Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě

Rozměr: px
Začít zobrazení ze stránky:

Download "Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě"

Transkript

1 Fázoé řechody Složky soustay s: nazáje nezáislé cheicky čisté látky obsažené terod.soustaě Fáze látky f: hoogenní soubor olekul, který je akroskoické ěřítku ostře ohraničen od jiných souborů olekul, které toří jiné fáze (nař. oda, led, odní ára, různé fory krystalických ených látek, fáze látky se ohou nacházet různých skuenstích (ené, kaalné, lynné, laza Krystal SiO Voda H O Plyny Slunce - laza

2 Heterogenní soustaa: Fázoé řechody sta soustay je charakterizoán děa araetry (tlake a telotou a (s- oěry jednotliých fází (hotnostní koncentrace jednotliých fází ( f s ( s f + Podínky ronoáhy - ro každou složku s je ožné sestait (f- ronoážných odínek Počet araetrů soustay, určující ronoážný sta - ro každou fázi (s- hotnostních odílů + tlak + telota Počet fází f s + Pokud f s+, oto fáze ohou solečně existoat jen ři konkrétních hodnotách araetrů soustay Počet stuňů olnosti s f + Gibbsoo raidlo fází Pokud áe soustau s složek a f fází, oto je ožné ěnit araetrů, aniž se zění očet fází

3 Jednosložkoá soustaa: Fázoé řechody 3 f Staoá ronice tořena částicei jednoho tyu biariantní soustaa nezáislé staoé eličiny, její sta je osán bode na loše třírozěrné rostoru ( V, fázoý diagra

4 Fázoé řechody Fázoý diagra jednosložkoé soustay: c 3 C C C 3 r c s B A c 3 C V C V. lynná fáze. kaalina 3. ená fáze C kritický sta látky ( C, C - kritické stau nelze rozeznat jednotlié fáze (kaalinu a lyn c křika yařoání c 3 křika tání c subliační křika r trojný bod látky < C stlačoání začne lyn kondenzoat ři tlaku s (tlak sytých ar s f(

5 Fázoé řechody ání a tuhnutí látek: f 3 f ři tání cheicky čisté látky se ůže ěnit araetr soustay (tlak danéu tlaku (nař.atosférickéu řísluší určitá telota tání [K] ar ěrné skuenské telo tání elo, které usíe dodat kg látky, aby řešla z ené do kaalné fáze l t Lt t tání t [s] o dosažení teloty tání t se telota nezyšuje dokud se celý obje látky neroztaje ání látky: L t > 0 uhnutí látky: 0 < L t

6 Fázoé řechody ání a tuhnutí látek: ři tání res. tuhnutí se ůže ěrný obje se ůže jak zětšoat, tak zenšoat Látka t [ C] l t [kj/kg] odík -59,5 58, dusík -09,8 5,5 rtuť -38,8,3 oda 0 333,7 cín 3,9 60,7 oloo 37,5 4,8 zlato 064,4 64,5 wolfra ,8 anoální choání nař. led ( V9,%, šedá litina, a ůže dojít k destrukci konstrukcí (otrubí, zdio, b u těchto látek dochází ři zýšení tlaku ke snižoání teloty tání (ř.bruslení, regelace ledu,

7 yařoání a kondenzace látek: Fázoé řechody ři yařoání cheicky čisté látky se ůže ěnit araetr (tlak bod aru je silně záislý na tlaku f( [K] ar ěrné skuenské telo yařoání l L elo, které usíe dodat kg látky, aby řešla z kaalné do lynné fáze t tání - je záislé na telotě Lf( t [s] Vyařoání látky: L > 0 ři yařoání se ěrný obje látek zětšuje Kondenzace látky: L < 0

8 Fázoé řechody yařoání látek: olekuly s ysokou kinetickou energií oouštějí orch kaaliny (kaalina ztrácí energii ochlazuje se nad orche kaaliny se ytořírstička nasycených ar, které difúzí řechází do okolního zduchu s rostoucí telotou roste tlak sytých ar a rychlost rocesu yařoání se zyšuje k yařoání dochází za každé teloty s < Jakile dosáhne tlak lynu hodnoty tlaku sytých ar ři dané telotě začne kondenzace lynu (nař. koresí lynu nebo snížení teloty

