ZESILOVAČE S TRANZISTORY

Rozměr: px
Začít zobrazení ze stránky:

Download "ZESILOVAČE S TRANZISTORY"

Transkript

1 ZSILOVČ S TNZISTOY STUPŇ S SPOLČNÝM MITOM U C o T U ~0.3V _

2 Pracovní o tranzstor je vázán caraterstam pole: (, ) (, ) a rovncí réo Krcoffova záona pro oletorový ovo:. U V prostorovém třímensonálním zorazení přestavje rovn rovnoěžno s oso, olmo na rovn oletorovýc caraterst (, ). Ve výstpníc caraterstác se zorazí jao zatěžovací příma - sestrojíme j z jejíc průsečíů s osam, jso to oy: [ U, ] 0 [ 0, U ] V převoníc caraterstác se zorazí jao ynamcá (proová) převoní caratersta, vyjařjící závslost: f( ) Sestrojení ynamcé převoní caratersty: přenesením průsečíů zatěžovací přímy s oletorovým caraterstam. Sestrojení napěťové převoní caratersty: promítntím oů zatěžovací přímy a ynamcé proové caratersty přes vstpní caraterst o 4. varant Nastavení pracovnío o: zařazením opor o U - o

3 Početní řešení stpně: řešíme cování stpně pro malé změny velčn v oolí pracovnío o sostava aproxmačníc rovnc caraterst rčenýc -parametry rovnce vnějšío ovo tranzstor (aplací Krcofovýc záonů) Hleané řešení (závslost přírůst jené velčny na ré): proové zesílení β napěťové zesílení vstpní opor vst výstpní opor vyst at. ovnc vnějšío ovo (pro U onst.) píšeme :. 0 Sostava aproxmačníc rovnc caraterst tranzstor rčenýc -parametry Dosazením ostáváme onot ynamcéo proovéo zesílení β a napěťovéo zesílení (pro 0): β. - - β Stpeň se společným emtorem má napěťové zesílení úměrné proovém zesílení požtéo tranzstor. Jeo vstpní opor je poměrně malý. vst vyst 3

4 STUPŇ S SPOLČNÝM KOLKTOM - MITOOVÝ SLDOVČ T U C o T U - _ rovnce vnějšío ovo ( >>, proto << ).. 0 lneární aproxmace vstpníc a oletorovýc caraterst tranzstor... β..... β pro ß >> je Napětí v emtor je přlžně rovno napětí vstpním emtorový sleovač stpeň napěťově nezeslje, poze proově 4

5 Vstpní opor emtorovéo sleovače rčíme ze vzta: vst β. výst tranzstor ( ) β Určení výstpnío opor: - jao paralelní onota vlastnío výstpnío opor stpně SK ( / pro O) a rezstor (přípaný vntřní opor zroje snál přpočteme e vstpním opor tranzstor ) výstcelový výst tranzstor výst β Požívá se pro svůj vysoý vstpní a nízý výstpní opor, např. mpeančním přzpůsoení vstpů a výstp zařízení. 5

6 TNZISTOOVÝ STUPŇ S SPOLČNÝM MITOM STBILIZOVNÝ ZÁPONOU ZPĚTNOU VZBOU V MITOU Napěťové zesílení - není přílš závslé na zesílení samotnéo tranzstor požtí např. sérově vyráěnýc přístrojů) poměrně velý vstpní opor vst. C o T U ( ) β K _ β.. β β e vst β. 6

7 STUPŇ S S UNIPOLÁNÍM TNZISTOM NMOS Grafcý početní postp řešení stpňů s polem řízeným tranzstory je stejný jao s polárním tranzstory: řešíme sostav: - rovnce caratersty npolárnío tranzstor - a rovnc vnějšío ovo 0 G G 4M7 K 5 G V U -5V 33 ovnce vnějšío ovo: lneární aproxmace oletorové caratersty y. y 0. Dynamcá strmost S (je analocá yn. pro. zesílení): S y y. K ] Napěťové zesílení: - K. - K.S 7

8 ŘZNÍ STUPŇŮ, LOGITMICKÁ MÍ ZSÍLNÍ Pro osažení většío zesílení řaíme za seo více stpňů. Vaza mez stpn může ýt: a) přímá, stejnosměrná: stpně vázány ď přímo neo přes článe mtočtově nezávslý (s přenosem ta, ay neyly naršeny lové pracovní oy oo stpňů) mtočtová caratersta celéo zeslovače je onstantní o nlovýc mtočtů statcý posv pracovnío o prvnío stpně se přenáší přes celý zeslovač ) stříavá: stpně jso mez seo vázány přes prve oěljící stejnosměrné lové složy pracovnío o (v nf zeslovačíc zpravla onenzátor) onenzátor tvoří se vstpním oporem náslejícío stpně ervační člen C ervační člen C nepropoští mtočty nžší než /(πc) zeslovač zeslje jen mtočty vyšší až o orní mezní frevence orní mezní frevence je ána orní mezní frevencí atvníc prvů a paraztním apactam Napěťové zesílení zeslovače a jeo mtočtová caratersta se ěžně ávají v tzv. loartmcé míře, jejíž jenoto je B - ecel. 0 B Zesílení 0 x opovíá 0 B, 0 3 x opovíá 60 B lo [B;-] Zesílení celéo řetězce je áno - v asoltní míře - sočnem zesílení jenotlvýc stpňů, - v loartmcé míře - jejc sočtem n B B B 3B... nb 8

Základy elektrotechniky

Základy elektrotechniky Zálady eletrotechniy Přednáša Zesilovače s tranzistory, operační zesilovače Stpeň se společným emitorem (SE) Pracovní bod tranzistor je vázán: jeho charateristiami podle b h (i b, ) i h (i b, ) a rovnicí

