Kvantová mechanika I & II
|
|
- Hana Novotná
- před 7 lety
- Počet zobrazení:
Transkript
1 Kvantová mechanika I & II JSF094 akademický rok Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: Trója 934 telefon: ipnp.troja.mff.cuni.cz Cvičící dr. Pavel Stránský ÚČJF místnost: Trója 931 telefon: ipnp.troja.mff.cuni.cz Konzultace dle individuální domluvy
2 Stránka přednášky Podrobný sylabus přednášky Prezentace tato a několik dalších
3 Stránka přednášky Soupis základních pojmů a formulek for tough guys only!!!
4 Knihy P. Cejnar: Condensed Course of Quantum Mechanics Karolinum, 013.dedikovaná učebnice k tomuto kursu J. Formánek: Úvod do kvantové teorie 1983,004 J.J. Sakurai: Modern Quantum Mechanics 1985,1994 J.J. Sakurai, J.J.Napolitano: Modern Quantum Mechanics 011 G. uletta, M. Fortunato, G. Parisi: Quantum Mechanics 009 L.E. allentine: Quantum Mechanics. Modern Development Peres, Quantum Theory: Concepts and Methods ohm, Quantum Mechanics: Foundations and pplications 1979, 1993 W. Greiner: Quantum Mechanics: n Introduction 1989, W. Greiner: Quantum Mechanics: Special Chapters 1998 W. Greiner,. Müller: Quantum Mechanics: Symmetries 1989 E. Merzbacher: Quantum Mechanics 1961,1998 S. Flügge: Practical Quantum Mechanics 1971,1999 J. Pišút, L. Gomolčák, V. Černý: Úvod do kvantovej mechaniky 1983 J. Pišút, V. Černý, P. Prešnajder: Zbierka úloh z kvantovej mechaniky 1985 R.P. Feynman: Feynmanovy přednášky ,00/6....
5
6 Stručný program pro oba semestry 1. Formalismus kvantové teorie. Jednoduché kvantové systémy provázané kapitoly 4 přednášek 3. Kvantově-klasická korespondence 4. Moment hybnosti 5. Přibližné metody 6. Srážky částic 7. Mnohočásticové systémy 3 přednášky 4 přednášky 5 přednášek 5 přednášek 5 přednášek
7 Q-svět Fyzika pevných látek, materiálová fyzika Optika, optoelektronika Nanofyzika, nové technologie strofyzika, černé díry, neutronové hvězdy Fyzika kondenzované fáze, biofyzika Kvantová mechanika Kvantová teorie pole Kosmologie, počátky vesmíru tomová, molekulová fyzika, kvantová chemie Struny, sjednocení polí, za standardním modelem Jaderná a subjaderná fyzika Pole, částicová fyzika
8 Kvantová úroveň Variační princip klasické mechaniky S f t [ q t ] = dt L[ q t, q t, t i t ] akce δ S = 0 δ S = 0 trajektorie
9 Kvantová úroveň Variační princip klasické mechaniky S tf δ S = 0 t] akce [ q t ] = dt L[ q t, q t, t i Ma Planck = J s = 0.66 ev fs Škála Planckovy konstanty δ S = 0 Charakteristická změna akce na škále rozlišitelnosti S trajektorie Škála rozlišitelnosti trajektorií Kritérium pro platnost klasické mechaniky: S >>1 Kvantová fyzika nastupuje když: S 1
10 Interference Dvouštěrbinový eperiment pro elektrony Pro daný počáteční a koncový bod eistují trajektorie splňující δ S = 0 Klasická částice letí buď po I, nebo po II Co se stane když SI SII h??? I II
11 Interference Dvouštěrbinový eperiment pro elektrony Dvouštěrbinový eperiment je srdcem kvantové mechaniky. Obsahuje tu jedinou skutečnou záhadu. Této záhady se nelze zbavit nějakým vysvětlením jejího fungování. My prostě jen popíšeme, jak ta záhada funguje. tím vám zároveň sdělíme základní zvláštnost celé kvantové mechaniky... Co se stane když SI SII h??? Richard P. Feynman I II
12 Interference Dvouštěrbinový eperiment pro elektrony Fig. 1 Fig. elektrony Fig. 3 Fig. 4
