Waveletová transformace a její použití při zpracování signálů
|
|
- Marcela Kovářová
- před 8 lety
- Počet zobrazení:
Transkript
1 Waveletová transformace a její použití při zpracování signálů BÍLOVSKÝ, Petr 1 1 Katedra elektrických měření, VŠB-TU Ostrava, 17. listopadu, Ostrava - Poruba, , petr.bilovsky@vsb.cz Abstrakt: Wavelet transforms provide a tool for decomposing signals into elementary building blocks, called wavelets, much as the Fourier transform represents signals in terms of elementary periodic waves. The fundamental difference between Fourier and wavelet transforms is that wavelets are nonperiodic: the terms in a wavelet expansion are built out of dilates and shifts of a single "mother wavelet," so the expansion is localized in both frequency and time. This makes wavelet transforms extremely useful for accurate coding and analysis of nonstationary or aperiodic data. Klíčová slova: wavelet, časově-frekvenční analýza, zpracování dat 1 Úvod V tomto příspěvku bude ukázáno použití waveletovy transformace pro zpracování naměřených elektrických signálů. V první části jsou položeny základy pro diskrétní waveletovou transformaci a rozklad signálů pomocí pyramidálního algoritmu. V druhé části jsou předloženy dva typické příklady použití waveletovy transformace. Nejprve vyhlazování a komprese signálů nulováním nejmenších waveletových koeficientů a dále časově-frekvenční analýza signálu. Pro ukázku je v příloze zobrazeno několik základních tvarů škálových funkcí, waveletů a jejich frekvenční charakteristiky. Protože jde o problematiku velmi rozsáhlou a již značně rozpracovanou, lze pro hlubší studium waveletové transformace doporučit literaturu uvedenou v seznamu. 2 Waveletová transformace WT Waveletová transformace poskytuje oproti Fourierové transformaci (FT) informaci o časové lokalizaci spektrálních složek. FT není vhodná pro analýzu nestacionárních signálů. FT využívá kosinové a sinové funkce pro rozklad signálů, a je nejlepší pro popis periodických signálů. WT nabízí nový přístup k analýze signálů použitím speciálního filtru nazvaného wavelet (vlnka). Každá waveletová funkce osciluje pouze v okolí bodu lokalizace což poskytuje dobrou prostorovou lokalizaci. Cílem WT je rozložit vstupní signál do řady waveletových koeficientů. Toto je dosaženo filtrováním signálu párem ortogonálních filtrů. Jsou označeny jako otcovský wavelet a mateřský wavelet. Otcovský wavelet určuje celkový trend signálu - rozklad na škálové koeficienty, zatímco mateřský wavelet zachycuje doplňkovou informaci o jemnostech na jednotlivých úrovních - waveletové koeficienty. Základní rozdíl mezi Fourierovou a WT je v tom, že wavelety nejsou periodické funkce: termíny v wavelet roztažení jsou stavět rozšířit a posunutí jednotlivé "mateřského waveletu," tak roztažení je lokalizovat jak ve frekvenci tak v času. Toto dělá WT velmi výhodnou pro analýzu nestacionárních nebo aperiodických signálů. WT lze úspěšné použít v tak různých oborech jako je komprese obrazu, analýza řeči, analýza přechodných dějů nebo odhalování poruch.