Více

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ

7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů

Více

= + + R. u 1 = N R R., protože proud: i je protlačován napětím: u 1P ve smyčce

= + + R. u 1 = N R R., protože proud: i je protlačován napětím: u 1P ve smyčce Vážení zákazníc, dovoljeme s Vás pozornt, že na tto kázk knhy se vztahjí atorská práva, tzv copyrght o znamená, že kázka má složt výhradnì pro osobní potøeb potencálního kpjícího (aby ètenáø vdìl, jakým

Více

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3 MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-3 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím

Více

1. POLOVODIČOVÉ TEPLOMĚRY

1. POLOVODIČOVÉ TEPLOMĚRY Úkol měření 1. POLOVODČOVÉ EPLOMĚY 1. entfkujte neznámý perlčkový termstor. Navrhněte zapojení pro jeho lnearzac.. rčete teplotní závslost napětí na oě protékané konstantním prouem a charakterstku teplotního

Více

pravděpodobnost záporné výchylky větší než 2,5σ je 0,6%

pravděpodobnost záporné výchylky větší než 2,5σ je 0,6% .NOISE Šmová analýza ezstory a polovodčové prvky jso zdroj vlastního šm. Šmová analýza = analýza pronkání těchto šmů na výstp obvod. Výstpní šm se pak může přepočítat přes vstpně-výstpní přenos zpět na

Více

Nízkofrekvenční předzesilovač

Nízkofrekvenční předzesilovač Střední průmyslová škola elektrotecnická Pardubice VČENÍ ELEKTONKY Nízkofrekvenční předzesilovač Příjmení : Česák Číslo úloy : 4 Jméno : Petr Datum zadání : 7..98 Školní rok : 99798 Datum odevzdání : 4.

Více

BJT jako zesilovač malého signálu. BJT jako odporový dvojbran. Linearizace charakteristik pro okolí P 0. zapojení SE!! U CE

BJT jako zesilovač malého signálu. BJT jako odporový dvojbran. Linearizace charakteristik pro okolí P 0. zapojení SE!! U CE ipolární tranzistor JT JT - řízený prodový zdroj JT jako zesilovač maléo signál náradní lineární obvod a jeo parametry vf model JT I okamžité zatěžovací carakteristiky směrnice / I zesilovače s JT směrnice

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Střídavý měnič aplikace

Střídavý měnič aplikace Střívý měnč plkce /0_v Jn Ber Topologe V V z Požtí: Bezkontktní spínče Měnč požt k zpntí/vypntí střívého obvo Kompenzce jlového výkon Q Měnč požt k řízení velkost kompenzovného Q Jn Ber Bezkontktní spínče

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V BNĚ Faklta elektrotechnky a komnkačních technologí BAKALÁŘSKÁ PÁCE Brno, 06 Vít Mškařík VYSOKÉ UČENÍ TECHNICKÉ V BNĚ BNO UNIVESITY OF TECHNOLOGY FAKULTA ELEKTOTECHNIKY A KOMUNIKAČNÍCH

Více

FYZIKA 3. ROČNÍK. Obvod střídavého proudu s odporem. ϕ = 0. i, u. U m I m T 2

FYZIKA 3. ROČNÍK. Obvod střídavého proudu s odporem. ϕ = 0. i, u. U m I m T 2 FYZIKA 3. OČNÍK Ncené elg. ktání střídavý prod Zdroje stříd. prod generátory střídavého prod Zapojení různých prvků v obvod střídavého prod zkoáe, jaký způsobe paraetr prvk v obvod ovlvňje velkost napětí

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nverzta Tomáše Bat ve líně LABOATOÍ CČEÍ ELETOTECHY A PŮMYSLOÉ ELETOY ázev úlohy: ávrh dělče napětí pracoval: Petr Luzar, Josef Moravčík Skupna: T / Datum měření:.února 8 Obor: nformační technologe Hodnocení:

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol: Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat

Více

9. MAGNETICKÁ MĚŘENÍ

9. MAGNETICKÁ MĚŘENÍ 9. MAGEIKÁ MĚŘEÍ měření magnecké nkce a nenzy magneckého pole (sejnosměrné pole - allova a feromagnecká sona, anzoropní magneorezsor, sříavé pole - měřcí cívka) měření charakersk feromagneckých maerálů

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M.

Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M. Stanovení nestot výsledků zkošky přesnost/kalbrace vodorovných a svslých lneárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M. Klíčová slova: zdro nestoty, standardní nestota, rozšířená nestota,

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

2 Diferenciální rovnice

2 Diferenciální rovnice 2 Diferenciální rovnice 2 Moely růstu V této apitole bueme zabývat jenouchými eterministicými moely růstu, napříla růstu populací, objemu nějaé omoity apo Funce y(t bue označovat veliost populace v čase

Více

Studentská tvůrčí a odborná činnost STOČ 2013

Studentská tvůrčí a odborná činnost STOČ 2013 Stentsá tvůrčí oborná čnnost SOČ 03 MEODY KOMPEZACE PORUCHY V PREDIKIVÍM ŘÍZEÍ S DOPRAVÍM ZPOŽDĚÍM Stnslv ALAŠ UB ve Zlíně, FAI Stráněm 45 5. bn 03 FAI UB ve Zlíně SOČ 03 - Stentsá tvůrčí oborná čnnost

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

LOGICKÉ OBVODY. Dle vnitřní struktury logické obvody rozdělujeme na:

LOGICKÉ OBVODY. Dle vnitřní struktury logické obvody rozdělujeme na: OGICKÉ OBVODY Dle vnitřní strktry logické obvody rozděljeme na: a) kombinační - nemají vnitřní zpětné vazby. Všem kombinacím vstpů jso jednoznačně přiřazeny hodnoty výstpů, bez ohled na předcházející stav.

