé. Uvážíme bod X střed strany vyznačený na obrázku. V obou případech vždy jeden ze dvou vyznačených trojúhelníků má všechny tři vrcholy stejné barvy I nebo II a přitom všechny vyznačené trojúhelníky mají obsah 5 cm. Každý trojúhelník s vrcholy stejné barvy leží v obdélníku o obsahu 50 cm, takže má obsah nejvýše 5 cm (podle geometrické úvahy v příkladu G9b). G11. Každý bod roviny je obarven jednou ze dvou barev. Ukažte, že některý obdélník má všechny vrcholy stejné barvy. V obarvené rovině sestrojíme tři různé rovnoběžky a, b, c a k nim 9 různých kolmic p 1, p,..., p 9. Dostaneme 3 9 = 7 průsečíků, které označíme A i, B i, C i podle obrázku: Trojici bodů {A, B, C} můžeme dvěma barvami obarvit 3 = 8 způsoby. Podle Dirichletova principu proto existují indexy i = j takové, že trojice {A i, B i, C i} je obarvena stejně jako trojice { A j, B j, C j }, tj. barva Ai je stejná jako barva A j apod. Ze tří bodů A i, B i, C i dva musí mít stejnou barvu (podle Dirichletova principu), řekněme A i, B i, tedy i A j, B j. Pak ale máme obdélník A ib ib ja j s vrcholy stejné barvy. 0

21 K1. Na setkání přišlo n obchodních partnerů. Každý z nich si zapsal do svého záznamníku počet všech přítomných, se kterými již dřívě osobně jednal. Dokažte, že některé dvě osoby si zapsaly totéž číslo. Podle čísla k, které si osoba zapsala, vytvoříme skupinu S k všech takových osob, k {0, 1,..., n 1}. Dostaneme rozdělení n osob do n skupin S 0, S 1,..., S n 1. Jedna ze skupin S 0, S n 1 však musí být prázdná (není-li prázdná S 0, tj. některá osoba s žádnou z ostatních dosud nejednala, nikdo nemohl jednat se všemi n 1 ostatními, takže je prázdná S n 1 ). Máme tedy rozdělení n osob do nejvýše n 1 neprázdných skupin. Podle Dirichletova principu některé dvě osoby jsou ve stejné skupině S i, takže jednaly se stejným počtem osob. K. V autobuse je 38 cestujících, přitom ti, kteří se neznají, mají mezi cestujícími společného známého. Dokažte, že některý cestující má v autobuse aspoň sedm známých. Označme A pevného cestujícího a B 1, B,..., B k všechny jeho známé. Je-li k 7, je vše jasné. Všechny cestující různé od A, B 1, B,..., B k, kterých je 38 1 k, rozdělíme do k skupin S 1, S,..., S k tak, že v S i jsou ti, pro něž je B i jejich společný známý s osobou A. (Symbolicky C S i B i je společný známý A, C. Je-li osob B i pro dané C více, vybereme kohokoliv.) Dostaneme rozdělení 37 k osob do k skupin S i. Protože 37 k < 5k (totiž 6k 36), podle Dirichletova principu v některé skupině S i je alespoň 6 osob. Osoba B i tak zná kromě A ještě aspoň 6 dalších osob, totiž ty z S i. Má tedy aspoň 7 známých. K3. Deset rodin z jednoho domu trávilo zahraniční dovolenou. Každá jela jinam a poslala domů pohlednice pěti z ostatních rodin. Dokažte, že některé dvě rodiny si poslaly pohlednice navzájem. Označme R 1, R,..., R 10 dané rodiny a každé pohlednici přiřad me (neuspořádanou) dvouprvkovou množinu { } R i, R j, kde Ri je adresát a R j je odesilatel dané pohlednice (i = j). Všech pohlednic je 10 5 = 50, všech dvouprvkových podmnožin množiny {R 1,..., R 10 } je ( 10 ) = 45. Podle Dirichletova principu je některým dvěma (různým) pohlednicím přiřazena stejná množina { } R i, R j, tj. adresát jedné z nich je odesilatel druhé a naopak. K4. V libovolné skupině šesti lidí se najdou tři lidé, kteří se navzájem znají, nebo tři lidé, kteří se navzájem neznají. Dokažte. Vyberme jednu ze šesti osob a ostatních pět osob rozdělme do dvou skupin podle toho, zda vybranou osobu A znají, či nikoliv. Podle Dirichletova principu jsou v jedné skupině aspoň tři osoby, takže můžeme vybrat tři z nich, řekněme B, C, D, které mají s A stejný vztah, řekněme znají se s A. Pokud se znají i dvě osoby z B, C, D, tvoří s osobou A trojici navzájem známých; v opačném případě je B, C, D trojice lidí, kteří se navzájem neznají. Druhou variantou je nahradit slova sázená kursivou negacemi. Tvrzení neplatí pro pět osob viz následující graf: 1

