Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M.

Rozměr: px
Začít zobrazení ze stránky:

Download "Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M."

Transkript

1 Stanovení nestot výsledků zkošky přesnost/kalbrace vodorovných a svslých lneárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M. Klíčová slova: zdro nestoty, standardní nestota, rozšířená nestota, koefcent ctlvost V dnešní době samotný výsledek bez dání nestoty e ž zcela bezcenný. Měřením reprezentatvního vzork téže velčny, třebaže za podmínek opakovatelnost, získáme totž pokaždé různé hodnoty. Tto různorodost maí na svědomí tzv. zdroe nestoty, které proces měření ovlvňí. Článek se věne všeobecném poednání o obo složkách nestot a systematckém postp pro výpočet výsledné, rozšířené nestoty. Naměřené hodnoty, které by měl být požty k výpočt (nestoty typ A) závsí na konkrétním přístro, a proto článek dává poze návod ak s nm pracovat a doporče, s důrazem na lneární délkoměry, aké vlvy by měl být zahrnty do nestoty typ B. Informace zde obsažené se tedy daí požít ako dobrý podklad k vyhodnocení ak nestot lneárních délkoměr, tak pro ostatní přístroe.. Úvod Účelem stanovení nestot př měření e zštění nterval hodnot okolo výsledk měření, který lze přřadt k hodnotě měřené velčny, neboť vyádření výsledků měření e úplné poze tehdy, pokd obsahe ak vlastní hodnot měřené velčny, tak nestot měření patřící k této hodnotě. Rozšířeno nestot měření e ntné brát v úvah především, pokd chceme prokázat shod č neshod měřdla/obrobk se stanoveným mezem nevětších dovolených chyb (MPE)/tolerancem. Pokd leží výsledek v tzv. rozsah nestoty, nemůže být vzhledem k nestotě měření, prokázána an shoda, an neshoda. Rozsah nestoty Rozsah nestoty Toleranční mez obrobk /nevětší dovolená chyba měřdla. Model měření Toleranční pole Toleranční mez obrobk /nevětší dovolená chyba měřdla Př vyhodnocení nestoty měření e nedůležtěším krokem vysthnot podstat prováděného měření. K tomto složí sestavení model měření, v němž so obsaženy všechny vlvy, které moho působt na výsledek měření. Tyto vlvy so označovány ako zdroe nestoty a způsobí, že výsledek měření nemůže být charakterzován poze edním číslem. Moho mez ně být zahrnty: Vlvy okolí Tlak, změna tlak Teplota, teplotní odchylka Relatvní vlhkost Magnetcké, elektrcké pole Osvětlení, příp. eho frekvence a tepelné vyzařování Hstota vzdch Čstota ovzdší, prostředí, prašnost Napáecí napětí, stablta, frekvence, harmoncké zkreslení Zemní smyčky Vlvy vázané na požté přístroe, etalony a vybavení Nestota požtého etalon Rozlštelnost odečt z přístroů Vntřní tření v přístroích Stablta (časová specfkace) přístroů Dynamcké chyby přístroů Zanedbané systematcké chyby Hystereze, mrtvý chod Specfkace výměnných částí přístroů Vlvy metody ztráty, svodové prody nterakce s měřeným předmětem vlastní ohřev odvod č přestp tepla Vlvy operátora nedodržen metodk elektrostatcké pole tepelné vyzařován osobní zvyklost, měřící síla náhodné omyly př odečtech nebo záps hodnot

2 Jako zdroe nestoty lneárních délkoměrů může být obecně važováno: o Nestota požtého etalon, v tomto případě koncové měrky Dle ISO 3650 pro koncové měrky stpně I centrální délka měrky msí ležet v mezích ±0,8µm o Teplotní odchylka važme-l teplot prostředí v laboratoř v rozmezí např. od 8 C do C, t.0 ± C o Chyba odečítání Závsí na nemenší hodnotě dílk na stpnc, který se pak podělí dvěm. Pokd se bde totž ryska pohybovat mez těmto nemenším dílky, chyba pozorovatele, že se přkloní k edné č drhé straně tvoří přblžně polovn. Např. pro 0,0mm e to 0,005, pro 0,05mm e to 0,05mm. o Konstrkční vlvy - ako např. vzáemné postavení měřítka a pohyblvé čelst, tzn. přímost, rovnnost, rovnoběžnost, kolmost Dle zvoleného délkoměr moho přbýt eště další vlvy, které zde neso zahrnty a so specfko konkrétního přístroe, proto e zde ponechán volný prostor k ech zvážení. Z grafckého model měření se odvodí matematcké vyádření závslost měřené velčny (výstpní velčny) Y na vstpních velčnách X. Y f (X, X,, X N ) Pro délkoměr vypadá schéma takto: TRANS D INDIK D L INDIKD DÉLKA L OT D.. OT Dn O PŘÍSTRD INDIK E L E O PŘÍSTRE L měřená velčna (v případě délkoměrů délka) O TD,, O TDn. vstpní velčny, které transformí ndkac kalbrovaného přístroe (délkoměr) a so tedy složkam eho odchylky od deální hodnoty. Mez ně patří např. vedené: teplotní odchylka OT D, chyba odečítání OT D, konstrkční vlvy OT D3 L E...délka požtého etalon (koncové měrky) L INDIKD úda kalbrovaného přístroe (délkoměr) O PŘÍSTRD.odchylka kalbrovaného přístroe (délkoměr) př podmínkách kalbrace O PŘÍSTRE.odchylka etalon (koncových měrek) př podmínkách kalbrace nestota koncových měrek Pro větev délkoměr platí: L INDIKD L + OT D + OT D + OT D3 + O PŘÍSTRD L L INDIKD - OT D - OT D - OT D3 - O PŘÍSTRD Pro větev koncových měrek platí: L E L + O PŘÍSTRE L L E - O PŘÍSTRE Z těchto rovnc vytvoříme model měření: O PŘÍSTRD L INDIKD L E + O PŘÍSTRE - OT D - OT D - OT D3