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro poslchače bakalářských stijních programů FS 7. VÝKONOVÁ ELEKTRONIKA Příkla 7. Elektromagnet s oporem R a inkčností L je napájen z voplsního jenofázového ioového směrňovače. Úbytky napětí zanebejte.

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

FEKT VUT v Brně ESO / P7 / J.Boušek 1 FEKT VUT v Brně ESO / P7 / J.Boušek 2

FEKT VUT v Brně ESO / P7 / J.Boušek 1 FEKT VUT v Brně ESO / P7 / J.Boušek 2 UML FK VU V RNĚ J.ošek / lektronické sočástky / P6 echnologie výroby bipolárního tranzistor echnologie výroby bipolárního tranzistor slitinová Diskrétní tranzistor Kolektor sbstrát difúzní PAXNÍ MSA ntegrovaný

Více

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Křivky a plochy II. Petr Felkel. Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí

Křivky a plochy II. Petr Felkel. Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí Křvky a plochy II Petr Felkel Katedra počítačové grafky a nterakce, ČVUT FEL místnost KN:E-4 na Karlově náměstí E-mal: felkel@fel.cvt.cz S požtím materálů Bohslava Hdce, Jaroslava Slopa a úprav Vlastmla

Více

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty

Using a Kalman Filter for Estimating a Random Constant Použití Kalmanova filtru pro výpočet odhadu konstantní hodnoty II. Semnar ASR 007 Instruments and Control, Farana, Smutný, Kočí & Babuch (eds) 007, VŠB-TUO, Ostrava, ISB 978-80-48-7-4 Usng a Kalman Flter for Estmatng a Random Constant Použtí Kalmanova fltru pro výpočet

Více

i 2 R výst R z u 2 nf. zesilovac u 2 R Z Obr. 3.2 Zapojení prístroju pro merení vlastností nf. zesilovace = výkonové: A i

i 2 R výst R z u 2 nf. zesilovac u 2 R Z Obr. 3.2 Zapojení prístroju pro merení vlastností nf. zesilovace = výkonové: A i 3 Zesilovace Zesilovac mže být elektrický, pnematický (brzdy v nákladním ate), hydralický (bagr). Každý ke své cinnosti zesilování, potrebje zdroj energie. Elektrický zesilovac stejnosmerné napetí, pnematický

Více

Ž Ý ř Ů ř ó ř ř Ý ř ó ř óú ř ů ř ř ř ř ž ř Ž ř ř ň ů ř ř ř ř ř ř ř ó ř ř Á ř Ž ř Ž ř ř ř Ž ů ř Ž ř ň ó É ů ř ů ř ř ř Ř ř ř ů ř ň ř ů ř ř ů Ž Á ó Ž ř ř Ž ř ř ř ť ř ů ž ř ů ř ř ř ů ř ř ř ř ř ř ř ř ř Ť ň

Více

ú ů ú Ů ů ů ů ů ú Á ť ó ú ú Ň ú ů ú ů ú ú ť ů ó ů ú ú ů ů Ž ú Á ú ů ť Ý ó ú ů ů ď ú ů ů ň ú ú ť ú ú ó ů ů ň ů Ť ů ť ů ů ů ů ú ů ů Ž ú ů Ž ú ú ú ď ů ú Ď Ť ů ú ů Ř Ý úó ú ó ó ň ú ů ú Ď ó ň ů ň ú Ď ů ň ů

Více

teorie elektronických obvodů Jiří Petržela syntéza a návrh elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza a návrh elektronických obvodů Jří Petržela yntéza a návrh eletroncých obvodů vtupní údaje pro yntézu obvodu yntéza a návrh eletroncých obvodů vlatnot obvodu obvodové funce parametry obvodu toleranční pole (mtočtové charaterty fltru)

Více

MĚŘENÍ INDUKČNOSTI A KAPACITY

MĚŘENÍ INDUKČNOSTI A KAPACITY Úloha č. MĚŘENÍ NDKČNOST A KAPATY ÚKO MĚŘENÍ:. Změřte ndkčnost cívky bez jádra z její mpedance a stanovte nejstot měření.. Změřte na Maxwellově můstk ndkčnost cívky a rčete nejstot měření. Porovnejte výsledky

Více

TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS

TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS Vladimír Hanta Vsoká škola chemicko technologická v Praze, Ústav počítačové a řídicí technik Abstrakt Algebra blokových schémat a požití Masonova pravidla

Více

š Ž š Ž š Ž ě ě ť ě Á Ě ě ě š Ž ěš Ú š ě ě ě ÓÝ Ý ď ď ě ť Ý Ž Š ť É

š Ž š Ž š Ž ě ě ť ě Á Ě ě ě š Ž ěš Ú š ě ě ě ÓÝ Ý ď ď ě ť Ý Ž Š ť É š Ž š Ž Ť š Ž š Ž š Ž ě ť Ú š Ž ě ě ě ě ď ď Ž ť š ě š ě ě Ž ě š Ž ě ď ě Á ĚŘ Ů Á Á Á Á Ů Á Ý Š Á Ů É š ě ť š Ž š Ž š Ž ě ě ť ě Á Ě ě ě š Ž ěš Ú š ě ě ě ÓÝ Ý ď ď ě ť Ý Ž Š ť É š Ž š Ž š Ž ěž Ě ě ě ě Š Ž