2 Waveletová transformace je okenní operace. Jádro waveletové transformace je získáno posunutím a roztažením vybrané bázové funkce. Wavelety jsou speciální okenní funkce ψ ( t ), které mají nulovou střední hodnotu WT funkce f je definována jako ( t β) + ψ ( tdt ) = 0 1 WT( αβ, ) f ( t) dt, R, α ψ = αβ α α 0 R kde je α dilatační parametr β translační parametr Bližší informace k waveletové transformaci viz. [1][2][3]. 3 Diskrétní waveletová transformace DWT Často se objevuje požadavek, aby studovaný signál byl plně rekonstruovatelný z nějaké n vhodné diskrétní sítě (vhodné je N = 2, n Z). Příslušný diskrétní systém waveletů musí - 2 z důvodu rekonstruovatelnosti - tvořit ortonormální bázi v L ( R). Jedná se o výpočet škálových a waveletových koeficientů. Škálové koeficienty určují celkový trend vstupního signálu a waveletové koeficienty obsahují doplňkovou informaci. Při volbě vhodného waveletu by se mělo přihlédnout k tomu, že wavelet by měl sledovat průběh zpracovávaného signálu. V důsledku ortogonality koeficienty pro výpočet doplňkové informace při daných filtračních koeficientech budou ( ) n q L 1 n= 1 hn qn = 0 Konkrétně pro L = 4 Daubechieové jsou tyto filtrační koeficienty (L - počet filtračních koeficientů): h 0 = +, h 1 = +, h 2 =, h 3 =, ( ostatní h n = 0) q0 = h 3, q1 = -h 2, q2 = h 1, q3 = -h0 n Pyramidální algoritmus Obr 1. Výsledek waveletovy analýzy Algoritmus výpočtu se realizuje jako postupný přechod z vyšší hladiny j -1 na nižší j. V první hladině multirozkladu j = 1 transformujeme signál do dvou částí, a to hrubší aproximace a detailní složky, jejíž koeficienty představují nízko- a vysokofrekvenční informaci o signálu. V dalším kroku multirozkladu provádíme stejnou transformaci aproximace signálu získané v předchozí fázi. Detailní složky na daných hladinách již
3 nerozkládáme. Výpočet je proveden na konečném počtu hladin j = 1,2,3,,J se vstupní sekvencí na úrovni j = 0. Jedná se o rozklad signálu na škálové koeficienty ( j ) ( j ) N yk = y 1 n hn 2 k, n = 01,,, N 1, k = 01,,, 1 2 a waveletové koeficienty n ( j) ( j ) N dk = y 1 n qn 2k, n = 01,,, N 1, k = 01,,, 1 2 n Mějme vstupní signál y s šířkou pásmaπ. Tento signál je nejprve filtrován dolnopropustným filtrem h a hornopropustným filtrem q. Tyto signály jsou poté podvzorkovány dvěma protože zabírají jen polovinu původního pásma. y[n] f = 0~π f = π/2~π q[n] h[n] 2 2 f = 0~π/2 Úroveň 1 DWT koeficientů f = π/4~π/2 q[n] h[n] 2 2 f = 0~π/4 Úroveň 2 DWT koeficientů f = π/8~π/4 q[n] h[n] 2 2 f = 0~π/8 Úroveň 3 DWT koeficientů Obr 2: Pyramidální algoritmus DWT rozkládá vstupní signál do malého počtu velkých dat uložených v koeficientech ( J ) ( j y k a velkého počtu malých dat, kterými jsou koeficienty d ) k, j = 1,2, J. Tak se otevírá prostor pro různé formy jejich zpracování, jako jsou například komprese, vyhlazování a filtrace. Paketový rozklad Paketový rozklad nám umožňuje dále analyzovat i detailní složky a zpřesňovat tak frekvenční lokalizaci výsledných koeficientů. Ve svém důsledku je možné rozkládat libovolnou složku ( aproximaci, detail ) na libovolné hladině. 4 Příklady Příklad 1: Vyhlazení naměřeného signálu pomocí waveletovy transformace; komprese dat. Vyhlazování využívající DWT spočívá v provedení tří kroků: 1. pyramidálním algoritmem provedeme rozklad vstupního signálu y ( 0) na škálové y ( j) a waveletové koeficienty d ( j), 2. vynulujeme zadané procento nejmenších waveletových koeficientů d ( j) v absolutní hodnotě,...