22 V něm je úsečkou vyznačen některý vztah (např. znají se ) a úsečkou --- jeho negace (např. neznají se ). Z tohoto obrázku je tedy patrné, že žádné tři osoby nejsou navzájem ve stejném vztahu. Výsledek z předchozího příkladu se dá zobecnit: Pro všechna celá a, b existuje takové N N, že v každé skupině se najde a lidí, kteří se navzájem znají, nebo b lidí, kteří se navzájem neznají (tzv. Ramseyova 6 věta snadný důkaz indukcí). Nejmenší N dané vlastnosti se nazývá Ramseyovo číslo R (a, b). Z příkladu K3 tedy víme, že R (3, 3) = 6, navíc R (a, b) = R (b, a) a z definice například plyne R (a, ) = a, a. Zajímavé též je, že s parametry a b 3 je známo je několik hodnot 7 R (a, b): R (4, 3) = 9, R (4, 4) = 18, R (5, 5) není známo! K Ramseyově teorii se vztahuje i následující klasický příklad. K5. Každí dva ze 17 vědců si navzájem dopisují o právě jednom ze tří témat T 1, T, T 3. Dokažte, že někteří tři vědci si navzájem dopisují o stejném tématu T i. Nejprve je třeba říci, že tvrzení neplatí pro 16 vědců (odůvodní se stejně jako v předchozím příkladě). Vybereme jednoho vědce V a ostatních 16 vědců rozdělíme do tří skupin podle toho, o kterém z témat T 1, T, T 3 si s V dopisují. Platí 16 : 3 = 5 (zb. 1), proto podle Dirichletova principu existuje v jedné skupině 6 vědců V 1, V,..., V 6, kteří si tedy s V dopisují o stejném tématu, řekněme T 1. Pokud si někteří z V 1,..., V 6 rovněž spolu dopisují o T, vytvoří s V hledanou trojici. V opačném případě si libovolní dva vědci z V 1,..., V 6 dopisují o T nebo o T 3. Podle výsledku úlohy K4 o šesti lidech 8 existují tři vědci z {V 1,..., V 6 }, kteří si navzájem dopisují o stejném z témat T, T 3. K6. Tenisový turnaj osmi hráčů se hrál systémem každý s každým jeden zápas. Dokažte, že lze určit hráče A, B, C, D tak, že hráč A porazil hráče B, C, D, hráč B porazil hráče C, D a hráč C porazil hráče D. V turnaji bylo odehráno ( 8 ) = 8 zápasů a každý měl svého vítěze. Platí 8 : 8 = 3 (zb. 4). Některý hráč A podle Dirichletova principu zaznamenal aspoň 4 vítězství, takže můžeme vybrat 4 hráče W, X, Y, Z, které hráč A porazil. Hráči W, X, Y, Z spolu sehráli ( 4 ) = 6 zápasů. Opět 6 : 4 = 1 (zb. ), takže některý hráč B {W, X, Y, Z} vyhrál nad ostatními třemi aspoň dva zápasy. Tedy porazil dva různé hráče C, D {W, X, Y, Z} {B}, které můžeme označit písmeny C, D tak, že hráč C porazil hráče D. K7. Dokažte, že po skončení libovolného tenisového turnaje n hráčů hraného systémem každý s každým jeden zápas lze hráče označit písmeny H 1,..., H n tak, že H 1 H H n 1 H n, kde zápis H i H j značí, že hráč H i porazil hráče H j. 6 Frank Plumpton Ramsey ( ). 7 U vyšších hodnot a, b jsou známa pouze rozmezí, v nichž se čísla R (a, b) vyskytují, například R (5, 5) [43, 49], R (6, 6) [10, 165], R (7, 7) [05, 540] apod. více hodnot včetně jejich objevitelů naleznete na 8 Jinými slovy: Protože R (3, 3) = 6...