9 ar kaaliny: Fázoé řechody ára se toří unitř i na stěnách nádoby ři telotě aru je tlak nasycených ar roen nějšíu tlaku nad kaalinou ára nad orche kaaliny se ůže olně rozínat a nastáá bouřlié yařoání (ar kaaliny elota aru V je silně záislá na tlaku nad orche kaaliny S Látka [ C] l [kj/kg]] odík -5, kyslík éter 34,6 360 alkohol 78,4 84 oda 00 55,4 rtuť 356,7 83,9 hliník železo elota aru (H O: [ C] s [Pa] -, , ,33-7,33 0 5, ,0 0 5

10 Skuenské telo yařoání: Fázoé řechody u yařoání záisí skuenské telo yařoání na telotě L V f(t ři kritické telotě k je L V 0 (zizí rozdíl ezi kaalinou a árou dodané telo se sotřebuje na zýšení nitřní energie (L Vi a ráci ři zětšení objeu áry ůči objeu kaaliny (L Ve L + Li Le Video -Var ody (H O: Skuenské telo (H O: [ C] l [kj/kg] ,5 0

11 Subliace látek Fázoé řechody k odařoání dochází i u ené fáze (tz.subliace tlak nasycených ar je šak u ených látek za běžných telot eli alý a subliace tedy robíhá eli oalu Skuenské telo subliace: C 3 L L + L S t ouze u některých látek s yšší tlake syté áry nad enou fází lze subliaci ozoroat nař. sníh, jód, ený CO, r u látek ůžee dosáhnout etastabilních staů (řechlazená kaalina, řehřátá ená fáze, odchlazená ára, řehřátá kaalina C

12 Metastabilní stay ody - říklad: Fázoé řechody Video řehřátá oda ikrolnné troubě Video odchlazená oda nádobě

13 Fázoé řechody ři zěně skuenstí (d 0, d 0 je zěna tz.olné entalie nuloá, tj. d G Vd Sd 0 G, G (, 0 (.skuenstí.skuenstí dg Vd Sd dg Vd Sd dě skuenstí téže látky budou ronoáze za odínky, že jejich olné entalie se ronají G dg ( V V d ( S S d 0 d usí latit, aby ři zěně tlaku nebo teloty byla soustaa ronoáze δq S S L Clausius-Claeyronoa ronice d d ( S ( V S V L ( V V

14 Fázoé řechody δa δq kruhoý děj s kol kaaliny δa δq ( V -V d ( S-S d d d V V V S S S ři zěně skuenstí (d 0, d 0 usí latit, aby ři zěně tlaku nebo teloty byla soustaa ronoáze δq S S L Clausius-Claeyronoa ronice d d ( S ( V S V L ( V V

15 Fázoé řechody Fázoý diagra ody (H O: l t l ρ l ρ ρ 333, kj/kg 56 kj/kg 3 97 kg/ kg/ 3 0,6 kg/ 0 H O 0,35 kpa 73,5 0 t K 0 373,5 K ání ody: d d Lt ( V V l lt ( ρ ρ l ltρlρ ( ρ ρ l c (kritický tlak MPa c (kritická telota 374 C (trojný bod 63 Pa (trojný bod 0.0 C ltρlρ ( ρ ρ l Zěna tlaku ři fázoé řechodu záislosti na zěně teloty řechodu ln 0t + 0t ( ρ ρ ltρlρ 0 t ( e l

16 Fázoé řechody Příklad: (záislost teloty tání a aru ody na tlaku Var ody: V >> V V R M 8 0 M d d & LV V lv M R d l V M R d ln 0 l M R 3 kg/ol 0 V 0 0 R l M V ln Pa t 7,4 0 3 o C 0,9 o C

17 Fázoé řechody Painů hrnec ar e ysokých nadořských ýškách h 8000 & 0 / Pa & 70 o C

18 Fázoé řechody lak syté áry - tlak ar, které jsou ronoáze se sou kaalinou - tlak nad kaalinou nezáisí na rozěrech ani hotnosti kaaliny, ale na telotě - f( Clausius-Claeyronoa ronice nasycené áry budee oažoat za ideál.lyn V nr s s d d L ( V V L V d L nr d ( α β nr d << C V >> V L α β ln βln + K nr řehřátá ára ára, která není kontaktu s kaalinou, tlak je ždy enší nežli tlak nasycených ar α

