Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
|
|
- Emil Bílek
- před 8 lety
- Počet zobrazení:
Transkript
1 Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c = y = x 3 9x Funkce = x 1+x. Derivace jsou f (x) = 1+x x = 1 x (1+x ) (1+x ) a f (x) = x(1+x ) (1 x )(1+x )4x (1+x ) 4 = = x(1+x )((1+x )+(1 x )) (1+x ) 4 = x(3 x ) (1+x ) 3. Funkce f je konvexní na intervalu ( 3, ) a na intervalu ( 3, ) a konkávní na intervalu (, 3) a na intervalu (, 3). Inflexní body jsou c 1 = 3, c = a c 3 = y = x / (1+x ) 4 4 Funkce je definována: = x 3 pro x < a = x pro x. Pak f () =, ale f () neexistuje. Nicméně, f má inflexní bod x =. 5. přednáška (5.11.9) Matematika 1 1 / 6
2 Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c = y = x 3 9x Funkce = x 1+x. Derivace jsou f (x) = 1+x x = 1 x (1+x ) (1+x ) a f (x) = x(1+x ) (1 x )(1+x )4x (1+x ) 4 = = x(1+x )((1+x )+(1 x )) (1+x ) 4 = x(3 x ) (1+x ) 3. Funkce f je konvexní na intervalu ( 3, ) a na intervalu ( 3, ) a konkávní na intervalu (, 3) a na intervalu (, 3). Inflexní body jsou c 1 = 3, c = a c 3 = y = x / (1+x ) 4 4 Funkce je definována: = x 3 pro x < a = x pro x. Pak f () =, ale f () neexistuje. Nicméně, f má inflexní bod x =. 5. přednáška (5.11.9) Matematika 1 1 / 6
3 Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c = y = x 3 9x Funkce = x 1+x. Derivace jsou f (x) = 1+x x = 1 x (1+x ) (1+x ) a f (x) = x(1+x ) (1 x )(1+x )4x (1+x ) 4 = = x(1+x )((1+x )+(1 x )) (1+x ) 4 = x(3 x ) (1+x ) 3. Funkce f je konvexní na intervalu ( 3, ) a na intervalu ( 3, ) a konkávní na intervalu (, 3) a na intervalu (, 3). Inflexní body jsou c 1 = 3, c = a c 3 = y = x / (1+x ) 4 4 Funkce je definována: = x 3 pro x < a = x pro x. Pak f () =, ale f () neexistuje. Nicméně, f má inflexní bod x =. 5. přednáška (5.11.9) Matematika 1 1 / 6
4 Příklady na asymptoty. Asymptoty grafu funkce = 3x + x 5. V bodě c = 5 má funkce nevlastní jednostranné limity, tedy graf funkce f má svislou asymptotu x = 5. Pro c = : k = lim x x = lim x x(x 5) = 3, q = lim x kx = lim x x 5 =, funkce má šikmou asymptotu y = 3x v okolí. Podobně pro c = : k = lim x x = lim x x(x 5) = 3, q = lim x kx = lim x x 5 =, funkce má šikmou asymptotu y = 3x v okolí asymptota x = 5 y = 3x + 1/(x 5) asymptota y = 3x přednáška (5.11.9) Matematika 1 / 6
5 Asymptoty grafu funkce = 7x + sin x. f je spojitá na R, proto nemá svislou asymptotu. Pro c = : k = lim x = lim x x 7 + sin x = 7, x q = lim x kx = lim x sin x neexistuje. V okolí c = graf funkce f nemá asymptotu. Podobně pro c = y = x/3 + sin(x) Asymptoty grafu funkce = x. asymptota neex.! f je spojitá na R, proto nemá svislou asymptotu Pro c = : k = lim x x = lim x x = / R, proto v okolí c = graf funkce f nemá asymptotu. Podobně pro c =. 5. přednáška (5.11.9) Matematika 1 3 / 6
6 Asymptoty grafu funkce = 7x + sin x. f je spojitá na R, proto nemá svislou asymptotu. Pro c = : k = lim x = lim x x 7 + sin x = 7, x q = lim x kx = lim x sin x neexistuje. V okolí c = graf funkce f nemá asymptotu. Podobně pro c = y = x/3 + sin(x) Asymptoty grafu funkce = x. asymptota neex.! f je spojitá na R, proto nemá svislou asymptotu Pro c = : k = lim x x = lim x x = / R, proto v okolí c = graf funkce f nemá asymptotu. Podobně pro c =. 5. přednáška (5.11.9) Matematika 1 3 / 6
7 Příklad - průběh funkce. Určete průběh funkce = ln (1 + cos x). Definiční obor je D(f ) = R \ {π + kπ, k Z}. Průsečíky s osami: {[ π + kπ, ], k Z}. Sudost, lichost, periodičnost - funkce f je sudá a periodická - nadále budeme zkoumat jen interval, π). Limity v krajních bodech definičního oboru: lim x π = lim x π ln (1 + cos x) =. Asymptoty: Svislá asymptota x = π, periodicky se opakuje, x = π + kπ, k Z. Funkce není definovaná na nějakém okolí nebo, tedy nemá šikmou asymptotu. První derivace je f (x) = sin x 1+cos x. Monotonie: f (x) < pro všechna x (, π), tedy f je klesající na intervalech (kπ, π + kπ) a rostoucí na intervalech (π + kπ, kπ), k Z. 1 Lokální maxima v bodech x = kπ, k Z. Globální neostrá maxima v bodech x = kπ, k Z. π π/ π/ Lokální ani globální minima nejsou. Druhá derivace je f (x) = cos x cos x sin x cos x 1 = (1+cos x) (1+cos x) < pro x D(f ). Konvexnost a konkávnost: funkce f je na D(f ) konkávní y = ln(1 + cos(x)) π přednáška (5.11.9) Matematika 1 4 / 6
8 Příklad - průběh funkce. Určete průběh funkce = ln (1 + cos x). Definiční obor je D(f ) = R \ {π + kπ, k Z}. Průsečíky s osami: {[ π + kπ, ], k Z}. Sudost, lichost, periodičnost - funkce f je sudá a periodická - nadále budeme zkoumat jen interval, π). Limity v krajních bodech definičního oboru: lim x π = lim x π ln (1 + cos x) =. Asymptoty: Svislá asymptota x = π, periodicky se opakuje, x = π + kπ, k Z. Funkce není definovaná na nějakém okolí nebo, tedy nemá šikmou asymptotu. První derivace je f (x) = sin x 1+cos x. Monotonie: f (x) < pro všechna x (, π), tedy f je klesající na intervalech (kπ, π + kπ) a rostoucí na intervalech (π + kπ, kπ), k Z. 1 Lokální maxima v bodech x = kπ, k Z. Globální neostrá maxima v bodech x = kπ, k Z. π π/ π/ Lokální ani globální minima nejsou. Druhá derivace je f (x) = cos x cos x sin x cos x 1 = (1+cos x) (1+cos x) < pro x D(f ). Konvexnost a konkávnost: funkce f je na D(f ) konkávní y = ln(1 + cos(x)) π přednáška (5.11.9) Matematika 1 4 / 6