13 Interference Dvouštěrbinový eperiment pro elektrony λ = / π p elektronový mikroskop elektrony 50 kev vlnová délka pro částici s hybností p Pro elektron o kinetické energii 50 kev λ nm d ~ μm, l ~ m perioda obrazce = l λ ~ μm d dvouštěrbina 3000 d l 0000 obrazovka interferenční obrazec kira Tonamura Tonomura et al., m. J. Phys
14 Interference Dvouštěrbinový eperiment pro elektrony Každý elektron je v přístroji sám, tedy musí interferovat sám se sebou Charles ddams, the New Yorker Tonomura et al., m. J. Phys
15 elektrony Interference Dvouštěrbinový eperiment pro elektrony Fig. 1 Fig. Vylepšení: 1 Eperiment se zpožděnou volbou delayed-choice o umístění/neumístění polarizátorů rozhodnuto až když je elektron v přístroji Kvantový vymazávač quantum eraser průchod polarizačním filtrem Principiální rozlišitelnost drah skrze štěrbiny či např. v důsledku měření, nebo polarizací či interakcí s prostředím => zmizení interferenčního obrazce which-path setup Fig. 3 Fig. 4 vymaže informaci o dráze a obnoví interferenci interferenční setup
16 Interference Dvouštěrbinový eperiment pro elektrony X Tyto výsledky se zdají odporovat pravidlům klasické logiky při vhodné definici logických proměnných je narušen distributivní aiom: X X X which-path setup interferenční setup X X
17 Interference Dvouštěrbinový eperiment pro elektrony Dvouštěrbinový eperiment je srdcem kvantové mechaniky. Obsahuje tu jedinou skutečnou záhadu. Této záhady se nelze zbavit nějakým vysvětlením jejího fungování. My prostě jen popíšeme, jak ta záhada funguje. tím vám zároveň sdělíme základní zvláštnost celé kvantové mechaniky... Richard P. Feynman I Kvantové mechanice nerozumí nikdo. II
18 Stav kvantového systému Renčín Stav fyzikálního systému: zobrazení reality jejího sledovaného výseku v jednom konkrétním okamžiku do prostoru vhodně zvolených matematických entit. Požadavek, aby stav v čase t umožňoval odvodit stavy ne nutně výsledky pozorování v lib.časech t + Δt. z 6 4 D Klasická mechanika Stavovým prostorem pro N částic je 6N-rozměrný fázový prostor všech souřadnic a hybností. Při zachování energie je pohyb omezen na 6N 1-rozměrnou varietu ve fázovém prostoru. 1 3 Polohy, y, z a hybnosti p,p y,p z pro N = 7 částic y
19 Stav kvantového systému Kvantové systémy se vyznačují neurčitostí: ani dokonalá znalost stavu systému neumožňuje deterministické předpovědi výsledků měření. Entity odpovídající různým stavům od sebe nejsou dokonale odděleny překrývají se! Renčín P a měření veličiny a??? výsledek P a měření veličiny a a
20 Stav kvantového systému Kvantové systémy se vyznačují neurčitostí: ani dokonalá znalost stavu systému neumožňuje deterministické předpovědi výsledků měření. Entity odpovídající různým stavům od sebe nejsou dokonale odděleny překrývají se! To jsou vlastnosti vektorů: H 1 vektory v komplením vektorovém prostoru D
21 Stav kvantového systému Kvantové systémy se vyznačují neurčitostí: ani dokonalá znalost stavu systému neumožňuje deterministické předpovědi výsledků měření. Entity odpovídající různým stavům od sebe nejsou dokonale odděleny překrývají se! To jsou vlastnosti vektorů: H 1 vektory v komplením vektorovém prostoru = 1 = 1 normalizace Schwarzova nerovnost D C skalární součin aby bylo možné počítat pravděpodobnosti Pravděpodobnost záměny stavových vektorů: P = [0,1]