19 Vodní ára a lhkost zduchu VODNÍ PÁRA e zduchu je obsaženo nožstí odních ar, jež jsou zraidla řehřáté stau lhkost ozduší lze charakterizoat odle: Absolutní lhkost zduchu: Φ V za konstantní teloty je absolutní lhkost úěrná tlaku ar Relatiní lhkost zduchu: ϕ Φ Φ ax 00% s 00% Rosný bod R : telota, ři níž je zduch odníi arai nasycen ( ( s R ochladíe-li zduch nebo nějaký ředět od rosný bod, oto začne kondenzace odních ar

20 Vodní ára a lhkost zduchu Měření lhkosti echanický (lasoý lhkoěr kondenzační lhkoěry sychoetry odoroé lhkoěry kaacitní lhkoěry senzory absorce záření, elota ( C Vlhkost (g/ , , ,0-40 0,0-0 0, ,87 0 9,44 0 7,4 5 3, 30 30,5 40 5, absolutní lhkost zduchu ři nasycení odníi árai

21 Vodní ára a lhkost zduchu Příklad: (lhkost zduchu -určete absolutní lhkost zduchu Φ ístnosti o objeu V ři dané telotě a relatiní lhkosti ϕ, a nožstí ody, kterou usíe odařit, aby se zduch nasytil odníi arai t V 0 o C ϕ 60% 3 00 n,4 0 M Pa kg/ol V M R n V R M Φ M ϕnm 0,6 g/ 3 V R R ϕ n ( ϕ VM R n & 0,7 kg

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

13. Skupenské změny látek

13. Skupenské změny látek 13. Skuenské změny látek Skuenství je konkrétní forma látky, charakterizovaná ředevším usořádáním částic v látce a rojevující se tyickými fyzikálními a chemickými vlastnostmi. Pro označení skuenství se

Více

2.6.6 Sytá pára. Předpoklady: 2604

2.6.6 Sytá pára. Předpoklady: 2604 .6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Registrační číslo: CZ.1.07/2.2.00/28.

Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Registrační číslo: CZ.1.07/2.2.00/28. Středoeroské centr ro ytáření a realzac nooaných techncko-ekonockých stdjních rograů Regstrační číslo: CZ..07/..00/8.030 CT 07 - Teroechanka VUT, FAST, ústa Technckých zařízení bdo Ka. Základní úlohy z

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE ZPŮSOBY ODLUČOVÁNÍ VLHKOSTI METHODS OF MOISTURE

Více

MĚŘENÍ VLHKOSTI. Vlhkoměr CHM 10 s kapacitní sondou

MĚŘENÍ VLHKOSTI. Vlhkoměr CHM 10 s kapacitní sondou MĚŘENÍ VLHKOSTI 1. Úkol ěření a) Zěřte relativní vlhkost vzduchu v laboratoři sychroetre a oocí řístrojů s kaacitní olyerní sondou. b) S oocí tabulek a vzorců v teoretické úvodu vyočítejte rosný bod, absolutní

Více

TERMOMECHANIKA 10. Termodynamika směsi plynů a par

TERMOMECHANIKA 10. Termodynamika směsi plynů a par FI UT Brně, Energetický ústa Odbor teroecaniky a tecniky rostředí rof. Ing. Milan Paelek, Cc. TERMOMECHANIKA 0. Terodynaika sěsi lynů a ar ONOA 0. KAPITOLY ěsi lynů a ar - lký zduc taoé ronice složek zducu

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SUPENSTÍ LÁTE evné láky ání uhnuí kaalné láky desublimace sublimace vyařování kaalnění (kondenzace) lynné láky 1. Tání a uhnuí amorfní láky nemají bod ání ají osuně X krysalické láky ají ři určiém

Více

Důležité pojmy, veličiny a symboly

Důležité pojmy, veličiny a symboly FBI ŠB-U Ostraa erodynaka lynů a ar základní ojy Důležté ojy, elčny a syboly Alkoaná fyzka Staoé elčny, staoé zěny elota, tlak, obje a nožstí čsté látky nejsou nezáslé. U hoogenního systéu lze olt lboolné

Více

William Henry Benoît P. E. Clapeyron François-Marie Raoult Michail Semjonovič Cvet

William Henry Benoît P. E. Clapeyron François-Marie Raoult Michail Semjonovič Cvet Fázoé ronoáhy William enry 775 836 Benoît P. E. Claeyron 799 864 François-Marie Raoult 830 90 Michail Semjonoič Cet 87 99 Gilbert Newton Lewis 875 946 Iring Langmuir 88 957 Složka a fáze omogenní (stejnoroý