Více

LBB 442x/xx Výkonové zesilovače

LBB 442x/xx Výkonové zesilovače Konferenční systémy LBB 442x/xx Výkonové zesilovače LBB 442x/xx Výkonové zesilovače www.boschsecrity.cz, 2, 4 nebo 8 adio výstpů (možnost výběr z výstpů 00 / 70 / 50 V) Zpracování zvk a zpoždění pro každý

Více

Matematické modelování turbulence

Matematické modelování turbulence Matematcé modelování turbulence 1. Reynolds Averaged Naver Stoes (RANS) Řeší se Reynoldsovy rovnce Výsledem ustálené řešení, střední velčny Musí se použít fyzální model pro modelování Reynoldsových napětí

Více

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú

Více

Ť ř ř č ř ř ž ů

Ť ř ř č ř ř ž ů ó ď Ň č ř ý ů Šů ř ů ý ý ý ý ý č ž ó ý Ť ý ř ž ý ž ý ů ý ý ř č ý ó ž ž č č ž ř ý ý ď ř ř ř ř ž ó ú ž ř ř Ť ý Ž ř ř ý č ů č ý ď ž ý ů ž Ť ř ř č ř ř ž ů ů ď ý č ř ý ž ů ý Ž ý č ů ó ř É ý ř ů ř ý ž ď ž ř

Více

š ě š č éú č Í č č ě č ů č ěňčň é čí é ď č Ž Ž č č ý ěť č Ž ú Ž É ý č č č ůž č é é ň ý č Č ěř č ě ě ě É š ěž é Í Í ě ě č ý Í ď ýď ž Ť ň ř Íš ěž č ý ěž

š ě š č éú č Í č č ě č ů č ěňčň é čí é ď č Ž Ž č č ý ěť č Ž ú Ž É ý č č č ůž č é é ň ý č Č ěř č ě ě ě É š ěž é Í Í ě ě č ý Í ď ýď ž Ť ň ř Íš ěž č ý ěž é ř ř é ů ť ť č č ř ěž ů é Ž é Ě ě é é ř Š ě é Ž ěž ř š Č ř Ž é ř ěž é ř é ú ř Č é é ř é ř é č ř ú ů Č ě ň é č ř ÉŽ Ž ý ě Ž ůž ě ú ě ů ý Č ř ý é ř ř é ř š ě Ž ý ř žš ž é ě š š ř Ž é ř ůž é ř é ř ý ě š

Více

Typ UCE0 (V) IC (A) PCmax (W)

Typ UCE0 (V) IC (A) PCmax (W) REDL 3.EB 11 1/13 1.ZADÁNÍ Změřte statické charakteristiky tranzistoru K605 v zapojení se společným emitorem a) Změřte výstupní charakteristiky naprázdno C =f( CE ) pro B =1, 2, 4, 6, 8, 10, 15mA do CE

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jří Holčí, CSc. holc@ba.un.cz, Kaence 3, 4. patro, dv.č.424 INVESTICE Insttut DO bostatsty ROZVOJE VZDĚLÁVÁNÍ a analýz XIII. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ SPOJITÉ

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

Otázka č.12 - Přijímače AM: Blokové schéma AM přijímače

Otázka č.12 - Přijímače AM: Blokové schéma AM přijímače Otázka č.12 - Přjímače AM: Blokové schéma AM přjímače vstupní vf laděný předzeslovač směšovač M vícestupňový mf zeslovač demodulátor zes. vf osclátor soustředěná mf selektvta preselektor řízení vf a mf

Více

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut) 15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch

Více

Ú ď Ž ď ť ť ď ď ň

Ú ď Ž ď ť ť ď ď ň Ň ďó ť ď ď ď Č Ú ď Ž ď ť ť ď ď ň ď Š Ť ň ÝŤ ť ď ť Ó Ž Ó ť Ď ň ň Ť ď Ž ň ň Ú ť Š ň ň Š Ž Ď Ú ď ť Ú Ú Ť Ó ť Ť Ú Ú Ť Ť ť ť ď Ú ÝŤ Ť Ú ď Ú Ť Ú Ú Ť ď Ú Ý Ř Ú Ú ň ď ť Ť Ú Ó ď Ó Ó ť Ú É ď ň ť Ú Ú Ý Ť Ž Ť Ť Ť

Více

4 Parametry jízdy kolejových vozidel

4 Parametry jízdy kolejových vozidel 4 Parametry jízdy kolejových vozdel Př zkoumání jízdy železnčních vozdel zjšťujeme většnou tř základní charakterstcké parametry jejch pohybu. Těmto charakterstkam jsou: a) průběh rychlost vozdel - tachogram,

Více

7. ZPĚTNÉ VLIVY MĚNIČŮ NA NAPÁJECÍ SÍŤ Harmonické proudy řízených usměrňovačů

7. ZPĚTNÉ VLIVY MĚNIČŮ NA NAPÁJECÍ SÍŤ Harmonické proudy řízených usměrňovačů 7. ZPĚTNÉ VLVY MĚNČŮ NA NAPÁJECÍ SÍŤ 7.. Haroncé prouy řízenýc usěrňovačů L L L3 Př zjenoušenýc poínác Syercá napájecí sousava Syercé řízení ěnče ve všec fázíc Haroncé napájecí napěí nučnos v sejnosěrné

Více

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2.