23 Při pevném n (počtu hráčů) ukážame pro každé k =, 3,..., n, že lze vybrat k-tici hráčů H 1,..., H k z daných n tak, že H 1 H H k 1 H k (pro k = n ihned dostaneme tvrzení úlohy). Užijeme matematickou indukci: 1. Pokud k =, pak H 1 H triviálně (splňují to libovolní dva hráči označení tak, že H 1 porazil H ).. Necht tvrzení platí pro některé k {, 3,..., n 1} (indukční předpoklad), tj. máme vybráno k hráčů s vlastností H 1 H H k 1 H k. Ze zbylých hráčů (jichž je n k 1) vybereme libovolného hráče H. Tvrzení pro k + 1 hráčů je pak zřejmé ve dvou případech, totiž a H H 1 H H k 1 H k H 1 H H k 1 H k H. Zabývejme se proto případem, kdy H 1 H a H H k. Uvážíme všechny indexy i {1,..., k} takové, že H i H. Takové indexy existují (minimálně i = 1) a my z nich vybereme nějvětší i, které označíme m. Protože H H k, neplatí H i H pro i = k, proto je m < k. Platí tedy H m H a zároveň (pro m + 1 k) neplatí H m+1 H, tedy nutně H H m+1 a máme řetězec H 1 H H m H H m+1 H k 1 H k, který jsme chtěli sestrojit. Důkaz indukcí je hotov. K8. Ze dvou znaků A, B lze sestavit 5 = 3 pětimístných kódů. Kolik (nejvíce) z nich lze vybrat tak, aby se každé dva z vybraných kódů lišily v nejméně dvou pozicích? Je jich nejvíce 16 ukážeme proč: Ukážeme, že z libovolných 17 vybraných pětimístných kódů tvaru X 1 X X 3 X 4 X 5, kde X i {A, B}, se některé dva kódy shodují ve svých začátcích X 1 X X 3 X 4. Plyne to z Dirichletova principu, nebot všech možných začátků X 1 X X 3 X 4 je 4 = 16. Dva kódy X 1 X X 3 X 4 X 5 se stejným začátkem X 1 X X 3 X 4 se mohou lišit jen na posledním místě X 5. Vybereme 16 kódů tak, aby se každé dva vybrané lišily v nejméně dvou pozicích. Vezmeme všech 16 možných začátků X 1 X X 3 X 4 a ke každému z nich připojíme znak X 5 tak, aby v celém kódu X 1 X X 3 X 4 X 5 byl lichý počet znaků A. Například AAAA AAAAA, ABBB ABBBA, ABAB ABABA,. Tak dostaneme 16 různých kódů X 1 X X 3 X 4 X 5 (každé dva se totiž liší ve svých začátcích X 1 X X 3 X 4 ) a v každém je lichý počet znaků A. Proč se tedy dva kódy neliší pouze v jediné pozici? A B Kdyby takové kódy existovaly, počty znaků A by se v nich lišily právě o jeden, tj. oba počty by nemohly být liché. 3

