Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
|
|
- Dominika Černá
- před 5 lety
- Počet zobrazení:
Transkript
1 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit, aby F (x) byla funkce primitivní k funkci f(x)? Uveďte obecnou definici a jednoduchý příklad. b) Je primitivní funkce k dané funkci f dána jednoznačně? Pokud ne, uveďte příklad funkce f a dvou jejích různých primitivních funkcí. 2. [0 bodů] Napište rovnici tečny ke grafu funkce y = f(x) v bodě x = x 0 a odvoďte z něj vzorec pro Newtonovu Raphsonovu metodu. K čemu tato metoda slouží? 5. [6 bodů] etodou per-partés vypočtěte neurčitý integrál x cos(x) dx. 6. [8 bodů] Vypočtěte dvojný integrál x dx dy, kde množina je vyznačena na obrázku. y 3. [6 bodů] Vypočtěte následující derivace ( x ln x) = (2e x2 + ) = (xe x ) = y = x 2 x 4. [8 bodů] áme oplotit pozemek tvaru obdélníka, jehož jedna strana leží podél dlouhé zdi a zbývající tři strany jsou tvořeny plotem. Celkový obsah obdélníka je 00m 2. Je-li délka kratší strany x, je celková délka plotu dána vzorcem L = 2x + 00 x. Pro které x je délka plotu nejkratší? (Průsečíky na osách si dopočítejte, pokud jsou pro výpočet nutné.) 7. [6 bodů] Vyřešte rovnici 6 + e 2(x ) = 0 Požadavek: alespoň 20 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od :00 do :5. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
2
3 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [8 bodů] a) Definujte pojmy rostoucí funkce a klesající funkce. b) Uveďte, jak souvisí rostoucí a klesající funkce s derivací. c) Pomocí pojmů růst a klesání funkce (případně pomocí derivace) zformulujte podmínku, které je dostatečná pro to, aby v bodě x 0 nastalo lokální maximum. d) Uveďte příklad funkce, která má v bodě x 0 lokální minimum, ale nemá v tomto bodě derivaci. 2. [8 bodů] a) Napište rovnici tečny ke grafu funkce y = f(x) v bodě x 0. b) Napište rovnici tečné roviny ke grafu funkce z = f(x, y) v bodě (x 0, y 0 ). c) Napište vzorec pro lineární aproximaci funkce y = f(x) v okolí bodu x [6 bodů] Vypočtěte následující derivace a) (x 2 sin(x)) = b) (cos(x 2 + )) = c) ( ) x = x [8 bodů] Je dána funkce y = x4 x + a její derivace y = x3 (3x + 4). Najděte intervaly (x + ) 2 monotonie a lokální extrémy této funkce. 5. [6 bodů] Substituční metodou vypočtěte neurčitý integrál x cos(x 2 ) dx. 6. [8 bodů] Vyřešte diferenciální rovnici y = xy. 7. [6 bodů] Vyřešte rovnici 5 2e 2(x ) = 0 Požadavek: alespoň 20 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od 0:5 do 0:30. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
4
5 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [4 bodů] V následující tabulce do každého z šesti prázdných políček s otazníkem doplňte funkci (obrázek nebo funkční předpis), která má požadované vlastnosti. Pokud taková funkce neexistuje, stručně napište proč. (Tabulku překreslete na papír s dostatečně velkými políčky.) Pokud je to možné, volte příklad tak, aby x 0 = 0. v bodě x 0 je lokální extrém v bodě x 0 není lokální extrém f (x 0 ) existuje a f (x 0 ) = 0 f (x 0 ) existuje a f (x 0 ) 0?????? f (x 0 ) neexistuje 2. [5 bodů] Z derivace součinu funkcí odvoďte vzorec pro metodu per-partés. 3. [6 bodů] Vypočtěte následující derivace ( a) e x+) = 4. [5 bodů] Napište rovnici tečny ke grafu funkce y = x + v bodě x = [6 bodů] Pomocí metody per-partés vypočtěte integrál x ln x dx. 6. [8 bodů] Do roztoku pro hydroponicky pěstované rostliny jsou dodávány živiny konstantní rychlostí c. Rostliny tyto živiny odčerpávají z roztoku rychlostí úměrnou množství těchto živin. Napište matematický model modelující množství živin v roztoku. Objem roztoku považujte za konstatnní. b) c) ( x 2 cos(x) ) = ( ) e x = x 7. [6 bodů] Vyřešte rovnici 5 2 ln x 3 = 0. Požadavek: alespoň 20 bodů z 50 možných. Výsledky budou zaslány hromadným em na adresu studentů přihlášených na termín. Opravené písemky je možné si prohlédnout v pátek v době 9:00 9:30 v B2. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
6
7 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [0 bodů] a) Definujte pojmy rostoucí funkce a klesající funkce. b) Uveďte, jak souvisí rostoucí a klesající funkce s derivací. c) Definujte pojem prostá funkce a uveďte příklad jedné funkce která je prostá na R a jedné funkce která není prostá na R. d) Definujte pojem inverzní funkce. Uveďte příklad funkce definované na R, ke které je možno sestrojit inverzní funkci na R a příklad funkce definované na R, ke které není možno sestrojit inverzní funkci na R. 2. [6 bodů] a) Napište rovnici tečny ke grafu funkce y = f(x) v bodě x 0 a určete pomocí něj tečnu ke grafu funkce y = x 2 v bodě x =. b) Napište vzorec pro střední hodnotu funkce f(x) na intervalu (a, b) a vypočtěte střední hodnotu funkce y = sin x na intervalu ( 0, π 2 ). 3. [6 bodů] Vypočtěte následující derivace a) ( x + 2 sin(x)) = b) ( x + sin(2x)) = c) ( ) x sin(2x) = 4. [8 bodů] Je dána funkce y = x 4 (x + ) a její derivace y = x 3 (5x + 4). a) Najděte intervaly monotonie a lokální extrémy této funkce. b) Potvrďte výpočtem, že derivace je zadána správně. 5. [6 bodů] Substituční metodou vypočtěte neurčitý integrál sin(ln x) dx. x 6. [8 bodů] Vypočtěte dvojný integrál y dx dy, kde množina je vyznačena na obrázku. y y = x 2 (Průsečíky na osách si dopočítejte, pokud jsou pro výpočet nutné.) 7. [6 bodů] Vyřešte rovnici 4 = e 2x+3 x Požadavek: alespoň 20 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od 2:00 do 2:5 v B44. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