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2. Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R 00 kω, φ 5mW/cm 2. Fotovoltaický režim: fotodioda pracuje jako zdroj (s paralelně zapojeným odporem-zátěží). Obvod je popsán

Více

4. Třídění statistických dat pořádek v datech

4. Třídění statistických dat pořádek v datech 4. Třídění statstcých dat pořáde v datech Záladní členění statstcých řad: řada časová, řada prostorová, řada věcná věcná slovní řada, věcná číselná řada. Záladem statstcého třídění je uspořádání hodnot

Více

č ú Č ú ř č čň účť Ý ř ý ý Ť ž ť ň ň ž ř é ř úč ř é š Ť é č ť úč ť Ý ř š ř č ú ř ť č ú ř é ýý é č ž Ť Ť ú Ýé ž é ř Č ť Ý ú

č ú Č ú ř č čň účť Ý ř ý ý Ť ž ť ň ň ž ř é ř úč ř é š Ť é č ť úč ť Ý ř š ř č ú ř ť č ú ř é ýý é č ž Ť Ť ú Ýé ž é ř Č ť Ý ú é ř é ř č ó ř ý š ř ů é Á ů Ú ř ž ř č č ř ř é ř ř Ť é č Č ý ř ř é ý č ú Č ú ř č čň účť Ý ř ý ý Ť ž ť ň ň ž ř é ř úč ř é š Ť é č ť úč ť Ý ř š ř č ú ř ť č ú ř é ýý é č ž Ť Ť ú Ýé ž é ř Č ť Ý ú č ú ř é Ýý

Více

ř č ě ř č ř š ř ě ř ů

ř č ě ř č ř š ř ě ř ů ÚŘ Ů É ř č ě ř č ř š ř ě ř ů Č ř š ř š ó ó č Č Č ě ů Ý ě ř ř šť ř ě ň ů ě č Č ř Š ó É Í Č ě ů Č Č ě ě č ř ů ř Š ř ě ň ú ě č č ř š č ě ž ř ř ř ě š ř č ř ř ů ř ř ž ž ň ř ř ř ě ů ř š č ř š ž ů š ň ň š ř š

Více

1. Určení vlnové délka světla pomocí difrakční mřížky

1. Určení vlnové délka světla pomocí difrakční mřížky FAKULTA STAVEBÍ KATEDRA FYZIKY 10FY1G Fzka G 1. Určení vlnové délka světla pomocí dfrakční mřížk Petr Pokorný Pavel Klmon Flp Šmejkal LS 016/17 skpna 1 datm měření: 19.. 017 Zadání Pomocí dfrakční mřížk

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

ó ř é ó é Ě ť é

ó ř é ó é Ě ť é ý é ř ó Č é Ř é é ÍŽ é ý ř é é é ř ó ř é ó é Ě ť é é ů ť ř š š š é š ř ť š ý š é š ř ů ú ř ý š é š é é š é š ž ú š é š é ř é ř ý Ů š é š ř š š é š ú š ý ř é š é š š é é ď š é ů ž é é ď é š ř é ř ž é é

Více

Studentská tvůrčí a odborná činnost STOČ 2015

Studentská tvůrčí a odborná činnost STOČ 2015 Stdentská tvůrčí a odborná činnost STOČ 215 MATEMATICKÉ MODELY ZAVĚŠENÍ AUTOMOBILU Jan MACHÁČEK Vysoká škola báňská Technická niverzita Ostrava 17. listopad 15/2172 78 33 Ostrava-Porba 23. dbna 215 FAI

Více

Ž š Ž ň Ú ň ň Ž ú

Ž š Ž ň Ú ň ň Ž ú ň š Č Ž Č ň Ž š Ž ň Ú ň ň Ž ú Ž É Č Ý Ě ĚŠ Ý Ž š ň ž š Č Ž ň Č Ž š ň Ž š Č Ž š ň ň ó ó Í ň š Ž ň Ž ň ů Ž ň ň Ž š ň Ž ň Ž ň ň š Č Ž Ž š ž ň ň ň ň Ž ň Ž ú ň ň Ž š Ž ů Ž š Ž ň ň š ň ů Ž Ž ů ň ň ů Ž ů ň ů

Více

LBB 1990/00 Řídicí jednotka

LBB 1990/00 Řídicí jednotka Konferenční systémy LBB 1990/00 Řídicí jednotka LBB 1990/00 Řídicí jednotka www.boschsecritysystems.cz Srdce systém evakačního rozhlas Plena Voice Alarm System Certifikát TÜV pro norm IEC 60849 a EZÚ pro

Více

ý č ě é é í Č Č ří š í ú ýž í š ě á í ý š á á ý í í š ř í é ě í ú é ě é č č ří š í í é í é č ý í ř ý á í š ě á í š ě í ýž í áš í ž ž á ý č ě í ří ř á

ý č ě é é í Č Č ří š í ú ýž í š ě á í ý š á á ý í í š ř í é ě í ú é ě é č č ří š í í é í é č ý í ř ý á í š ě á í š ě í ýž í áš í ž ž á ý č ě í ří ř á ý ě Č Č ř š ú ýž š ě ý š ý š ř ě ú ě ř š ý ř ý š ě š ě ýž š ž ž ý ě ří ř ě ú ú ň ň ý ě ý ě ě ž ř ř ř ý ř ýř ř ř ď ú ú ě ý ř ř š ě ř ú Č ň ý ú ýž š ě ř ý š ě ř ě ě š ě ýž š ě š ú ě ý ý ý ú ýž š ě úř ý š

Více

ž ř ř ž ř š ž ř ý ý ý ř ž ž ř Ť ý ý ž ř ý ž ř ž ř ý ř ó š ž ř ý Í ž ř Ž ž

ž ř ř ž ř š ž ř ý ý ý ř ž ž ř Ť ý ý ž ř ý ž ř ž ř ý ř ó š ž ř ý Í ž ř Ž ž š ž ř ř š ř ň ř š š Í Ú š ž ř ť ř ř š ř ž ř ř ž ř š ž ř ý ý ý ř ž ž ř Ť ý ý ž ř ý ž ř ž ř ý ř ó š ž ř ý Í ž ř Ž ž Č š ř ž ř ř ň ž ř ř ž ř š ž š ž ř ř ý š ž š ž ř ý ú ý ž ý ž ý ý ž ř ř Ž Ž Ť ý ý ž ř ž ř

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Bipolární tranzistor. Bipolární tranzistor - struktura. Princip práce tranzistoru. Princip práce tranzistoru. Zapojení SC.