4 3. rekonstrukce signálu rekonstrukčním pyramidálním algoritmem (zpětné DWT). Obr. 3a - Naměřený signál y ( 0) Obr. 3b - Waveletové koeficienty po rozkladu signálu do dvou bodů ( J = 9). Data jsou ( 9) ( 9) ( 8) ( 2) ( 1) zobrazená postupně za sebou v tomto pořadí : y, d, d,, d, d ( = 1024 hodnot) Obr. 3c - Waveletové koeficienty po vynulování 90% nejmenších hodnot Obr. 3d - Rekonstruovaný signál Na obrázku 3d. je vidět rekonstruovaný vyhlazený signál. Pro rozklad byl použit Daubechiesové wavelet L = 4 - viz příloha. Komprese dat je klasickou aplikací waveletů. Prakticky se jedná o speciální použití vyhlazovacího algoritmu. Výsledkem komprese jsou data získána z jeho druhého kroku. Protože waveletové koeficienty obsahují informace o jemnostech, vyskytují se po provedení práhování ve vektorech d ( j) dlouhé úseky nul. Tohoto faktu lze využít k úspoře paměťového místa. Dekompresi pak představuje třetí krok vyhlazovacího algoritmu. Příklad 2: Časově frekvenční analýza Pro tento příklad byl vygenerován signál u kterého se postupně mění frekvence (chirp). Jeho časový záznam je zobrazen na prvním obrázku. Tento signál byl zpracován pomocí Fourierovy transformace a pomocí waveletovy transformace - paketový rozklad (best basis) Pro analýzu byl zvolen wavelet Coiflet24 - viz příloha. P2a: Kubický chirp t <0,1> y = y + sin(2*pi*t*(152*t^3));
5 Obr. 4. Kubický chirp P2b: Lineární kombinace - lineární a kubický chirp t <0,1> y = sin(2*pi*t*(500*t)) / 3; //lineární y = y + sin(2*pi*t*(152*t^3)); //kubický Obr. 5. Lineární a kubický chirp Na obrázku je znázorněn vygenerovaný signál, amplitudové spektrum získané pomocí rychlé Fourierovy transformace a časově frekvenční reprezentace tohoto signálu pomocí waveletovy transformace viz [5]. Fourierova transformace nám říká které frekvence se v signálu vyskytují, ale nelze zjistit v kterém čase se vyskytují. Zde je velmi vhodná waveletová transformace. 5 Použitá literatura [1] DAUBECHIES, I. The Wavelet Transform: Time-Frequency Localization and Signal Analysis, IEEE Trans. Inform. Theory, Vol IT-36, No , 1990 [2] KAISER, G. A Friendly Guide to Wavelets Birkhauser-Boston, 1994 [3] ADHEMAR, B. Wavelets with applications in signal and image processing, 1999 [4] CHUI, C.K, Wavelets: A Matematical Tool for Signal Analysis, Philadelphia, 1997 [5] OJANEN, H. WAVEKIT: a Wavelet Toolbox for Matlab, 1998 <URL: [6] ČASTOVÁ, N. Časově frekvenční analýza, sylabus pro doktorandské studium, VŠB-TU Ostrava, 1996
6 Příloha A: Některé známé wavelety, jejich škálové funkce a odpovídající frekvenční charakteristiky:
7
8
9
Integrální transformace obrazu
Integrální transformace obrazu David Bařina 26. února 2013 David Bařina Integrální transformace obrazu 26. února 2013 1 / 74 Obsah 1 Zpracování signálu 2 Časově-frekvenční rozklad 3 Diskrétní Fourierova
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Wavelet transformace v metodách zvýrazňování řeči
Wavelet transformace v metodách zvýrazňování řeči Petr Opršal 1 1 Katedra elektrických měření, FEI, VŠB Technická Univerzita Ostrava, 17. listopadu 15, 708 33, Ostrava-Poruba oprsal@tiscali.cz Abstrakt.