24 MATEMATICKÁ INDUKCE V této kapitole se budou vyskytovat následující typy příkladů: U... úvodní úlohy D... úlohy na dělitelnost N... důkazy nerovností Princip (úplné) matematické indukce sestává ze dvou kroků. S matematickou indukcí jsme se nepřímo setkali při zavádění množiny všech přirozených čísel N = {1,, 3,...}, kde pomocí operace +1 jsme vždy získali následovníka předchozího čísla. Pravděpodobně jsme se setkali i s množinovou formulací principu matematické indukce: Necht M je množina splňující dvě vlastnosti: I. 1 M, II. pro každé přirozené číslo n platí Pak M obsahuje všechna přirozená čísla. n M n + 1 M. Dá se takové tvrzení dokázat? O odpověd na tuto otázku v minulosti usilovala spousta matematiků, ale ukázalo se, že ne. Je to taková základní vlastnost množiny N, která je natolik spjata s podstatou přirozených čísel, že je nezbytné ji v jakékoliv podobě postulovat (tzv. Peanův 9 axiom). Mnohem známější však bude následující školská formulace: Necht {T (n)} n=1 je posloupnost tvrzení závislých na n N. Jestliže I. T (1) platí, (1. indukční krok) II. pro všechna n N platí (. indukční krok) pak T (n) platí pro každé n N. T (n) T (n + 1), Uvědomme si, že v kroku II netvrdíme, že T (n) platí, nýbrž pouze předpokládáme, že je to tak. U1. Dokažte, že n n (n + 1) (n + 1) = (3) 6 pro každé n N. Pak dokažte, že princip matematické indukce plyne z axiomu, že každá neprázdná množina přirozených čísel má nejmenší prvek. Označme rovnost (3) jako tvrzení T (n). I. Dokažme T (1): Jistě platí 1 = Giuseppe Peano ( ) viz 4

25 II. Předpokládejme, že platí rovnost (3) a dokažme rovnost Odtud plyne n + (n + 1) = (n + 1) (n + ) (n + 3) n + (n + 1) = = n tj. T (n + 1) platí 10. n (n + 1) (n + 1) 6 (n (n + 1) + 6 (n + 1)) = n (n + 1) = ( n + 7n + 6 = ) = (n + 1) (n + ) (n + 3), 6 Než ukážeme, že princip matematické indukce plyne z existence nejmenšího prvku každé neprázdné množiny přirozených čísel, musíme si uvědomit, jestli má takový axiom vůbec smysl. Ale stačí vzít libovolný prvek uvažované množiny M a zjistit, zda je nejměnší. Není-li, vezmeme o jedničku nižší. Pokud ani ten není, vezmeme další o jedničku nižší. Takto postupujeme do té doby, než najdeme nejmenší prvek, nebo dojdeme k číslu 1, které je nejmenším prvkem množiny N. Nejmenší prvek tedy existuje. Naopak, vezmeme-li nějaké přirozené číslo a ono v naší množině neleží, uvážíme o jedničku vyšší. Pokud ani ono v množině M neleží, pokračujeme v přičítání dále a bud po konečném počtu kroků dojdeme k nejmenšímu prvku naší množiny, nebo nikoliv a tato množina M je prázdná. Axiom A o existenci nejmenšího prvku má tedy smysl. Samotný důkaz principu matematické indukce proběhne takto: I. Ukážeme, že 1 M. II. Jestliže pro všechna n N platí n M, pak i n + 1 M. Závěrem bude, že N M. Budeme postupovat sporem: Připustíme, že množina X = {n n N n / M} je neprázdná (tj. negace závěru principu matematické indukce). Podle axiomu A existuje nejmenší prvek množiny X, označme jej m. Z m X plyne m N a m / M. Podle I je tedy m = 1, tj. m > 1. Číslo m 1 je tedy přirozené a neleží v X (kde je m nejmenší), leží tedy v M, tj. m 1 M. Podle II však z m 1 M plyne m M (když položíme n = m 1) a to je spor X =. U. Dokažte, že každé poštovné n Kč, kde n 54 je celé, lze vyplatit jen pomocí známek v hodnotě 7 Kč a 10 Kč (můžeme použít i známky pouze jedné hodnoty). 10 Připomeňme si zejména následující rovnosti: n (n + 1) n =, n n (n + 1) (n + 1) =, 6 ( ) n n 3 (n + 1) =. Třetí rovnice působí bezesporu nejpřekvapivěji, navíc z ní bezprostředně plyne ( n) = n 3. 5

