Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.
|
|
- Jakub Veselý
- před 6 lety
- Počet zobrazení:
Transkript
1 Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Typové příklady (viz webové stránky přednášejícího).
2 Připomeňme: Bud A symetrický operátor s hustým definičním oborem D(A) a bud F funkcionál energie příslušný rovnici Au = f, u D(A). Je-li A slabě pozitivní, pak F má v u D(A) minimum právě tehdy, když Au = f, u D(A). Je-li A pozitivní, pak F má v u D(A) ostré minimum právě tehdy, když Au = f, u D(A). (Poznámka: V MA 43 je věta formulována trochu odlišně.)
3 Připomeňme: Velký nedostatek Věta o vztahu mezi řešením operátorové rovnice a minimem funkcionálu energie není existenční. Neříká nic o tom, zda řešení u D(A) existuje. Netvrdí, že minimum F na D(A) existuje, tj. že se ho nabývá v nějakém prvku u D(A).
4 Víme, že např. okrajové úloze u + u = f, u(a) = 0 = u(b), odpovídá pozitivní operátor Au = u + u a F(u) = (Au, u) 2(f, u) = b a b (u 2 + u 2 ) dx 2 fu dx. a Všimněme si, že F je definováno i pro u, které má jen první derivaci spojitou na [a, b], a pro některá nespojitá f, např. po částech konstantní. Takové u a f by však odporovalo definici řešení operátorové rovnice Au = f. Problémy s existencí minima. Např. neexistuje minimum funkcionálu G(v) = v 2 = 1 0 v 2 dx na množině M = {v C([0, 1]) : v(0) = 0, v(1) = 1}. (M není vektorový prostor, ale to nevadí.)
5 Zúplnění D(A) Variační formulace (tj. minimalizace F ) nám umožňuje předpokládat méně než formulace Au = f, která má "značné" nároky na vlastnosti D(A) a f. Problém existence minima. Východisko z potíží: Přidat k D(A) ještě další funkce tak šikovně, aby výsledná množina byla vektorovým prostorem funkcí, na němž bude funkcionál F jednak dobře definován, jednak bude nabývat minima. Funkce, v níž se nabývá minima, však zároveň musí mít dobrý" vztah k výchozí okrajové úloze.
6 Připomenutí: Pozitivně definitní operátor Operátor A se nazývá pozitivně definitní na D(A), existuje-li taková konstanta C > 0, že pro každou funkci u D(A) platí přičemž C nezávisí na u. (Au, u) C u 2,
7 Připomenutí: Energetický skalární součin, energetická norma, energetický prostor Necht A je symetrický a pozitivně definitní operátor na D(A). Energetický skalární součin (u, v) A = (Au, v) Energetická norma u A = (u, u) A u D(A). Energetická vzdálenost ρ A (u, v) = u v A u, v D(A). u, v D(A). Díky symetrii a pozitivní definitnosti A je (, ) A opravdu skalární součin a A norma na D(A). Množinu D(A) opatřenou (, ) A, A a ρ A nazveme prostorem S A. Energetický skalární součin (u, v) A je dán integrálem b a Au v dx po aplikaci integrace po částech.
8 Prostor L 2 (a, b) Z dřívějška známe: Skalární součin (u, v) = b a Normu u = (u, u). Vzdálenost ρ(u, v) = u v. uv dx. Dosud jsme předpokládali, že u, v C([a, b]). Stačí však předpokládat, že u, v M, kde M je množina funkcí w takových, pro něž platí, že integrály b a w(x) dx a b a w 2 (x) dx existují a jsou konečné. Množinu M opatřenou (u, v), u a ρ(u, v) značíme L 2 (a, b) a říkáme jí (vektorový) prostor funkcí integrovatelných v intervalu (a, b) s kvadrátem (v Lebesgueově smyslu, ale Leb. integrálem se nebudeme zabývat).
9 Jestliže u, v L 2 (a, b) a u v = 0, pak o u a v řekneme, že jsou ekvivalentní, tj. u a v se liší nejvýše na množině nulové míry, tj. jsou si rovny skoro všude. Množiny nulové míry v [a, b] např. konečný počet bodů, spočetný počet bodů. Jsou-li u a v ekvivalentní a spojité v [a, b], pak jsou si rovny všude v [a, b]. Hustota množiny V v L 2 (a, b). Měli jsme pomocí ortogonality. Lze i takto: Jestliže u L 2 (a, b) a ε > 0, pak v u,ε V u v u,ε < ε. Jinými slovy: V každém ε-okolí funkce u leží aspoň jedna funkce z množiny V. (Čili ε-okolí funkce u obsahuje nekonečně mnoho funkcí z V.)