9 Příklad - průběh funkce. Určete průběh funkce = ln (1 + cos x). Definiční obor je D(f ) = R \ {π + kπ, k Z}. Průsečíky s osami: {[ π + kπ, ], k Z}. Sudost, lichost, periodičnost - funkce f je sudá a periodická - nadále budeme zkoumat jen interval, π). Limity v krajních bodech definičního oboru: lim x π = lim x π ln (1 + cos x) =. Asymptoty: Svislá asymptota x = π, periodicky se opakuje, x = π + kπ, k Z. Funkce není definovaná na nějakém okolí nebo, tedy nemá šikmou asymptotu. První derivace je f (x) = sin x 1+cos x. Monotonie: f (x) < pro všechna x (, π), tedy f je klesající na intervalech (kπ, π + kπ) a rostoucí na intervalech (π + kπ, kπ), k Z. 1 Lokální maxima v bodech x = kπ, k Z. Globální neostrá maxima v bodech x = kπ, k Z. π π/ π/ Lokální ani globální minima nejsou. Druhá derivace je f (x) = cos x cos x sin x cos x 1 = (1+cos x) (1+cos x) < pro x D(f ). Konvexnost a konkávnost: funkce f je na D(f ) konkávní y = ln(1 + cos(x)) π přednáška (5.11.9) Matematika 1 4 / 6
10 Příklady na globální extrémy. Najdeme globální extrémy funkce = x ln x na intervalu 1, e. Derivace je f (x) = x 3 ln x + x 1 x = x 3 (ln x 1 ). Derivace je nulová jen v bodě x 1 = e 1/. Spočteme hodnoty funkce f v krajních bodech intervalu 1 a e a v bodě x 1 : f (1) =, f (e 1/ ) = 1 e 1, f (e) = e. Porovnáme < e < 1 e 1. Funkce f má na intervalu 1, e globální minimum v bodě 1 a globální maximum 1 e 1 v bodě e 1/ [1,] [e 1/,e 1 /] [e,e ] y = x ln(x) na <1,e> přednáška (5.11.9) Matematika 1 5 / 6
11 Do kružnice o poloměru R vepište rovnoramenný trojúhelník největšího obsahu. Označme polovinu základny trojúhelníka a a výšku v. Jistě bude v > R. Obsah trojúhelníka je S = av. Základna a výška jsou svázány vztahem R = (v R) + a, tedy a = R (v R). Tedy pro obsah platí S = av = v R (v R). 1) Tím máme obsah S jako funkci výšky trojúhelníka S(v) = v R (v R). ) Definičním oborem funkce S je interval (R, R). 3) Najdeme maximum funkce S na intervalu (R, R). Derivace funkce S podle v je 1.8 S (v) = R (v R) + v (v R) = R (v R).6 = R (v R) v(v R) = v(3r v). R (v R) R (v R) Na intervalu (R, 3 R) je derivace S kladná, a tedy S rostoucí. Na intervalu ( 3 R, R) je derivace S záporná, a tedy S klesající. To znamená, že na intervalu (R, R) nabývá funkce S svého maxima pro v = 3 R. Obsah takového trojúhelníka je pak S( 3 R) = = R R a S v 5. přednáška (5.11.9) Matematika 1 6 / 6
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
IX. Vyšetřování průběhu funkce
IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:
Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
Základy matematiky pro FEK
Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce
Kapitola 4: Průběh funkce 1/11
Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající
LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
7.1 Extrémy a monotonie
KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
Aplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Derivace a průběh funkce příklady z písemných prací
Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±
Zlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
Pavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4
Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:
Seminární práce z matematiky
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická
Vyšetříme funkci f(x): f(x) = 2x3.. Stanovme definiční obor funkce D(f) a zjistíme,ve kterých bodech je funkce sojitá D(f) =(, ) [ (, ) [ (, ). 2. Počítáme f( x) = 2( x)3 ( x) 2 = 2(x) 3 (x) 2 = f(x) Funkce
Derivace vyšších řádů, aplikace derivací
Derivace vyšších řádů, aplikace derivací Značení derivací vyšších řádů Máme funkci f: y = f x f x druhá derivace funkce y = f x f k x k-tá derivace funkce y = f x Derivace vyšších řádů počítáme opakovaným
Průběh funkce jedné proměnné
Průběh funkce jedné proměnné Průběh funkce Newtonova metoda. p.1/8 Průběh funkce Příklad 4.1.1 Vyšetřete průběh funkce f(x) =ln 3 x. Příklad 4.1.2 Vyšetřete průběh funkce f(x) =arctg 1 x. Příklad 4.1.3
Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:
Průběh funkce Průběh funkce Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:. Určení definičního oboru. 2. Rozhodnutí, jestli je funkce sudá, lichá, periodická nebo nemá ani
Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4
Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný
Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.
MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Aplikační úlohy z diferenciálního počtu jedné proměnné
Jihočeská univerzita v Českých Budějovicích Fakulta Katedra Bakalářská práce Aplikační úlohy z diferenciálního počtu jedné proměnné Vypracoval: Michaela Jelínková Vedoucí práce: RNDr. Vladimíra Petrášková,
Matematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
Konvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
soubor FUNKCÍ příručka pro studenty
soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá
2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
MATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
1.1 Příklad z ekonomického prostředí 1
1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
NMAF 051, ZS Zkoušková písemná práce 4. února 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
Význam a výpočet derivace funkce a její užití
OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat
y H = c 1 e 2x + c 2 xe 2x, Partikularni reseni hledam metodou variace konstant ve tvaru c 1(x)e 2x + c 2(x)xe 2x = 0
1 Urcete vsechna maximalni reseni: y + 4y + 4y = e 2x x + 1 Definicni obor: x 1, tj. resim na intervalech (, 1) a ( 1, ) Charakteristicky polynom λ 2 + 4λ + 4 ma dvojnasobny koren -2, tedy tvar homogenniho
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace
22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech
Definice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
1. Definiční obor funkce dvou proměnných
Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou
Matematika 2 Průběh funkce
Matematika 2 Průběh funkce Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 1 Základní věty diferenciálního počtu Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09
PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ
Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční
NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.
Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0
14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
c ÚM FSI VUT v Brně 20. srpna 2007
20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =
Základy matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,
Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Derivace a průběh funkce.
Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0217.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
Písemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Matematika I: Pracovní listy do cvičení
Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
PRŮBĚH FUNKCE - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,
V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15
Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15 Klíčové pojmy Neznalost některého z klíčových pojmů bude mít za následek ukončení zkoušky se známkou neprospěl(a). supremum infimum limita
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Aplikace derivace ( )
Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické
Matematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A
Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční
Sbírka úloh z matematiky
Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika
I. Úvod. I.1. Množiny. I.2. Výrokový a predikátový počet
I. Úvod I.1. Množiny Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Značení. Symbol x A značí, že element x je prvkem množiny A. Značení x
Požadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Průběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
, f g jsou elementární funkce.
Průběh funkce použité definice a věty Definice. Řekneme, že funkce je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce je spojitá na
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce
Průběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x
Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1.
JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1. Monotonie (1) Dostaneme zadanou např. funkci y = sin x. (2) Když si funkci
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYŠETŘOVÁNÍ PRŮBĚHU FUNKCÍ - ŘEŠENÉ PŘÍKLADY BAKALÁŘSKÁ PRÁCE Lucie Ceplechová Přírodovědná studia, obor
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Vyšetřování průběhu funkcí v programu GeoGebra
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce Vyšetřování průběhu funkcí v programu GeoGebra Autor práce: Markéta Medviďová Vedoucí práce: RNDr. Vladimíra
Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.
4..0 Funkce tangens c B a A b C Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá tgα = = b přilehlá b přilehlá cotgα = = a protilehlá Pokud chceme definici pro všechna x R nemůžeme