26 Formulujme tvrzení T (n): Existují a, b N 0 taková, že n = 7a + 10b, kde a je počet známek à 7 Kč a b je počet známek à 10 Kč. I. T (54): Hledáme čísla a, b, která vyhovují rovnosti 54 = 7a + 10b. Zřejmě však 54 = , tedy hledaná čísla jsou a =, b = 4. II. Předpokládejme, že platí T (n), a dokažme platnost T (n + 1): (1. možnost pro případ b ) a n = 7a + 10b n + 1 = 7 (a + 3) + 10 (b ) n = 7a + 10b n + 1 = 7 (a 7) + 10 (b + 5) (. možnost pro případ a 7). Implikace T (n) T (n + 1) jsme dokázali ve všech případech s výjimkou těch, kdy b 1 a zároveň a 6. Tehdy ovšem platí n = 7a + 10b = 5. Závěr bodu II: Platí T (n) T (n + 1) pro každé n 53. Ale samotné T (53) neplatí! Plyne to z toho, že žádné z čísel 53, 43, 33, 3, 13, 3 není dělitelné sedmi. (Na druhou stranu pro T (5) indukční předpoklad zase platí, ale nelze tak pokračovat s T (53), protože nejsou splněny minimální hodnoty čísel a, b.) Důkaz indukcí je hotov. U3. Reálné číslo a je takové, že číslo a + 1 a je celé (například a = + 3). Dokažte, že pak číslo a n + 1 a n je celé pro každé n N. Opět formulujme tvrzení T (n): Pro každé n N platí kde a R je daný parametr. x n = a n + 1 a n Z, I. Zřejmě T (1) platí podle zadání x 1 Z. Dokažme ještě pro T (): x = a + 1 a = ( a + 1 a ) Z. II. Chceme dokázat, že pro všechna n N platí T (n) T (n + 1) T (n + ). Předpokládejme, že Potom x n = a n + 1 a n Z, x n+1 = a n Z. an+1 x n+ = a n+ + 1 a n+ = ( = a + 1 a ( a + 1 ) ( a n ) a a n+1 a n a a n = ) x n+1 x n Z, nebot celá jsou čísla a + 1 a (podle zadání) i x n, x n+1 (podle indukčního předpokladu). Číslo x n+ je tedy celé a II. indukční krok je hotov. 6