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

Hydrostatika a hydrodynamika

Hydrostatika a hydrodynamika Hydrostatika a hydrodynamika Zabýáme se kaalinami, ne tuhými tělesy HS Ideální tekutina Hydrostatický tlak Pascalů zákon Archimédů zákon A.z. - ážení HD Ronice kontinuity Bernoullioa ronice Pitotoa trubice

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLNÍ PLYN II Prof. RNDr. Eanuel Svoboa, Sc. ZÁKLADNÍ RONIE PRO LAK IP F ýchoisko efinice tlaku vztahe S Náoba tvaru krychle, stejná rychlost olekul všei sěry (olekulární chaos, všechny sěry stejně ravěoobné)

Více

Stavové veličiny vodní páry Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Stavové veličiny vodní páry Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adrea školy: Sřední škola růmyloá a umělecká, Oaa, říěkoá organizace, Prakoa 399/8, Oaa, 74601 Náze oeračního rogramu: OP Vzděláání ro konkurencechono, obla odory 1.5 Regirační čílo rojeku: CZ.1.07/1.5.00/34.019

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

Poznámky k cvičením z termomechaniky Cvičení 9.

Poznámky k cvičením z termomechaniky Cvičení 9. Voda a vodní pára Při výpočtech příkladů, které jsou zaěřeny na výpočty vody a vodní páry je důležité si paatovat veličiny, které jsou kritické a z hlediska výpočtu i nezbytné. Jedná se o hodnoty teploty

Více

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství.

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství. SSPU OPAVA, Fyzika 3, školní rok 2006-2007 1 FÁZOVÉ PŘECHODY Skupenství je stav tělesa z terodynaického hlediska. Skupenství rozeznáváe: 1. Pevné potenciální energie olekul je značně větší než jejich kinetická

Více

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Identifikátor materiálu: ICT 1 18

Identifikátor materiálu: ICT 1 18 Identifikátor ateriálu: ICT 8 Reistrační číslo rojektu Náze rojektu Náze říjece odory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýstu Klíčoá sloa Dru učenío ateriálu Dru interaktiity Cíloá skuina

Více

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky rostředí rof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu OSNOVA 5. KAPITOLY Úvod do roblematiky měření

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

LOGO. Změny skupenství

LOGO. Změny skupenství Změny skupenství Látka existuje ve třech skupenstvích Pevném Kapalném Plynném Látka může přecházet z jednoho skupenství do druhého. Existují tedy tyto změny skupenství: Změny skupenství plyn sublimace

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

MMEE cv Určení energetického obsahu zboží plynná paliva

MMEE cv Určení energetického obsahu zboží plynná paliva MMEE c.2-2011 Určení energetického obsahu zboží lynná alia Cíl: Procičit ýočtu energetického obsahu lynných ali 1. Proč je nutné řeočítáat energetický obsah (ýhřenost, salné telo) lynných ali? 2. Jak řejít

Více

Chemie - cvičení 2 - příklady

Chemie - cvičení 2 - příklady Cheie - cvičení 2 - příklady Stavové chování 2/1 Zásobník o objeu 50 obsahuje plynný propan C H 8 při teplotě 20 o C a přetlaku 0,5 MPa. Baroetrický tlak je 770 torr. Kolik kg propanu je v zásobníku? Jaká

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ

PŘEPLŇOVÁNÍ PÍSTOVÝCH SPALOVACÍCH MOTORŮ PŘEŇOVÁNÍ PÍSOVÝCH SPALOVACÍCH MOORŮ Účinnou cestou ke zvyšování výkonů PSM je zvyšování středního efektivního tlaku oběhu e oocí řelňování. Současně se tí zravidla zvyšuje i celková účinnost otoru. Zvyšování

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

vše, co je vně systému systém při něm mění svůj stav základní termodynamická veličina

vše, co je vně systému systém při něm mění svůj stav základní termodynamická veličina . ZÁKLADNÍ POJMY ERMOMECHANIKY SYSÉM OKOLÍ SYSÉMU ERMODYNAMICKÝ DĚJ EPLOA (soustaa, těleso)- určité množstí látky, jejíž termofyzikální lastnosti yšetřujeme še, co je ně systému systém ři něm mění sůj

Více

03 Návrh pojistného a zabezpečovacího zařízení

03 Návrh pojistného a zabezpečovacího zařízení 03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti

Více

molekuly zanedbatelné velikosti síla mezi molekulami zanedbatelná molekuly se chovají jako dokonale pružné koule

molekuly zanedbatelné velikosti síla mezi molekulami zanedbatelná molekuly se chovají jako dokonale pružné koule . PLYNY IDEÁLNÍ PLYN: olekuly zanedbatelné velikosti síla ezi olekulai zanedbatelná olekuly se chovají jako dokonale pružné koule Pro ideální plyn platí stavová rovnice. Pozn.: blízkosti zkapalnění (velké

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

Hustota plynů - jak ji změřit?