22 Stav kvantového systému Kvantové systémy se vyznačují neurčitostí: ani dokonalá znalost stavu systému neumožňuje deterministické předpovědi výsledků měření. Entity odpovídající různým stavům od sebe nejsou dokonale odděleny překrývají se! To jsou vlastnosti vektorů: D H John von Neumann vektory v komplením vektorovém prostoru David Hilbert normalizace Schwarzova nerovnost 3 úplnost každá konvergující posloupnost má limitu uvnitř prostoru bezpečnostní opatření C skalární součin aby bylo možné počítat pravděpodobnosti Prostorem kvantových stavů je Hilbertův prostor Pravděpodobnost záměny stavových vektorů: = 1 = 1 P = [0,1]
23 Hilbertovy prostory a operátory Prostor kvadraticky integrovatelných funkcí L R Funkce splňující podmínku Skalární součin g f + + d f d g* f Každá lineární kombinace vektorů leží v H Prostor nekonečných sekvencí l Posloupnosti kompleních čísel Splňující podmínku < i= 1 ai < Skalární součin α + β + = H b H a H David Hilbert a b* 1 b* a 1 John von Neumann
24 Hilbertovy prostory a operátory Prostor kvadraticky integrovatelných funkcí L R Funkce splňující podmínku Skalární součin g f + + d f d g* f < Každá lineární kombinace vektorů leží v H Prostor nekonečných sekvencí H l Posloupnosti kompleních čísel Splňující podmínku Skalární součin < i= 1 a i Lineární operátory v Hilbertových prostorech Zobrazení H na sebe: příp. jen husté podmnožiny H podmínka linearity Oˆ α + β + = b = α Oˆ H a Ô : H H H + βoˆ David Hilbert a b* 1 b* a + 1 Diferenciální operátory v L R Matice v l d d const
25 Dvouštěrbinový eperiment pro elektrony Interference * d δ = = = cos β α φ φ φ φ ρ ρ β α ρ β ρ α = P P P e e i i β α φβ φα β α + = i e φ ρ = i e φ ρ =
26 Dvouštěrbinový eperiment pro elektrony Interference = i e φ ρ = i e φ ρ = + = e e i i β α β α β α β φ φα + + = + =, * * * * * * * * β α β α β α β α = = 1 0 cos α φ β φ φ φ ρ ρ β α ρ β ρ α = P P P
27 Jsme jen bídní makroskopičtí tvorové naše představivost a intuice se utvářely jen v interakci s klasickým makroskopickým světem. Ve světě atomů a kvantových částic, kde platí radikálně jiné zákony, tápeme. Přesto i zde pro nás eistuje spolehlivé vodítko abstraktní matematika. Nejnepochopitelnější věcí na světě je, že svět je pochopitelný *. Einstein * zatím Četba: E. Wigner: The Unreasonable Effectiveness of Mathematics in the Natural Sciences, Commun. in Pure and pplied Mathematics, vol. 13, No. I Feb. 1960
28 Solvayská konference 197 otcové zakladatelé : 1900 Ma Planck, 1905 lbert Einstein stará kvantová teorie : 1913 Niels ohr vlnová hypotéza: 194 Louis de roglie maticová mechanika: 195 Werner Heisenberg Sjednocení: } vlnová mechanika: 196 Erwin Schrödinger 197 John von Neumann pravděpodobnostní interpretace: 196 Ma orn Paul Dirac
I a II. Kvantová mechanika. JSF094 Akademický rok
Kvantová mechanika JSF094 kademický rok 017-018 I a II Čas a místo Úterý 13:10-14:40 Středa 10:40-1:10 cvičení posluchárna ÚČJF3/945 Čtvrtek 10:40-1:10 Přednášející prof. Pavel Cejnar ÚČJF místnost: 934
VíceVlny. částice? nebo. Pavel Cejnar ÚČJF MFF UK FJDP 2018/19. Objevování kvantového světa
Objevování kvantového světa Pavel Cejnar ÚČJF MFF UK Vlny nebo částice? FJDP 2018/19 Entrée Sloupy stvoření oblaky chladného plynu a prachu v Orlí mlhovině NASA, ESA Hubble Space Telescope Vizualizace
VíceVYPOUŠTĚNÍ KVANTOVÉHO DŽINA
VYPOUŠTĚNÍ KVANTOVÉHO DŽINA ÚSPĚŠNÉ OMYLY V HISTORII KVANTOVÉ FYZIKY Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Praha Prosinec 2009 1) STARÁ KVANTOVÁ TEORIE Světlo jsou částice! (1900-1905) 19.