27 Přitom 3 r n, 3 s n a r + s = (n + 1) + (dva vrcholy jsou společné) čili r + s = n + 3. Každá z dalších vybraných úhlopříček musí být úhlopříčkou bud v I, nebo v II a tyto úhlopříčky v I stejně jako v II splňují stejnou podmínku nemají společné vnitřní body. Podle T (r) a T (s) je v I nejvýše r 3, v II nejvýše s 3 úhlopříček, takže v celém systému je nejvýše (r 3) + (s 3) + 1 = r + s 5 = n = n = (n + 1) 3 úhlopříček, což je počet úhlopříček v T (n + 1). Je-li počet úhlopříček přesně (n + 1) 3, musí jich být přesně r 3 v I a s 3 v II. Pak ale I je rozdělen na r a II na s trojúhelníků. Celý (n + 1)-úhelník je tak rozdělen na trojúhelníky v počtu (r ) + (s ) = r + s 4 = (n + 3) 4 = n 1 = (n + 1), jak je uvedeno v tvrzení T (n + 1). 7 K vyjádření čísla x n+ = ( a + 1 ) x n+1 x n a jsme potřebovali dva předchozí členy to bylo principem této úlohy (vytvořili jsme lineární rekurentní formuli druhého řádu, jak uvidíme dále). U4. Vybereme-li několik úhlopříček konvexního n-úhelníku tak, že žádné dvě z nich nemají společný vnitřní bod, pak jejich počet bude vždy nejvýše n 3. Dokažte to pro každé n 4 a zdůvodněte, proč každá taková soustava n 3 úhlopříček rozděluje původní n-úhelník na n trojúhelníků. Označme T (n) uvedené tvrzení o n-úhelníku (n 4). I. T (4): Vybrat můžeme jen n 3 = 4 3 = 1 úhlopříčku, která rozděluje čtyřúhelník na n = 4 = trojúhelníky. (Formálně lze uvažovat i n = 3, kdy vybereme 0 úhlopříček, které rozdělí trojúhelník na 1 trojúhelník.) II. Pro všechna n 3 dokážeme implikaci T (3) T (4) T (n) T (n + 1). Předpokládejme platnost T (3), T (4),..., T (n) a v (n + 1)-úhelníku vyberme libovolný systém úhlopříček bez společných vnitřních bodů. Jedna z těchto úhlopříček (libovolně, ale pevně zvolená) nám rozdělí celý (n + 1)-úhelník na r-úhelník I a s-úhelník II:

Dirichletův princip. D1 Z libovolných 82 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte.

Dirichletův princip. D1 Z libovolných 82 přirozených čísel lze vybrat dvě čísla tak, aby jejich rozdíl byl dělitelný číslem 81. Dokažte. Dirichletův princip U1 Dirichletův princip a jeho důkaz. U2 Na konferenci 70 delegátů hovoří 11 různými jazyky, stejným jazykem nejvíce 15 z nich. Za oficiální je považován takový jazyk, kterým hovoří

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 68. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými. (Michal Rolínek) Řešení. Pokud by

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Úlohy klauzurní části školního kola kategorie B

Úlohy klauzurní části školního kola kategorie B 65. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie B 1. Kolika způsoby je možno vyplnit čtvercovou tabulku 3 3 čísly,, 3, 3, 3, 4, 4, 4, 4 tak, aby součet čísel v každém čtverci

Více

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 67. ročník matematické olympiády Úlohy krajského kola kategorie C 1. Najděte nejmenší přirozené číslo končící čtyřčíslím 2018, které je násobkem čísla 2017. 2. Pro celá čísla x, y, z platí x 2 + y z =

Více

Klauzurní část školního kola kategorie A se koná

Klauzurní část školního kola kategorie A se koná 56. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. rčete všechna reálná čísla s, pro něž má rovnice 4x 4 20x 3 + sx 2 + 22x 2 = 0 čtyři různé reálné kořeny, přičemž součin

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 47. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Magický čtverec je čtvercová tabulka přirozených čísel, v níž je součet všech čísel v každém řádku, v každém sloupci i na obou úhlopříčkách

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C 61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

1.4.6 Stavba matematiky, důkazy

1.4.6 Stavba matematiky, důkazy 1.4.6 tavba matematiky, důkazy Předpoklady: 1401, 1404 Pedagogická poznámka: Tato hodina se velmi liší od většiny ostatních neboť jde v podstatě o přednášku. Také ji neprobíráme v prvním ročníku, ale přednáším

Více

Úlohy II. kola kategorie A

Úlohy II. kola kategorie A 5. ročník matematické olympiády Úlohy II. kola kategorie A 1. Najděte základy z všech číselných soustav, ve kterých je čtyřmístné číslo (1001) z dělitelné dvojmístným číslem (41) z.. Uvnitř strany AB daného

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 6. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A. V oboru reálných čísel řešte soustavu rovnic y + 3x = 4x 3, x + 3y = 4y 3. 2. V rovině uvažujme lichoběžník ABCD se základnami