Bipolární tranzistor. Bipolární tranzistor - struktura. Princip práce tranzistoru. Princip práce tranzistoru. Zapojení SC. ipolární tranzistor Tranzistor (angl. transistor) transfer resistor bipolární na přenosu proudu se podílejí jak elektrony, tak díry je tvořen dvěma přechody na jednom základním monoktystalu Emitorový přechod

Více

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ

II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je operační zesilovač. Pro měření byla použita souprava s operačním zesilovačem, kde napájení bylo 5V IEDL 4.EB 8 1/8 1.ZADÁNÍ a) Změřte napěťovou nesymetrii operačního zesilovače pro různé hodnoty zpětné vazby (1kΩ, 10kΩ, 100kΩ) b) Změřte a graficky znázorněte přenosovou charakteristiku invertujícího

Více

Výukový systém µlab. Obvody støídavého proudu

Výukový systém µlab. Obvody støídavého proudu Výkový systém µlab Obvody støídavého prod Integraèní a dervaèní èlánek Zmìøte odezvy ntegraèního a dervaèního èlánk na obdélníkové napìtí. Integraèní èlánek 1 Dervaèní èlánek 2 300Hz 1 2 300Hz 1 2 Dolní

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

POLOVODIČOVÉ USMĚRŇOVAČE

POLOVODIČOVÉ USMĚRŇOVAČE POLOVODČOVÉ SMĚŇOVAČE rčeno pro poslchače bakalářských stijních prograů FS Obsah: Úvo Neřízené polovoičové sěrňovače v jenocestné (zlové) zapojení Jenofázové jenoplsní jenocestné (zlové) sěrňovače sěrňovač

Více

é š ž ú é ď É ř ž ú ů é š ž ú ú š ř š ž ř ů š ů ř š é é ž š ú ž ř ů é ů ř ú ň é š ř ř é ú Š Š ř ř š š é é é ú é š ž ů š ř ř ž ř ř é ř ř é é š ž ř ž ž

é š ž ú é ď É ř ž ú ů é š ž ú ú š ř š ž ř ů š ů ř š é é ž š ú ž ř ů é ů ř ú ň é š ř ř é ú Š Š ř ř š š é é é ú é š ž ů š ř ř ž ř ř é ř ř é é š ž ř ž ž Á š Á Ž ŤĚ Ý ť Ě Á Á Í ř é ú Š Š řé š š ř ú Š Š é š é é Č ú é š ž ú é ď É ř ž ú ů é š ž ú ú š ř š ž ř ů š ů ř š é é ž š ú ž ř ů é ů ř ú ň é š ř ř é ú Š Š ř ř š š é é é ú é š ž ů š ř ř ž ř ř é ř ř é é š

Více

teorie elektronických obvodů Jiří Petržela topologie obvodů, analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela topologie obvodů, analýza obvodů s regulárními prvky Jří Petržela topologe obvodů, analýza obvodů s regulárním prvk metod analýz obvodů topologe obvodů, analýza obvodů s regulárním prvk heurstcké metod jsou založen na zkušenostech řeštele vžadují tvůrčí

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Střídače. přednáška výkonová elektronika. Projekt ESF CZ.1.07/2.2.00/ Modernizace didaktických metod a inovace výuky technických předmětů.

Střídače. přednáška výkonová elektronika. Projekt ESF CZ.1.07/2.2.00/ Modernizace didaktických metod a inovace výuky technických předmětů. přednáška výkonová elektronika Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výky technických předmětů. Střídače Střídače obvody s vstpní strano stejnosměrno a výstpní střídavo

Více

Ě Í Č ŘÍ Ů ň ž óý ó ó ó ú ž ú ú ó ř ů ř É ř ň ř ř ň ř ň ú ň ó ř ř ř ř ó ú ú ř ó ř ř ř ň Á

Ě Í Č ŘÍ Ů ň ž óý ó ó ó ú ž ú ú ó ř ů ř É ř ň ř ř ň ř ň ú ň ó ř ř ř ř ó ú ú ř ó ř ř ř ň Á Ú š ú ň ú ó ú ř ů Ů ú ů ž ú ú ů ů ů ú Ů ž ů ř ř ř ň óý ó Ó Ě Í Č ŘÍ Ů ň ž óý ó ó ó ú ž ú ú ó ř ů ř É ř ň ř ř ň ř ň ú ň ó ř ř ř ř ó ú ú ř ó ř ř ř ň Á ó ň Ů Ť Ý ú š ó ů Ú Ú ž É ž ž ú ó ž ž š ž ž É ž ž Ď

Více

MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část

MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbran, část 3-12-1 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím ICT

Více

VÝKONOVÁ ELEKTRONIKA I

VÝKONOVÁ ELEKTRONIKA I Vysoká škola báňská - Techncká nverzta Ostrava Faklta elektrotechnky a nformatky VÝKONOVÁ ELEKTRONIKA I pro kombnované a dstanční stdm Petr Chlebš Ostrava 23 1 Petr Chlebš, 23 Faklta elektrotechnky a nformatky