VíceVlny nebo částice? Přednáška 1, Pavel Cejnar. Principy kvantové fyziky. Ústav částicové a jaderné fyziky MFF UK
Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK Přednáška 1, ve které se před námi poprvé vynoří neostré kontury kvantového světa Vlny nebo částice? Principy kvantové fyziky Fyzika jako dobrodružství
VícePavel Cejnar. pavel.cejnar @ mff.cuni.cz. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze
Podivuhodná říše kvant Pavel Cejnar pavel.cejnar @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta University Karlovy v Praze Hvězdárna a planetárium Brno, 22. 1. 2015 Podivuhodná
VíceVybrané podivnosti kvantové mechaniky
Vybrané podivnosti kvantové mechaniky Pole působnosti kvantové mechaniky Středem zájmu KM jsou mikroskopické objekty Typické rozměry 10 10 až 10 16 m Typické energie 10 22 až 10 12 J Studované objekty:
VíceKvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz
Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Dvouštěrbinový experiment A Fig.
VíceKvantová fyzika. Pavel Cejnar mff.cuni.cz. Jiří Dolejší mff.cuni.cz
Kvantová fyzika Pavel Cejnar pavel.cejnar @ mff.cuni.cz Jiří Dolejší jiri.dolejsi @ mff.cuni.cz Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Praha Světlo = vlny i částice! 19. století:
VíceKvantová mechanika ve 40 minutách
Stručný průvodce konečněrozměrnou kvantovou mechanikou České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Úvod do kryptologie 6. 5. 2010 Program 1 Od klasické mechaniky k mechanice
Více6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207
6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.
VíceKvantové provázání. Pavel Cejnar ÚČJF MFF UK Praha
Kvantové provázání Pavel Cejnar ÚČJF MFF UK Praha Seminář PřF UK Praha, listopad 2018 Kvantové provázání monopartitní tripartitní multipartitní Kanazawa, Japonsko bipartitní Zápasníci, Uffizi muzeum, Florencie
VíceÚvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
VíceMatematické metody kvantové mechaniky
Matematické metody kvantové mechaniky Seminář současné matematiky Ing. Tomáš Kalvoda tomas.kalvoda@fit.cvut.cz KM FJFI & KTI FIT ČVUT místnost M102, FIT 11. listopadu 2010 Kalvoda (ČVUT) Seminář současné
VíceEinsteina s Bohrem. Dialog. Pavel Cejnar. Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK
Dialog Einsteina s Bohrem Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK Přednáška v rámci cyklu Potkal jsem Einsteina, pánové, podzim 2017 Dialog o kvantové mechanice ristotelés
VíceOd kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
VíceFyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
VíceObsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15
Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší
VíceKvantové počítání. Pavel Cejnar. Program: 1) Historie 2) Principy 3) Příklady 4) Realizace. ÚČJF MFF UK Praha mff.cuni.cz.
Kvantové počítání Pavel Cejnar ÚČJF MFF UK Praha pavel.cejnar @ mff.cuni.cz Program: ) istorie ) Principy 3) Příklady 4) Realizace Nick Park Nové Strašecí, leden 6 Kvantové počítání ) istorie ) Principy
VíceOperátory obecně (viz QMCA s. 88) je matematický předpis který, pokud je aplikován na funkci, převádí ji na
4 Matematická vsuvka: Operátory na Hilbertově prostoru. Popis vlastností kvantové částice. Operátory rychlosti a polohy kvantové částice. Princip korespondence. Vlastních stavy a spektra operátorů, jejich
VíceZS: 2018/2019 NMAF063 F/3 Josef MÁLEK. Matematika pro fyziky III
ZS: 2018/2019 NMAF063 F/3 Josef MÁLEK Matematika pro fyziky III OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Tomáš Los, Michal Pavelka, Michal Pavelka, Vít Průša Termíny přednášek: čtvrtek
VíceKvantová mechanika bez prostoročasu
Natura 30. listopadu 2002 Kvantová mechanika bez prostoročasu zpracoval: Jiří Svršek 1 podle článku T. P. Singha Abstract Pravidla kvantové mechaniky pro svoji formulaci vyžadují časovou souřadnici. Pojem
VíceB) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Fyzika.