8
9 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [0 bodů] a) Definujte pojem rostoucí funkce. b) Definujte pojem spojitá funkce (spojitost v bodě, např. v bodě a). c) Napište rovnici tečny ke grafu funkce a odvoďte z něj vzorec pro Newtonovu Raphsonovu metodu. K čemu se tato metoda používá? 2. [8 bodů] a) Napište vzorec pro výpočet určitého integrálu pomocí neurčitého (Newtonova Leibnizova věta). b) Napište vzorec pro výpočet neurčitého integrálu pomocí určitého (integrál jako funkce horní meze). 3. [6 bodů] Vypočtěte následující derivace ( ) a) x(x + x) = b) (2 + sin(3x)) = 4. [8 bodů] Je dána funkce y = x5 x + 2 a její derivace y = 2x4 (2x + 5) (x + 2) 2. Najděte intervaly monotonie a lokální extrémy této funkce. 5. [6 bodů] Vypočtěte neurčitý integrál (x + )e x dx. 6. [6 bodů] Vypočtěte dvojný integrál x 2 dx dy, kde množina je vyznačena na obrázku. y x x + y = (Průsečíky na osách si dopočítejte, pokud jsou pro výpočet nutné. Dvě strany trojúhelníku jsou rovnoběžné se souřadnými osami) c) ( ) sin 2 = (x) 7. [6 bodů] Vyřešte rovnici 2 + ln(3x ) = 0 Požadavek: alespoň 20 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
10
11 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [0 bodů] a) Definujte pojem rostoucí funkce. Kdy řekneme, že funkce f je spojitá? b) Definujte pojem inverzní funkce. Kdy řekneme, že funkce f je inverzní k funkci f? c) Napište rovnici tečny ke grafu funkce a odvoďte z něj vzorec pro Newtonovu Raphsonovu metodu. K čemu se tato metoda používá? 2. [8 bodů] a) Napište vzorec pro integrování metodou per partés. b) Ukažte použití tohoto vzorce na jednoduchém příkladě. c) Ukažte,jak je možno odvodit vzorec pro metodu per partés z derivace součinu. 3. [6 bodů] Vypočtěte následující derivace ( a) x 2 sin(2x)) ) = b) (2e x ) = c) ( ) ln( + x + ) = 4. [6 bodů] Vhodnou substitucí vypočtěte neurčitý integrál 3xe x2 dx. 5. [8 bodů] Gigantická sněhová koule o poloměru 0,8m taje tak, že se její objem zmenšuje rychlostí 0,m 3 /min. Jak rychle klesá její poloměr? Vzorce pro objem a povrch koule o poloměru r jsou V = 4 3 πr3, S = 4πr 2 6. [6 bodů] Vypočtěte dvojný integrál x dx dy, kde množina je vyznačena na obrázku. Návod: při úpravách před druhou integrací může být užitečný vzorec x a x b = x a+b. y x x + y = (Průsečíky na osách si dopočítejte, pokud jsou pro výpočet nutné. Dvě strany trojúhelníku jsou rovnoběžné se souřadnými osami) 7. [6 bodů] Vyřešte rovnici 2 5e 3x+ = 0 Požadavek: alespoň 20 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
12
13 Zkouška ze Základů vyšší matematiky ZVTA (LDF, ) 60 minut Jméno: Součet Koeficient Body. [5 bodů] V některých specializovaných případech je možno zapsat dvojný integrál jako součin dvou jednoduchých integrálů. Charakterizujte tyto případy. Přesněji: napište, jak musí vypadat integrační oblast, jak musí vypadat integrovaná funkce a jak vypadá výsledný vzorec. 2. [7 bodů] Zformulujte Bolzanovu větu. 3. [8 bodů] a) Napište rovnici tečny ke grafu funkce y = f(x) v bodě x 0 a určete pomocí něj tečnu ke grafu funkce y = x 2 v bodě x =. b) Napište vzorec pro střední hodnotu funkce f(x) na intervalu (a, b) a vypočtěte ( střední hodnotu funkce y = sin x na intervalu 0, π ) [8 bodů] Je dána funkce y = x4 a její derivace x + y = x3 (3x + 4). Najděte intervaly monotonie a (x + ) 2 lokální extrémy této funkce. 7. [6 bodů] Vypočtěte dvojný integrál x y dx dy, kde množina je vyznačena na obrázku. y y = x 2 c) Napište definici inverzní funkce. Co musí platit abychom řekli, že funkce y = f (x) je inverzní funkcí k y = f(x)? 4. [5 bodů] Vypočtěte následující derivace x a) b) ( ) sin x + = ( 2x + 3e x2) = 5. [6 bodů] Vhodnou substitucí vypočtěte neurčitý cos x integrál sin 2 x dx. 8. [5 bodů] Vyřešte rovnici e x 2 ln(3) = 0 Požadavek: alespoň 20 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indexu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 x = arcsin x 2 A x 2 + A 2 dx = A arctan x A x x 2 ± B = ln + x 2 ± B A 2 x 2 dx = 2A ln x A x + A
14
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti
VíceZáklady vyšší matematiky arboristika Zadání písemek ze školního roku
Základy vyšší matematiky arboristika Zadání písemek ze školního roku 20 202 Robert ařík 9. ledna 203 Níže najdete zadání písemek předmětu ZVTA. Za některými písemkami je vloženo i řešení. Písemná část
Více6. [8 bodů] Neurčitý integrál
Zkouška ze Aplikované matematiky pro arboristy, LDF, 9..205, 60 minut 2 3 4 5 6 Jméno:................................... Body Známka. [2 bodů] Prostá a inverzní funkce a) Definujte pojmy prostá funkce
VíceBody. 5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [8 bodů] Vypočtěte dvojný integrál x 2 dxdy. Množina
Písemná zkouška z Inženýrské matematiky, 8.2.202 (60 minut) Body Jméno:...................................... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..