10 Cauchyovská posloupnost připomenutí Posloupnost {u n } je v prostoru P cauchyovská, lze-li ke každému ε > 0 najít takové n 0, že m > n 0, n > n 0 = u m u n P < ε. Posloupnost {u n } je v prostoru P konvergentní, jestliže existuje takový prvek u P, že platí lim u n u P = 0. n Definice: Prostor, v němž je každá cauchyovská posloupnost konvergentní, se nazývá úplný. Množina C([a, b]) opatřená skalárním součinem (, ) je sice vektorový prostor, ale není úplný. Jiný ( příklad: Množina (prostor) racionálních čísel není úplná, viz x k+1 = 1 x 2 k + a x k ), x k a, a = 2, x 1 = 1. Lze ukázat, že L 2 (a, b) je úplný prostor.
11 Zpět k operátoru A a prostoru S A Lze ukázat, že S A není úplný prostor (a proto funkcionál F nemusí na S A nabývat minima). Tj. v S A existují cauchyovské posloupnosti, které v S A nemají limitu. Necht {u n } je taková posloupnost. Z nerovnosti (poz. def.!) u m u n C 1 (A(u m u n ), u m u n ) = u m u n A vidíme, že {u n } je cauchyovská posloupnost v L 2 (a, b), tudíž existuje její limita u L 2 (a, b). Pro všechny cauchyovské posloupnosti v S A tvoří všechny odpovídající limity v L 2 (a, b) nějakou podmnožinu L 2 (a, b). Označme ji P A a definujme množinu M = S A P A. Na M lze rozšířit definici (, ) A, A a ρ A, výsledný prostor označíme H A, je to úplný prostor.
12 Příklad rozšíření (, ) A : Necht {u n } a {v n } jsou cauchyovské posloupnosti v S A, tj. lim u n = u, n lim v n = v n v L 2 (a, b). Pak definujeme (u, v) A = lim n (u n, v n ) A. (Lze totiž ukázat, že posloupnost reálných čísel na pravé straně definiční rovnosti je cauchyovská, tudíž má limitu.) K u a v mohou konvergovat různé posloupnosti, je nutné ukázat, že lim n (u n, v n ) A je vždy stejná.
13 Zásadní výsledek (pro sym. poz. def. operátor A) Nyní lze rozšířit i energetický funkcionál F(u) = (u, u) A 2(f, u), f L 2 (a, b), u H A. Platí, že pro každou funkci f L 2 (a, b) tento funkcionál nabývá právě jednoho minima v nějaké funkci u f H A. Funkci u f nazýváme zobecněným řešením rovnice Au = f s danými okrajovými podmínkami. Je-li u f D(A), pak je řešením úlohy takovým, jaké známe z dřívějšího výkladu.
14 Zůstává nejasnost jak charakterizovat prostor H A? Spokojme se s tím, že H A tvoří funkce, které mají n/2 derivací, kde n je řád operátoru, přičemž nejvyšší derivace nemusí být spojitá funkce, a všechny derivace jsou integrovatelné s kvadrátem (i nultá); splňují přímo okrajové podmínky, jsou-li dány pro funkce a jejich derivace do řádu n/2 1. (Okrajové podmínky pro vyšší derivace se ošetří jistým trikem.) Příklad: V okrajové úloze (exp(x)u (x)) + (2 + sin x cos x)u(x) = exp(sin 5x), u(0) = 0 = u(π) je operátor (daný levou stranou) symetrický a pozitivně definitní, 2. řádu. Pod prvky prostoru H A si představíme funkce, které jsou na [a, b] integrovatelné s kvadrátem, mají v [a, b] derivaci (ne nutně spojitou), která je též integrovalelná s kvadrátem. Navíc tyto funkce splňují u(0) = 0 = u(π).
15 Čeho jsme dosáhli? Místo operátorové rovnice Au = f řešíme minimalizační problém pro F(u) = (u, u) A 2(f, u). Operátorová rovnice má přísnější předpoklady, jen pro jednoduché OR umíme posoudit řešitelnost. Minimalizační problém má slabší předpoklady a vždy má řešení (je-li výchozí operátor pozitivně definitní). Poznámka: Variační formulace je velmi důležitá u 1D úloh a zásadní u 2D a 3D úloh. Najít přesné řešení minimalizačního problému je obtížné (nemožné). Naštěstí minimalizační problém je vhodný pro hledání přibližného řešení. Pozorování: Pro funkci u H A, v níž se nabývá minima, platí (u, v) A = (f, v) v H A (Ukáže se minimalizací ϕ(t) = F(u + tv).
16 Variační metody Definice: Řekneme, že posloupnost lineárně nezávislých funkcí v 1, v 2,... tvoří v prostoru H A bázi, lze-li ke každému ε > 0 najít takové přirozené číslo j a taková čísla a 1, a 2,..., a j, že j u a i v i < ε. A i=1 Jinými slovy: konečné lineární kombinace prvků báze jsou husté v H A. Zvolme přirozené číslo n a označme V n n-rozměrný vektorový (lineární) podprostor prostoru H A vytvořený všemi funkcemi n tvaru b i v i, kde b 1,..., b n R a kde {v 1,...,v n } je báze i=1 prostoru V n.