Více

ú ú Ý ť ó ó Ý É ó Ú ó ó Žó ó ó ó ď ú ó ó ň ó ó ú ď ó ň ď ó ň Ž Ů Č Š ú ť Ž

ú ú Ý ť ó ó Ý É ó Ú ó ó Žó ó ó ó ď ú ó ó ň ó ó ú ď ó ň ď ó ň Ž Ů Č Š ú ť Ž ú É ú ú Ý ť ó ó Ý É ó Ú ó ó Žó ó ó ó ď ú ó ó ň ó ó ú ď ó ň ď ó ň Ž Ů Č Š ú ť Ž Ž Ž Ž ú Ý ď Ž ň Ž ú ó ú Ž Ž ó Č Ž Ž ť ď Ž Ž Č Č Ž ň ú ú ú ú Š Ó ť ť ó Ý ó Ý Ž Č ú Ř Ž ó Ž Ř Ř ú Ž ú Ý ú ú ú Ž Ž Ž Ž Š Á Ů

Více

Á Á ŇŘ Ú ú Ť ťš č Á ě ú ě č ě ů ě ě š š š ý ýó ť š ť ý ó Ť š ť Á š č š ú č š ť ú č ě Á ýť ě Á ú ť č č Á č ý ý ě ť ě ě Á ú ť č úč ť Á ě ý č ú Ž Ž ú Ž Ť č ů ý ě č ú ě č ý ú š ú ú Ž ť ýš š Á ě ť ě ť š ú ť

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PASTICITA ENERGETICKÉ METODY SHRNUTÍ TEORIE A PŘÍKADY Ing. Rostslav Zídek, Ph.D. Ing. děk Brdečko, Ph.D. Obsah. Předmlva.... Deformační (přetvárná) práce..... Přetvárná práce vnějších sl.....

Více

FYZIKÁLNÍ MODEL - MODELOVÁ PODOBNOST

FYZIKÁLNÍ MODEL - MODELOVÁ PODOBNOST YZIÁNÍ OD - ODOVÁ ODOBNOST YZIÁNÍ OD HOTNÝ A ÁNÝ OBJT SSTAVNÝ NA SHODNÉ YZIÁNÍ INCIU NA ANAOGICÉ YZIÁNÍ INCIU YZIÁNÍ CHANICÝ OD JHO DOAC NAĚTÍ atd. ODOVÍDAJÍ DOACÍ A NĚĚTÍ NA ÁNÉ ONSTUCI OŽADAVY NA VASTNOSTI

Více

Nelineární model tepelné soustavy a GPC regulátor

Nelineární model tepelné soustavy a GPC regulátor Nelineární model tepelné sostavy a GP reglátor Ing Jan Mareš Školitel: oc Ing František šek, c Univerzita Pardbice Faklta chemicko-technologická Katedra řízení procesů Obsah 1 Popis tepelné sostavy 2 Požadavky

Více

Ó ž Ť Ž ž ž ů ž ž ž ť Ž ž Ž É ů ň ž ů Ť ž ů ž ž ň ž ů ť ž

Ó ž Ť Ž ž ž ů ž ž ž ť Ž ž Ž É ů ň ž ů Ť ž ů ž ž ň ž ů ť ž Č Ú Ú ž ž ň Č Č ž ž ž ž ž ů Č Ú ž Ž ú Ž Ž ž Ž ů É Ž ú ž ž Ž Ž ů ť ú ž Ó ž Ť Ž ž ž ů ž ž ž ť Ž ž Ž É ů ň ž ů Ť ž ů ž ž ň ž ů ť ž Č ž Ě Ú ň ť ž ž ů ú Ž ú ž Ý ůž ů ž ů ů ů ž Ž Ž ú Ž ů ú Ž ž ŠČ Ě É Š Ť Ž Ž

Více

Stísněná plastická deformace PLASTICITA

Stísněná plastická deformace PLASTICITA Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle

Více

2.4. DISKRÉTNÍ SIGNÁLY Vzorkování

2.4. DISKRÉTNÍ SIGNÁLY Vzorkování .4. DISKRÉTÍ SIGÁLY.4.. Vzorování Vzorování je nejběžnější způsob vznu dsrétních sgnálů ze sgnálů spojtých. Předpoládejme, že spojtý sgnál (t) je přveden na spínač, terý se velce rátce sepne aždých T vz

Více

ř ě č ř ě Ý účé ěř Ý é É Ě Ýý ď ý úč č č ú ě é É ť ú Ě óý É ý ó É ý ý ň Ýý ú ť ý úý ó ý ý é ýď é ý ň É ý úú ý ý ó É É ý ý ň É ó Á É Ť ý ě Í É É Ý ě ý č é č Ý ř ó ó ó ó Ý é ó ž é ú Á ď é ď ú ý éž éé Ž É

Více

č č č Ž Ž Š ď č Č ó č ň Ú ď ň č ň

č č č Ž Ž Š ď č Č ó č ň Ú ď ň č ň č Ť ň Ž č č Ž ň č č č č čň ď č č č ň ď č ď Ž č Ť č č č č č Ž Ž Š ď č Č ó č ň Ú ď ň č ň č č Ú č Ú Ž č č č č č č Ž č Ž č č č ť č č ď č č č č Ť ň ň Ž ň ň Ž ú Ť č č Ž ť č č č ď č Ž č č č ď Ú Ž č č č ň č č

Více

Ě ú ť ú Ó ň ť ú ť ť ť ť Ť ó ť ň ť ú Ň ó ó ó ó Ý ďň ó ú ó ó ď Ó ť ď ďť

Ě ú ť ú Ó ň ť ú ť ť ť ť Ť ó ť ň ť ú Ň ó ó ó ó Ý ďň ó ú ó ó ď Ó ť ď ďť ÉČ Ě ú ť ú Ó ň ť ú ť ť ť ť Ť ó ť ň ť ú Ň ó ó ó ó Ý ďň ó ú ó ó ď Ó ť ď ďť Č ť Č Č Ť ť Ť ň ú ň ú Ž Ť Ý Ž Č ň ú ň ó ó Ř Ý ň Š ú ó Ž ú Ž ň Ž Č Č ú ó ó ú ó Ů ú Ý ňú ó Č Ž ú ú É ó É Ž Ž Ž Ý Ž Č Ž ó ú ť ú Ž Ž