4.8.13. Fyzikální seminář Předmět Fyzikální seminář je vyučován v sextě, septimě a v oktávě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Fyzikální seminář vychází ze vzdělávací oblasti
VíceElementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
VícePLANCK EINSTEIN BOHR de BROGLIE
KVANTOVÁ MECHANIKA PLANCK 1858-1947 EINSTEIN 1879-1955 BOHR 1885-1962 de BROGLIE 1892-1987 HEISENBERG 1901-1976 SCHRÖDINGER 1887-1961 BORN 1882-1970 JORDAN 1902-1980 PAULI 1900-1958 DIRAC 1902-1984 VŠECHNO
Více6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové
VícePřednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
VíceInovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Předmět: LRR/CHPB1/Chemie pro biology 1 Elektronový obal Mgr. Karel Doležal Dr. Cíl přednášky: seznámit posluchače se stavbou
VíceNetradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
VíceZS: 2017/2018 NMAF061 F/2 J. MÁLEK. Matematika pro fyziky I. Posluchárna: T2 T1 Konzultační hodiny: pátek 9:40-10:30, posluchárna T5
ZS: 2017/2018 NMAF061 F/2 J. MÁLEK Matematika pro fyziky I OBECNÉ INFORMACE A SYLABUS Přednášející: Cvičící: Josef Málek Michal Báthory, Tomáš Los, Michal Pavelka, Vít Průša Termíny přednášek: Čtvrtek
VíceRovnice matematické fyziky cvičení pro akademický školní rok 2013-2014
Harmonogram výuky předmětu Rovnice matematické fyziky cvičení pro akademický školní rok 2013-2014 Vedoucí cvičení: ing. Václav Klika, Ph.D. & MSc. Karolína Korvasová & & ing. Matěj Tušek, Ph.D. Katedra
VíceAb initio výpočty v chemii a biochemii
Ab initio výpočty v chemii a biochemii Doc. RNDr. Ing. Jaroslav Burda, CSc., jaroslav.burda@mff.cuni.cz Dr. Vladimír Sychrovský vladimir.sychrovsky@uochb.cas.cz Studijní literatura Szabo A., Ostlund N.S.
VíceKvantová fyzika a náš svět
Kvantová fyzika a náš svět Miloslav Dušek Motto: Mě velmi těší, že se musíme uchýlit k tak podivným pravidlům a bizarnímu způsobu uvažování, abychom pochopili Přírodu, a baví mě o tom lidem vykládat.
VíceOdchylka ekliptiky od roviny Galaxie
Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 1. přednáška 22.9.2016 Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 19 Organizační pokyny přednášející:
VíceInovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
VíceDetekce interakčních sil v proudu vozidel
Detekce interakčních sil v proudu vozidel (ANEB OBECNĚJŠÍ POHLED NA POJEM VZDÁLENOSTI V MATEMATICE) Doc. Mgr. Milan Krbálek, Ph.D. Katedra matematiky Fakulta jaderná a fyzikálně inženýrská České vysoké
VíceÚvod do moderní fyziky. lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky
Úvod do moderní fyziky lekce 2 částicové vlastnosti vln a vlnové vlastnosti částic, základy kvantové mechaniky Hmota a záření v klasické fyzice jsou hmota a záření popsány zcela odlišným způsobem (Newtonovy
VíceFourierovské metody v teorii difrakce a ve strukturní analýze
Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze
VíceLaboratorní úloha č. 7 Difrakce na mikro-objektech
Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového
VíceD - Přehled předmětů studijního plánu
D - Přehled předmětů studijního plánu Vysoká škola: Součást vysoké školy: Název studijního programu: Název studijního oboru: Slezská univerzita v Opavě Matematický ústav v Opavě Matematika Obecná matematika
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceLaserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
VíceSingulární charakter klasické limity
Singulární charakter klasické limity obecná speciální Teorie O Teorie S Parametr δ : δ ) O S) O S Pieter Bruegel starší +569) Velké ryby jedí malé ryby 556) obecná speciální Teorie O Teorie S Parametr
VíceVAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost
VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice
VíceDnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,
VíceÚvod do moderní fyziky
Úvod do moderní fyziky letní semestr 2015/2016 Vyučující: Ing. Jan Pšikal, Ph.D Tématický obsah přednášek speciální a obecná teorie relativity kvantování energie záření, vlnové vlastnosti částic struktura
VíceLehký úvod do kvantové teorie
1 Lehký úvod do kvantové teorie 1 Unitární prostory (prostory se skalárním součinem) Ve Fyzice 1 jsme rozšířili pojem vektoru na obecnější objekty,než jsou uspořádané trojice a zavedli lineární vektorový
VíceKvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,
VíceElektronový obal atomu
Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h
VíceÚvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
VíceWerner Heisenberg: Fyzika a filosofie. Tibor Fördös. /Nanotechnologie/
Werner Heisenberg: Fyzika a filosofie Tibor Fördös /Nanotechnologie/ Myšlenky Werner Heisenberg Kvantová mechanika a změna náhledu na svět Kvantová mechanika, skutečnost a determinismus Vývoj myšlení Antika,
Více[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka
10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.