Komprese dat s použitím wavelet transformace
XXVI. ASR '2001 Seminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 59 Komprese dat s použitím wavelet transformace PIECHOTA, Hynek Ing, Katedra ATŘ-352, VŠB-TU Ostrava, 17. listopadu, Ostrava
Analýza signálů technikou Waveletů
Analýza signálů tecnikou Waveletů Piecota, Hynek 1 1 Ing., Katedra ATŘ-352, VŠB-TU Ostrava, 17. listopadu, Ostrava - Poruba, 708 33 ynek.piecota@vsb.cz, ttp://www.fs.vsb.cz 1 Abstrakt Teorie analýzy signálů
WAVELET TRANSFORMACE V POTLAČOVÁNÍ
WAVELET TRANSFORMACE V POTLAČOVÁNÍ RUŠIVÝCH SLOŽEK OBRAZŮ Andrea Gavlasová, Aleš Procházka Vysoká škola chemicko-technologická, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je zaměřen na problematiku
Osnova. Idea ASK/FSK/PSK ASK Amplitudové... Strana 1 z 16. Celá obrazovka. Konec Základy radiotechniky
Pulsní kódová modulace, amplitudové, frekvenční a fázové kĺıčování Josef Dobeš 24. října 2006 Strana 1 z 16 Základy radiotechniky 1. Pulsní modulace Strana 2 z 16 Pulsní šířková modulace (PWM) PAM, PPM,
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Petr Bílovský. Katedra elektrických měření, FEI, VŠB Technická univerzita Ostrava 17. listopadu 15, , Ostrava-Poruba
Návrh metody pro efektivní úpravu signálu s cílem snížení nároků na přenosové vlastnosti komunikačních kanálů při distribuci signálů v informačních sítích Petr Bílovský Katedra elektrických měření, FEI,
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí
Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
Vlnková transformace
Vlnková transformace Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická, katedra
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Tajemství skalárního součinu
Tajemství skalárního součinu Jan Hamhalter http://math.feld.cvut.cz/hamhalte katedra matematiky, FEL ČVUT Otevřené Elektronické Systémy 28. února 2013 Jan Hamhalter http://math.feld.cvut.cz/hamhalte Tajemství
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
Vysoká škola chemicko-technologická v Praze. Abstrakt. k rekonstrukci pozorovaných dat. Tento postup je aplikován na vybrané biomedicínské
ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ A OBRAZŮ POMOCÍ WAVELET TRANSFORMACE E. Hošt álková, A. Procházka Vysoká škola chemicko-technologická v Praze Ústav počítačové ařídicí techniky Abstrakt Wavelet (někdy
ANALÝZA AKUSTICKÝCH PARAMETRŮ ZVONU Z KOSTELA SV. TOMÁŠE V BRNĚ. Smutný Jaroslav, Pazdera Luboš Vysoké učení technické v Brně, fakulta stavební
ANALÝZA AKUSTICKÝCH PARAMETRŮ ZVONU Z KOSTELA SV. TOMÁŠE V BRNĚ Smutný Jaroslav, Pazdera Luboš Vysoké učení technické v Brně, fakulta stavební Abstrakt Příspěvek popisuje měření a analýzu akustických parametrů
Semestrální práce KMA / MM Waveletová transformace
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Semestrální práce KMA / MM Waveletová transformace Plzeň, 005 Lukáš Bellada Abstrakt In this paper I will describe signal processing
VYUŽITÍ VÝPOČETNÍHO SYSTÉMU MATLAB PŘI NEDESTRUKTIVNÍ KONTROLE STAVEBNÍCH MATERIÁLŮ A DÍLCŮ ROZBOREM AKUSTICKÉ ODEZVY GENEROVANÉ MECHANICKÝM IMPULSEM
VYUŽITÍ VÝPOČETNÍHO SYSTÉMU MATLAB PŘI NEDESTRUKTIVNÍ KONTROLE STAVEBNÍCH MATERIÁLŮ A DÍLCŮ ROZBOREM AKUSTICKÉ ODEZVY GENEROVANÉ MECHANICKÝM IMPULSEM Jaroslav Smutný, Luboš Pazdera Vysoké učení technické