Více

OPERA Č NÍ ZESILOVA Č E

OPERA Č NÍ ZESILOVA Č E OPERAČNÍ ZESILOVAČE OPERAČNÍ ZESILOVAČE Z NÁZVU SE DÁ USOUDIT, ŽE SE JEDNÁ O ZESILOVAČ POUŽÍVANÝ K NĚJAKÝM OPERACÍM. PŮVODNÍ URČENÍ SE TÝKALO ANALOGOVÝCH POČÍTAČŮ, KDE OPERAČNÍ ZESILOVAČ DOKÁZAL USKUTEČNIT

Více

Ú ó ó á ó ý Íň ú Í á ú ř á á ž á ú á š ř ý š á ú Ď ř á ř á ý Á ý á ď ř š ď á á ď ř ť ž ř ů á ř ř á á ž ů Ž Í ý á Ž š ú š ó ž ý ý ý ž á á áž á á ž ý š

Ú ó ó á ó ý Íň ú Í á ú ř á á ž á ú á š ř ý š á ú Ď ř á ř á ý Á ý á ď ř š ď á á ď ř ť ž ř ů á ř ř á á ž ů Ž Í ý á Ž š ú š ó ž ý ý ý ž á á áž á á ž ý š ř á úř ř á á Č Č á Č Č á ó Č ř š Í ý á á Úř úř Í úř ř š ý á ú á řá á š ř ů á á ú ř ř ž ž žá ú ť Č á á Č ó Č Č á Č á á ř á Ý á á á áš š ú ú ř á ú ř Ú Ě á áš ó á Íá á řá Í Í Í ý ř ť Ú ó ó á ó ý Íň ú Í á

Více

Určování parametrů elektrického obvodu v MS Excelu

Určování parametrů elektrického obvodu v MS Excelu XX. AS 003 Semnar nstrments and ontrol Ostrava May 6 003 47 rčování parametrů elektrckého obvod v MS Ecel OSÁG etr 1 SAÍK etr 1 ng. h.. Katedra teoretcké elektrotechnky-449 ŠB-T Ostrava 17. lstopad Ostrava

Více

Difuze v procesu hoření

Difuze v procesu hoření Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení

Více

ž é č ř ěř é ž ěř úč ěř ý ě š č ž é č ř é úč é ř š ř ě ě úč ý é ý ý ý ý ý ť ž ě é ý č č ž ě č ěž ř ř č ř č č č č č č é č úř ř ě ý ě ý č ý č č ř ř ě č

ž é č ř ěř é ž ěř úč ěř ý ě š č ž é č ř é úč é ř š ř ě ě úč ý é ý ý ý ý ý ť ž ě é ý č č ž ě č ěž ř ř č ř č č č č č č é č úř ř ě ý ě ý č ý č č ř ř ě č ý č ŘÁ Ě čá Ú ý č ř ř é ž ž ř č é ž ě ě ě ě ý é ě š č ý é ž é ě š č ý é ě č é ě ě ě ý š ě š ř ě ě š ř ř č ý č é ě ě ě ý ě ě š ř ý ú é ě ě š ř š č ý ú é ě ě š ř š č ž č é ý č úč ě ě š ř č č ý ě ý č ě ě

Více

ELEKTRICKÝ POHON S ASYNCHRONNÍM MOTOREM

ELEKTRICKÝ POHON S ASYNCHRONNÍM MOTOREM 4 EEKTCKÝ POHON AYNCHONNÍ OTOE Asynchronní otory (A), zvláště pa s otvou naráto, jsou jž řadu let nejrozšířenější eletrootory na naší planetě. talo se ta díy jejch onstruční jednoduchost, nízé ceně, vysoé

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Teorie obvodů. Autor textu: Prof. Ing. Tomáš Dostál, DrSc.

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Teorie obvodů. Autor textu: Prof. Ing. Tomáš Dostál, DrSc. FAKLTA ELEKTROTECHNKY A KOMNKAČNÍCH TECHNOLOGÍ VYSOKÉ ČENÍ TECHNCKÉ V BRNĚ Teore obvodů Autor tetu: Prof. ng. Tomáš Dostál, DrSc. Brno.8. 6 FEKT Vysokého učení technckého v Brně Obsah ÚVOD.... ZAŘAZENÍ

Více

5. Diodové usměrňovače

5. Diodové usměrňovače 5. Diodové směrňovače Usměrňovač je polovodičový prvek, který mění střídavé napětí a prod na stejnosměrný. Podle toho, zda je výstpní směrněné napětí možno řídit či ne se dělí směrňovače na řízené a neřízené.

Více

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ

HUDEBNÍ EFEKT DISTORTION VYUŽÍVAJÍCÍ ZPRACOVÁNÍ PŘÍRŮSTKŮ SIGNÁLŮ ČASOVĚ HUDEBÍ EFEKT DISTORTIO VYUŽÍVAJÍCÍ ZPRACOVÁÍ PŘÍRŮSTKŮ SIGÁLŮ ČASOVĚ VARIATÍM SYSTÉMEM Ing. Jaromír Mačák Ústav telekomunkací, FEKT VUT, Purkyňova 118, Brno Emal: xmacak04@stud.feec.vutbr.cz Hudební efekt

Více

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2

MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2 MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-2 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím

Více