17 Ritzova metoda Funkcionál F(u) = (u, u) A 2(f, u) minimalizujeme nikoliv na H A, nýbrž jen na podprostoru V n H A. Tedy mezi všemi n-ticemi hledáme takovou n-tici (c 1,..., c n ) R n, aby funkcionál F(u) nabýval minima na V n právě pro funkci u = u 0 = n i=1 c iv i. Jde vlastně o hledání minima reálné funkce více proměnných, tj. proměnných c 1,..., c n. Vztah k řešení původní úlohy? Jestliže pro zvětšující se n bude {v 1, v 2,..., v n } n bází prostoru H A, pak lim n u n u A = 0, kde u H A minimalizuje F na H A. Lze ukázat, že lim n u n u L2 (a,b) = 0 a lim n (u n ) (u ) L2 (a,b) = 0.
18 Lineární zobrazení Mějme zobrazení F z vektorového prostoru U do vektorového prostoru V. Řekneme o něm, že je lineární, pokud platí, že c 1, c 2 R u 1, u 2 U F(c 1 u 1 +c 2 u 2 ) = c 1 F(u 1 )+c 2 F(u 2 ). Příklady lineárních zobrazení: určitý integrál primitivní funkce (s nulovou integrační konstantou) násobení vektoru maticí násobení matic zobrazení, které pravé straně lineární OÚ s homogenními OP přiřadí řešení (vzpomeňte si na superpozici řešení)
(Poznámka: V MA 43 je věta formulována trochu odlišně.)
Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace
VíceDnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceHomogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky
Předmět: MA4 Dnešní látka Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Literatura:
VíceCo jsme udělali: Au = f, u D(A)
Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení
VíceHomogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky
Předmět: MA4 Dnešní látka Diferenciální operátory Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové
VíceDefinice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Více19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
VíceLiteratura: O. Zindulka: Matematika 3 (kapitola 4, kapitola 5)
Předmět: MA03 Opakování: formulace okrajové úlohy (OÚ), skalární součin funkcí, ortogonalita funkcí Nová látka: vlastní čísla a vlastní funkce OÚ ortogonalita vlastních funkcí řešitelnost OÚ Literatura:
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
VíceVěta o sedlovém bodu a Fredholmova alternativa
Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor
VíceLiteratura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3,
Předmět: MA4 Dnešní látka Motivační úloha: ztráta stability nosníku Obyčejné diferenciální rovnice s okrajovými podmínkami a jejich řešitelnost Vlastní čísla a vlastní funkce Obecnější pohled na řešitelnost
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceUčební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
VíceLiteratura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních
VíceMatematika V. Dynamická optimalizace
Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceDrsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
VíceAplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
VíceDefinice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují
Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),
VíceMETRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Vícestránkách přednášejícího.
Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VícePROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
VíceMatematika 5 FSV UK, ZS Miroslav Zelený
Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceČetba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
VíceInterpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Vícekteré charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic.
1. Přednáška Obsah: Úvod do tvorby matematických modelů jako okrajové úlohy pro diferenciální rovnici. Příklad 1D vedení tepla a lineární pružnost. Diferenciální, variační, energetická formulace úloh.
VíceLIMITA A SPOJITOST FUNKCE
PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:
VícePRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.
PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
VíceDnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
VíceObsah. 1 Lineární prostory 2
Obsah 1 Lineární prostory 2 2 Úplné prostory 2 2.1 Metrické prostory.................................... 2 2.2 Banachovy prostory................................... 3 2.3 Lineární funkcionály..................................
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Více1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
VíceVlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
VíceVektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Více9. Vícerozměrná integrace
9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující
VíceProjekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Více1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Více1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
VíceRiemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
VícePRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE
PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Více18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
VíceMatice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
VíceMatematika pro informatiky
(FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce
VíceDerivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
VíceFREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
VíceZákladní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
VícePřednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Víceverze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Vícei=1 λ ix i,λ i T,x i M}.Množinuvektorů
Velké prostory Anička Doležalová Abstrakt. Budeme si hrát s vektorovými prostory, které mají nekonečnou dimenzi. Cílemjesijetrochuosahatazískatzákladníintuici.Ktomunámposloužíhlavně prostory posloupností.
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
VíceVěta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
Více9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceAplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
VíceLineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VíceMatematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
VíceLineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Vícefakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VíceDefinice : Definice :
KAPITOLA 7: Spektrální analýza operátorů a matic [PAN16-K7-1] Definice : Necht H je komplexní Hilbertův prostor. Řekneme, že operátor T B(H) je normální, jestliže T T = T T. Operátor T B(H) je normální
VíceOBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
Více16 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Více2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
VíceV: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
VícePosloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
VícePosloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceNecht L je lineární prostor nad R. Operaci : L L R nazýváme
Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární
VíceDerivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
VíceNecht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
VíceK oddílu I.1 základní pojmy, normy, normované prostory
ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X
VíceLiteratura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
Více2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro
Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vícetransformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
VíceDiferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
Více