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722
Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická
Fouriérova transformace, konvoluce, dekonvoluce, Fouriérovské integrály
co byste měli umět po dnešní lekci: používat funkce pro výpočet FFT (Fast Fourier Transformation) spočítat konvoluci/dekonvoluci pomocí FFT použít FFT při výpočtu určitých integrálů vědět co je nízko\vysoko
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
Matematika pro geometrickou morfometrii
Matematika pro geometrickou morfometrii Václav Krajíček Vaclav.Krajicek@mff.cuni.cz Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University Přednáška
1. Úvod Jednou z! "# $ posledn % & $$' ( )(( (*+ % ( (* $ $%, (* ( (* obvodech pro elektronickou regulaci.*' (( $ /
Praze 1. Úvod Jednou z! "# $ posledn % & $$' ( )(( (*+ % ( (* $ $%, (* ( (* obvodech pro elektronickou regulaci ' (% tramvajích a trolejbusech s tyristorovou výstrojí nebo v pohonech '$ (-- %.*' (( $ /
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Pokroky matematiky, fyziky a astronomie
Pokroky matematiky, fyziky a astronomie Vratislava Mošová O matematice v mobilu Pokroky matematiky, fyziky a astronomie, Vol. 60 (2015), No. 1, 50--57 Persistent URL: http://dml.cz/dmlcz/144336 Terms of
MODERNÍ SMĚROVÉ ZPŮSOBY REPREZENTACE OBRAZŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
APLIKACE DWT PRO POTLAČENÍ ŠUMU V OBRAZE
APLIKACE DWT PRO POTLAČENÍ ŠUMU V OBRAZE J.Švihlík ČVUT v Praze Fakulta elektrotechnická Katedra radioelektroniky Abstrakt Šum je v obraze prakticky vždy přítomen což způsobuje degradaci obrazu. Existuje
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ Aneta Coufalíková, Markéta Smejkalová Mazálková Univerzita obrany Katedra Komunikačních a informačních systémů Matlab ve výuce V rámci modernizace výuky byl
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D
Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.
1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD
1 Základní funkce pro zpracování obrazových dat
1 Základní funkce pro zpracování obrazových dat 1.1 Teoretický rozbor 1.1.1 Úvod do zpracování obrazu v MATLABu MATLAB je primárně určen pro zpracování a analýzu numerických dat. Pro analýzu obrazových
P6 Časově frekvenční analýza signálů
P6 Časově frekvenční analýza signálů Je vhodné podotknout, že převážná většina reálných technických signálů je zařazována do oblasti nestacionárních signálů. Fourierova transformace, případně její modifikace
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
2 Teoretický úvod Základní princip harmonické analýzy Podmínky harmonické analýzy signálů Obdelník Trojúhelník...
Obsah 1 Zadání 1 2 Teoretický úvod 1 2.1 Základní princip harmonické analýzy.................. 1 2.2 Podmínky harmonické analýzy signálů................. 1 3 Obecné matematické vyjádření 2 4 Konkrétní
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSMOVÝCH SIGNÁLŮ
VOLBA ČASOVÝCH OKEN A PŘEKRYTÍ PRO VÝPOČET SPEKTER ŠIROKOPÁSOVÝCH SIGNÁLŮ Jiří TŮA, VŠB Technická univerzita Ostrava Petr Czyž, Halla Visteon Autopal Services, sro Nový Jičín 2 Anotace: Referát se zabývá
Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.
Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova
VYUŽITÍ MATLABU K POTLAČOVÁNÍ ADITIVNÍHO ŠUMU POMOCÍ FILTRACE A POMOCÍ VLNKOVÉ TRANSFORMACE. Gabriela Eisensteinová, Miloš Sedláček
VYUŽITÍ MATLABU K POTLAČOVÁNÍ ADITIVNÍHO ŠUMU POMOCÍ FILTRACE A POMOCÍ VLNKOVÉ TRANSFORMACE Gabriela Eisensteinová, Miloš Sedláček České vysoké učení technické v Praze Fakulta elektrotechnická, katedra
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Fourierova transformace
Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen
Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů
Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality
Primární zpracování radarového signálu dopplerovská filtrace
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace
VLIV GEOMETRICKÉ DISPERZE
VLIV GEOMETRICKÉ DISPERZE NA ŠÍŘENÍ NAPĚŤOVÝCH VLN Petr Hora Centrum diagnostiky materiálu, Ústav termomechaniky AV ČR, Veleslavínova, 3 4 Plzeň, e-mail: hora@cdm.it.cas.cz Abstrakt The effect geometrical
III. MKP vlastní kmitání
Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací
KRITÉRIA PRO VÝBĚR VLNEK PŘI ZPRACOVÁNÍ MR OBRAZŮ
009/60 3.. 009 KRITÉRIA PRO VÝBĚR VLEK PŘI ZPRACOVÁÍ MR OBRAZŮ prof. Ing. Eva Gescheidtová, CSc., prof. Ing. Karel Bartušek, DrSc., 3 MUDr. Ondřej Liberda Fakulta elektrotechniky a komunikačních technologií
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Získání obsahu Jan Outrata (Univerzita Palackého v Olomouci) Multimediální systémy Olomouc, září prosinec
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů. Vypracoval: Kolář Lukáš
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů Vypracoval: Kolář Lukáš Cíl práce: Analýza současného stavu testování metodou AE Návrh experimentálního zajištění
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Vlnková transformace a její aplikace ve zpracování obrazu
Vlnková transformace a její aplikace ve zpracování obrazu Jan Švihlík svihlj1@fel.cvut.cz +40 4 35 113 České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky Obsah Proč
Kepstrální analýza řečového signálu
Semestrální práce Václav Brunnhofer Kepstrální analýza řečového signálu 1. Charakter řečového signálu Lidská řeč je souvislý, časově proměnný proces. Je nositelem určité informace od řečníka k posluchači
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.
1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:
ANALÝZA LIDSKÉHO HLASU
ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
REALIZACE HRANOVÉHO DETEKTORU S VYUŽITÍM VLNKOVÉ TRANSFORMACE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
KONVERZE VZORKOVACÍHO KMITOČTU
VOLUME: 8 NUMBER: 00 BŘEZEN KONVERZE VZORKOVACÍHO KMITOČTU Jan VITÁSEK Katedra telekomunikační techniky, Fakulta elektrotechniky a informatiky, VŠB-TU Ostrava, 7. Listopadu 5, 708 33 Ostrava-Poruba, Česká
Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky
Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz
Využití moderních matematických postupů při analýze dynamických účinků od kolejové dopravy
Jaroslav Smutný 1 - Luboš Pazdera 2 Využití moderních matematických postupů při analýze dynamických účinků od kolejové dopravy Klíčová slova: dynamické účinky, kolejová doprava, lineární a nelineární časově
Porovnání tří metod měření QT intervalu
Porovnání tří metod měření QT intervalu Ing. Dina Kičmerová Prof. Ing. Ivo Provazník Ph.D. Ústav biomedicínského inženýrství Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v
1. Úvod Cíl práce Fourierova transformace a řada Vlnková transformace...4
Obsah 1. Úvod...3 1.1 Cíl práce...3 1.2 Fourierova transformace a řada...3 2. Vlnková transformace...4 3. Vlnková transformace se spojitým časem (CWT)...5 4. Dyadická vlnková transformace (DWT)...5 4.1
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth
FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Systémy digitálního vodotisku. Digital Watermarking Systems
Systémy digitálního vodotisku Digital Watermarking Systems Simona PEJSAROVÁ Česká zemědělská univerzita v Praze, Provozně ekonomická fakulta Katedra informačních technologií Kamýcká 129, Praha 6, Česká
11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.
11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Úvod do vlnkové transformace
Úvod do vlnkové transformace Radislav Šmíd ČVUT FEL katedra měření, Technická 2, CZ-66 27 Praha 6 e-mail: smid@feld.cvut.cz, www: http://measure.feld.cvut.cz/usr/staff/smid 9. srpna 2 Obsah Spojitá vlnková
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,