VíceKvantová mechanika (UFY100)
Cvičení k přednášce Kvantová mechanika (UFY100) Letní semestr 2004/2005, Úterý 12:25-13:55 v M4 Určeno pro 2. ročník učitelství fyziky pro SŠ Následující text obsahuje stručný přehled jednotlivých cvičení
VíceUčební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
VíceKvantová informatika pro komunikace v budoucnosti
Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd
VíceElektronový obal atomu
Elektronový obal atomu Chemické vlastnosti atomů (a molekul) jsou určeny vlastnostmi elektronového obalu. Chceme znát energii a prostorové rozložení elektronů Znalosti o elektronovém obalu byly získány
VíceLekce 4 Statistická termodynamika
Lekce 4 Statistická termodynamika Osnova 1. Co je statistická termodynamika 2. Mikrostav, makrostav a Gibbsův soubor 3. Příklady Gibbsových souborů 4. Souborové střední hodnoty 5. Časové střední hodnoty
Více22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
VíceÚlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
VíceZa hranice současné fyziky
Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie
VícePočátky kvantové mechaniky. Petr Beneš ÚTEF
Počátky kvantové mechaniky Petr Beneš ÚTEF Úvod Stav fyziky k 1. 1. 1900 Hypotéza atomu velmi rozšířená, ne vždy však přijatá. Atomy bodové, není jasné, jak se liší atomy jednotlivých prvků. Elektron byl
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceAtomové jádro Elektronový obal elektron (e) záporně proton (p) kladně neutron (n) elektroneutrální
STAVBA ATOMU Výukový materiál pro základní školy (prezentace). Zpracováno v rámci projektu Snížení rizik ohrožení zdraví člověka a životního prostředí podporou výuky chemie na ZŠ. Číslo projektu: CZ.1.07/1.1.16/02.0018
VíceKarel Lemr. web: Karel Lemr Fotonové páry 1 / 26
Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
VíceDrsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
VíceHistorie zapsaná v atomech
Historie zapsaná v atomech Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Symposion 2010, Gymnázium Jana Keplera, Praha Stopy, kroky, znamení Historie zapsaná v atomech Pavel
VícePočátky: už jsme potkali
KVANTOVÁ MECHANIKA Počátky: už jsme potkali Záření černého tělesa Kvantování energie Fotoefekt PLANCK 1858-1947 EINSTEIN 1879-1955 Model atomu Vlnové vlastnosti částic BOHR 1885-1962 de BROGLIE 1892-1987
VíceVlnění, optika a atomová fyzika (2. ročník)
Vlnění, optika a atomová fyzika (2. ročník) Vlnění 1. Kmity soustav hmotných bodů (6 hod.) 1.1 Netlumené malé kmity kolem stabilní rovnovážné polohy: linearita pohybových rovnic, princip superpozice, obecné
VíceMAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
VíceBáze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů
Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je
VíceKapitola 2. Svítání. Svítání
Kapitola 2 Roky následující po průkopnickém návrhu Maxe Plancka byly pro fyziku obdobím zmatků a temnoty. Světlo jsou vlny, světlo jsou částice. Znepokojivě úspěšné modely, jako Bohrův atom, slibovaly,
Více00/20. Kvantové počítání. Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha IBM
IBM 00/20 Kvantové počítání Pavel Cejnar Ústav částicové a jaderné fyziky Matematicko-fyzikální fakulta UK, Praha přednáška JČMF, Praha, říjen 2018 Intel 01/20 IBM IBM Q D Wave Piš, barde, střádej. 02/20
VíceOPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
OPTIKA Fotoelektrický jev TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Světlo jako částice Kvantová optika se zabývá kvantovými vlastnostmi optického
VíceÚVOD DO KVANTOVÉ MECHANIKY