Více

Internetová matematická olympiáda listopadu 2008

Internetová matematická olympiáda listopadu 2008 Internetová matematická olympiáda - 5. listopadu 008 ŘEŠENÍ ÚLOH 1. Obrazec na Obrázku 1 je složen z 44 čtverců o straně 6 mm. Bodem A veďte jedinou přímku, která daný obrazec rozdělí na dva obrazce o

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Diskrétní matematika 1. týden

Diskrétní matematika 1. týden Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Návody k domácí části I. kola kategorie B

Návody k domácí části I. kola kategorie B Návody k domácí části I. kola kategorie B 1. Najděte všechna osmimístná čísla taková, z nichž po vyškrtnutí některé čtveřice sousedních číslic dostaneme čtyřmístné číslo, které je 2 019krát menší. (Pavel

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Vrcholová barevnost grafu

Vrcholová barevnost grafu Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 65. ročník matematické olympiády Úlohy krajského kola kategorie. Najděte nejmenší možnou hodnotu výrazu x xy + y, ve kterém x a y jsou libovolná celá nezáporná čísla.. Určete, kolika způsoby lze všechny

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 65. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Určete všechny trojice celých kladných čísel k, l a m, pro které platí 3l + 1 3kl + k + 3 = lm + 1 5lm + m + 5. 2. Je dána úsečka AB,

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

65. ročník matematické olympiády III. kolo kategorie A. Pardubice, dubna 2016

65. ročník matematické olympiády III. kolo kategorie A. Pardubice, dubna 2016 65. ročník matematické olympiády III. kolo kategorie A Pardubice, 3. 6. dubna 2016 MO 1. Nechť p > 3 je dané prvočíslo. Určete počet všech uspořádaných šestic (a, b, c, d, e, f) kladných celých čísel,

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1 1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Číselné posloupnosti

Číselné posloupnosti Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 68. ročník matematické olympiády Úlohy krajského kola kategorie C. Každé pole tabulky 68 68 máme obarvit jednou ze tří barev (červená, modrá, bílá). Kolika způsoby to lze učinit tak, aby každá trojice

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Kongruence na množině celých čísel

Kongruence na množině celých čísel 121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem

Více

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015

64. ročník matematické olympiády III. kolo kategorie A. Praha, března 2015 64. ročník matematické olympiády III. kolo kategorie Praha, 22. 25. března 2015 O 1. Najděte všechna čtyřmístná čísla n taková, že zároveň platí: i) číslo n je součinem tří různých prvočísel; ii) součet

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 65. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Pro přirozená čísla k, l, m platí k + m + klm = 05 404. Určete všechny možné hodnoty součinu klm. Řešení. I když rovnice v zadání

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012

61. ročník matematické olympiády III. kolo kategorie A. Hradec Králové, března 2012 61. ročník matematické olympiády III. kolo kategorie Hradec Králové, 5. 8. března 01 MO 1. Najděte všechna celá čísla n, pro něž je n 4 3n + 9 prvočíslo. (leš Kobza) Řešení. Zadaný výraz lze jednoduchou

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

56. ročník Matematické olympiády

56. ročník Matematické olympiády 56. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C. Určete všechny dvojice (a, b) přirozených čísel, pro něž platí a + 5 b = b + 5 a. Řešení. Substitucí m = a, n = b převedeme rovnici

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3

Matematická olympiáda ročník ( ) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Z5 II 2 Z5 II 3 1 of 6 20. 1. 2014 12:14 Matematická olympiáda - 49. ročník (1999-2000) Komentáře k úlohám 2. kola pro kategorie Z5 až Z9. kategorie Z5 Z5 II 1 Jirka půjčil Mirkovi předevčírem přibližně 230 Kč, tj. 225

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 68. ročník matematické olympiády Úlohy krajského kola kategorie B 1. Pro nezáporná reálná čísla a, b platí a + b = 2. Určete nejmenší a největší možnou hodnotu výrazu V = a2 + b 2 ab + 1. 2. Najděte všechna

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více