Hustota plynů - jak ji změřit? eletrh náadů učitelů fyziky 9 Hustota lynů - jak ji zěřit? ER SÁDEK, UKÁŠ AWERA edagogická fakulta U, Brno Abstrakt ěření hustoty evných látek a kaalin je běžná laboratorní úloha na řadě škol, nicéně ěření

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

Elektrický proud v elektrolytech

Elektrický proud v elektrolytech Elektrolytický vodič Elektrický proud v elektrolytech Vezěe nádobu s destilovanou vodou (ta nevede el. proud) a vlože do ní dvě elektrody, které připojíe do zdroje stejnosěrného napětí. Do vody nasypee

Více

- pro oblast podtlaku

- pro oblast podtlaku I. ERMOMECHANIKA PLYNŮ Při teelnýh dějíh nastáají změny stau raoníh látek (lynů, ar, eent. kaalin). eelný sta každé stejnorodé látky je yjádřen třemi základními určujíími eličinami tz. staoými eličinami.

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Příloha 4/B. Podpisy zdrojů Lokální topeniště. Vzduchotechnické parametry při měření

Příloha 4/B. Podpisy zdrojů Lokální topeniště. Vzduchotechnické parametry při měření Podpisy zdrojů 2009 Lokální topeniště Kontrolní den etapy 2009 projektu 208040 Lokální topeniště kachlová kana ěkké dřevo fáze 1 Datu : 14.prosinec 2009 Kachlová kana Atosférický tlak p a 99900 Pa Teplota

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2 i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon: 28-2 U měi hexan() + hetan(2) ři

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině.

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině. Povrchové procesy Plyny obklopující pevné látky jsou vázány do objeu a na povrch - sorbce, nebo jsou z něho uvolňovány - desorbce oba jevy probíhají zároveň Přichycení na povrch.. adsorbce. onoolekulární,

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličinai ideálního plynu Ze zkušenosti víe, že obje plynu - na rozdíl od objeu pevné látky nebo kapaliny - je vyezen prostore, v něž je plyn uzavřen. Přítonost plynu

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

1/ Vlhký vzduch

1/ Vlhký vzduch 1/5 16. Vlhký vzduch Příklad: 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, 16.14, 16.15, 16.16, 16.17, 16.18, 16.19, 16.20, 16.21, 16.22, 16.23 Příklad 16.1 Teplota

Více

2.2. Termika Teplota a teplo

2.2. Termika Teplota a teplo .. Terika Terika se zabývá zkouání tepelných vlastností látek. Podle současných poznatků vědy je každá látka kteréhokoli skupenství složena z částic, a to olekul, atoů nebo iontů. Prostor, který látka

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

2.3. Fázové rovnováhy

2.3. Fázové rovnováhy .3. Fázové rovováhy Buee e zabývat heterogeíi outavai obahujícíi jeu či více ložek, které olu cheicky ereagují. takové říaě očet ložek oovíá očtu cheických iiviuí (látek), kterýi je outava tvořea. Fázová

Více

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice).

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice). Náze a adresa školy: třední škola průysloá a uělecká, Opaa, příspěkoá organizace, raskoa 399/8, Opaa, 74601 Náze operačního prograu: O Vzděláání pro konkurenceschopnost, oblast podpory 1.5 Registrační

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Rostislav Jedlička Tepelný a pevnostní výpočet výměníku VUT Brno, FSI-ÚE

Rostislav Jedlička Tepelný a pevnostní výpočet výměníku VUT Brno, FSI-ÚE Rostisla Jedlička Teelný a enostní ýočet ýěníku VUT Brno, FSI-ÚE Obsah Úod 5 Teelný ýočet ýěníku 6 Předběžný ýočet 7 Výočet součinitele rostuu tela 8 Výočet součinitele řestuu tela na straně áry 9 Výočet

Více

ς = (R-2) h ztr = ς = v p v = (R-4)