VícePetr Hasil
Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
VíceKapitola 1. Léto 2011
Kapitola 1 Léto 2011 1 Písemná část zkoušky z Matematiky (LDF, 25.5.2011) 60 minut Jméno:................................. 1. [11 bodů] Vyšetřete průběh funkce 1 y (určete intervaly kde je 2 ( + 1) funkce
Více7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál
Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
VíceMATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
VíceI. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
VíceNMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
VíceVýznam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
VícePříklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
VíceMatematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
VíceMatematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VícePřednášky z předmětu Aplikovaná matematika, rok 2012
Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Více(5) Primitivní funkce
(5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,
VíceParciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceParciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceMATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie
MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceFunkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
VíceMATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
VíceDiferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
Více8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
VíceVysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
VíceWikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceMETODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Více. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,
Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
VíceMATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
VíceEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Více1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
VíceMatematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
VíceSbírka příkladů z matematické analýzy II. Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
VíceDEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
VícePísemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
VíceDefinice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
VícePavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
VíceOtázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
VíceDerivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Více1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
VícePřijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
VíceIX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
Vícef(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x
Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor
VíceDerivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
VíceINTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
VíceMatematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
VíceNMAF 051, ZS Zkoušková písemná práce 4. února 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4
VíceDvojné a trojné integrály příklad 3. x 2 y dx dy,
Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je
Více[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2
4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VícePřednáška 11, 12. prosince Část 5: derivace funkce
Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Integrální počet. Substituce v určitém integrálu VY_32_INOVACE_M0311
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..7/.5./. Zlepšení podmínek pro výuku
Více+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F
Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální
VíceMatematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
VícePožadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Vícerovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceBakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
Více5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Více5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Více1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
VíceDerivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
Vícey H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0
1 Urcete vsechna maximalni reseni: y + 4y + 4y = e 2x x + 1 Definicni obor: x 1, tj. resim na intervalech (, 1) a ( 1, ) Charakteristicky polynom λ 2 + 4λ + 4 ma dvojnasobny koren -2, tedy tvar homogenniho
Více7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
VíceNumerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
VícePřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
VíceKapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
VíceMATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
VíceDerivace vyšších řádů, aplikace derivací
Derivace vyšších řádů, aplikace derivací Značení derivací vyšších řádů Máme funkci f: y = f x f x druhá derivace funkce y = f x f k x k-tá derivace funkce y = f x Derivace vyšších řádů počítáme opakovaným
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Více