ÚVOD DO KVANTOVÉ MECHANIKY KM popisuje vlastnosti hmoty a světla a fyzikální děje na úrovni atomů KVANTOVÁNÍ (fyzikální veličiny mohou mít pouze některé hodnoty) jedna z nejobecnějších vlastností našeho
Více9 METODY STATISTICKÉ FYZIKY
22 9 METODY STATISTICKÉ FYZIKY Základní pojmy statistické fyziky Klasická a kvantová statistika Maxwellova - Boltzmannova rozdělovací funkce Boseova - Einsteinova rozdělovací funkce Fermiova - Diracova
VíceLineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Více6.2.7 Princip neurčitosti
6..7 Princip neurčitosti Předpoklady: 606 Minulá hodina: Elektrony se chovají jako částice, ale při průchodu dvojštěrbinou projevují interferenci zdá se, že neplatí předpoklad, že elektron letí buď otvorem
VíceHamiltonián popisující atom vodíku ve vnějším magnetickém poli:
Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VícePraktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
VícePříklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx
1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f
VícePříklad 6: Bariéra a tunelový jev
1 Příklad 6: Bariéra a tunelový jev Předpokládejme, že částice o hmotnosti m a energii E dopadá zleva na potenciálovou bariéru (viz obrázek) o výšce V 0. Energie částice je menší než výška potenciálové
VíceNumerická stabilita algoritmů
Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá
VíceTajemství skalárního součinu
Tajemství skalárního součinu Jan Hamhalter http://math.feld.cvut.cz/hamhalte katedra matematiky, FEL ČVUT Otevřené Elektronické Systémy 28. února 2013 Jan Hamhalter http://math.feld.cvut.cz/hamhalte Tajemství
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
Více2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
VíceGE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
VíceOkruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
VíceDEFORMACE JEDNODUCHÝCH LAGRANGEOVÝCH SYSTÉMŮ VYBRANÝMI NEHOLONOMNÍMI VAZBAMI
DEFORMACE JEDNODUCHÝCH LAGRANGEOVÝCH SYSTÉMŮ VYBRANÝMI NEHOLONOMNÍMI VAZBAMI Karolína Šebová Přírodovědecká fakulta, Ostravská univerzita v Ostravě, 30. dubna 22, 701 03 Ostrava, carolina.sebova@seznam.cz
Víceškolní vzdělávací program ŠKOLNÍ VZDĚLÁVACÍ PROGRAM DR. J. PEKAŘE V MLADÉ BOLESLAVI RVP G 8-leté gymnázium Fyzika II. Gymnázium Dr.
školní vzdělávací program PLACE HERE Název školy Adresa Palackého 211, Mladá Boleslav 293 80 Název ŠVP Platnost 1.9.2009 Dosažené vzdělání Střední vzdělání s maturitní zkouškou Název RVP Délka studia v
VíceNástin formální stavby kvantové mechaniky
Nástin formální stavby kvantové mechaniky Karel Smolek Ústav technické a experimentální fyziky, ČVUT Komplexní čísla Pro každé reálné číslo platí, že jeho druhá mocnina je nezáporné číslo. Např. 3 2 =
VíceDomácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
VíceBalmerova série vodíku
Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,
VíceLehký úvod do kvantové teorie II
1 Lehký úvod do kvantové teorie II 5 Harmonický oscilátor Na příkladu harmonického oscilátoru, jehož klasické řešení známe z Fyziky 1, si ukážeme typické postupy při hledání vlastních hodnot operátoru
VíceFyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
VíceElektronový obal atomu
Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových
VíceÈÁST VII - K V A N T O V Á F Y Z I K A
Kde se nacházíme? ÈÁST VII - K V A N T O V Á F Y Z I K A 29 Èásticové vlastnosti elektromagnetických vln 30 Vlnové vlastnosti èástic 31 Schrödingerova formulace kvantové mechaniky Kolem roku 1900-1915
VíceVÍTEJTE V MIKROSVĚTĚ
VÍTEJTE V MIKROSVĚTĚ Klasická vs. Moderní fyzika Klasická fyzika fyzika obyčejných věcí viditelných pouhým okem Moderní fyzika Relativita zabývá se tím co se pohybuje rychle nebo v silovém gravitačním
Více