ς = (R-2) h ztr = ς = v p v = (R-4) Stanoení součinitele ooru a relatiní ekialentní élky araturního rku Úo: Potrubí na orau tekutin (kaalin, lynů) jsou ybaena araturníi rky, kterýi se regulují růtoky (entily, šouata), ění sěry toku (kolena,

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Zjednodušený návrh plnícího systému přeplňovaného vznětového motoru III

Zjednodušený návrh plnícího systému přeplňovaného vznětového motoru III Zjednodušený návrh lnícího systéu řelňovaného vznětového otoru III Zadání: e = 300 kw (ři n = 000 1/in) D = 115 Z = 135 Výočet: lnicí systé s dvoustuňový stlačování oocí BD a chladiči lnicího vzduchu:

Více

Univerzita Pardubice Fakulta elektrotechniky a informatiky. Program na výpočet parametrů vlhkého vzduchu Vlastimil Flegl

Univerzita Pardubice Fakulta elektrotechniky a informatiky. Program na výpočet parametrů vlhkého vzduchu Vlastimil Flegl Univerzita Pardubice Fakulta elektrotechniky a inforatiky Progra na výpočet paraetrů vlhkého vzduchu Vlastiil Flegl Bakalářská práce 2009 Prohlašuji: Tuto práci jse vypracoval saostatně. Veškeré literární

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

F - Změny skupenství látek

F - Změny skupenství látek F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

Vzorové příklady - 4.cvičení

Vzorové příklady - 4.cvičení Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

TERMOMECHANIKA 9. Termodynamika par čisté látky

TERMOMECHANIKA 9. Termodynamika par čisté látky FSI VU Brně, Energetický úta Odbor termomechaniky a techniky rotředí rof. Ing. Milan Paelek, CSc. ERMOMECHANIKA 9. ermodynamika ar čité látky OSNOVA 9. KAPIOLY Staoé ronice reálných lynů Ohře látky ři

Více

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně Hdrostatika Tlak S N S Pa m S ideální kaalina je nestlačitelná l = konst Tlak kaalině uzařené nádobě se šíří e šech směrech stejně Pascalů zákon Každá změna tlaku kaalině uzařené nádobě se šíří nezměněná

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

11. CHEMICKÉ SENZORY

11. CHEMICKÉ SENZORY 11. CHEMICKÉ SENZORY 11.1. Měření vlhkosti vzduchu Úkol ěření Zěřte relativní vlhkost vzduchu v laboratoři sychroetre a řístroje s kaacitní olyerní sondou Huistar. Z tabulek a výočte určete rosný bod,

Více

(test version, not revised) 24. listopadu 2010

(test version, not revised) 24. listopadu 2010 Změny skupenství (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tání Tuhnutí Sublimace a desublimace Vypařování a var. Kondenzace Sytá pára Fázový diagram Vodní

Více

Základní pojmy statistické fyziky Boltzmannova klasická statistika

Základní pojmy statistické fyziky Boltzmannova klasická statistika Základní oj statistické ik Boltannoa klasická statistika Statistický ois terodnaické sousta částic V terodnaice často oužíáe oje sta - naříklad lnu, obecně ak terodnaické sousta, což je obecně hodně olená

Více

Cvičení z termodynamiky a statistické fyziky

Cvičení z termodynamiky a statistické fyziky Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

Cirkulační vzduchu bod 5 (C) t 5 = 20 C ϕ 5 = 40% 1) Směšování vzduchu (změna z 4 a 5 na 6): Vstupní stav:

Cirkulační vzduchu bod 5 (C) t 5 = 20 C ϕ 5 = 40% 1) Směšování vzduchu (změna z 4 a 5 na 6): Vstupní stav: CVIČENÍ MOLLIÉRŮV DIAGRAM PŘÍKLAD : Přes chladič proudí /h vzduchu o teplotě 8 C a ěrné entalpii /kg s. v.. Střední povrchová teplota chladiče je 9 C. Vypočítejte potřebný chladící výkon chladiče pro dosažení

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

KATEDRA VOZIDEL A MOTORŮ. Skutečné oběhy PSM #6/14. Karel Páv

KATEDRA VOZIDEL A MOTORŮ. Skutečné oběhy PSM #6/14. Karel Páv KATEDRA VOZIDEL A MOTORŮ Skutečné oběhy PSM #6/ Karel Pá Stlaitelná kaalina / krit [-] Ideální lyn: = rt (s hybou < %) Důody rozdílů mezi idealizoaným a reálným oběhem Odhylky od idealizae oliňují jak

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více