3 3. Postp pro stanovení standardní nestoty typ A e založen na stanovení nestoty statstcko analýzo sére pozorování, které so nezávslé a so sktečněny za stených podmínek. Počet takovýchto pozorování nesmí být menší než 0. V tomto případě by msela být zvážena spolehlvost odhad standardní nestoty a případně by se msel požít ný způsob rčení standardní nestoty. V případě lneárních délkoměrů není důvod k tom, aby počet měření byl redkován pod únosno mír (např. kvůl ceně měření ), a proto další způsoby vyhodnocení standardní nestoty typ A zde nevádím. Odhad (opakovaně měřené) vstpní velčny na základě n statstcky nezávslých pozorování e dán artmetckých průměrem ndvdálních naměřených hodnot: n...artmetcký průměr naměřených hodnot n Standardní nestota e v tomto případě rčena výběrovo směrodatno odchylko průměr. ( ). Výběrová směrodatná odchylka průměrů Výběrový rozptyl artmetckého průměr n ( ) n.. Výběrový rozptyl hodnot Pro zštění nestoty A msí být pomocí délkoměr provedeno měření koncové měrky menovtého rozměr např. 50 mm, ako zvoleného etalon, a to nelépe s počtem opakování 0. Postp pro stanovení standardní nestoty typ B e založen na stanovení nestoty ným způsobem, než statstckým vyhodnocením sére pozorování. Podklady pro rčení tohoto drh nestoty so: údae výrobce údae váděné v kalbračních lstech nebo ných certfkátech zkšenost s chováním a vlastnostm příslšných materálů a zařízení údae z dříve provedených měření nestot referenčních údaů převzatých z přírček Standardní nestota e rčena v závslost na rozdělení pravděpodobnost, se ktero moho zdroe nestoty č ovlvňící velčny nabývat ednotlvých hodnot mez svým kraním mezem, vz. Tablka. Znalost o vstpní velčně Hodnoty vstpní velčny se nacházeí v nterval [a + ; a - ] se steno pravděpodobností Např. úda výrobce pro měřící zařízení, rozmezí teplot, zaokrohlovací chyby Rozdělení pravděpodobnost Rovnoměrné (Pravoúhlé) Odhad vstpní velčny a a Standardní nestota 3 Hodnoty vstpní velčny se nacházeí v okolí střed nterval hodnot s větší pravděpodobností než na kraích Např. údae z kalbračního lst, výsledek předchozí statstcké analýzy Normální (Gasovo) µ σ Hodnoty vstpní velčny se nacházeí na kraích nterval hodnot s větší pravděpodobností než v eho střed. Vstpní velčna e popsána harmoncko fnkcí X.snΦ, fázový úhel Φ e neznámý v nterval [-π; +π]. Např. mechancké kmty př zatížení rozdělení 0 3

4 Tablka : rčení standardní nestoty typ B v závslost na rozdělení pravděpodobnost vstpní velčny. Pozn. V tablce so vedeny poze nepožívaněší typy rozdělení pravděpodobnost. Není zahrnto např. Lchoběžníkové, Bmodální-Dracovo, Smpsonovo Pro koncové měrky předpokládáme rovnoměrné rozdělení 0,8µm 0,46 Pro teplotní odchylk předpokládáme rovněž rovnoměrné rozdělení,5 Chyba odečítání se chová taktéž podle rovnoměrného rozdělení 5µm 3,89 4. Výpočet standardní nestoty odhad hodnoty výstpní velčny N N N y + + /.. r( ; ). odhadntá kovarance velčn X a X r( ; )......korelační koefcent c X X,.. X N N c e tzv. Koefcent ctlvost, který e hodnoto parcální dervace fnkce f dle vstpní velčny X pro odhad eí hodnoty. Popse do aké míry e odhad výstpní hodnoty y ovlvňován změnam v odhad vstpní velčny X. Za předpoklad, že velčny neso korelované, drhá část vztah odpadá, a vztah e redkován na: ( y) n c. ( ) Př kalbrac výškoměrů není předpokládána vzáemná závslost mez vstpním velčnam, a proto lze požít redkovaný vztah. 5. Analýza nestot Obsahe seznam všech zdroů nestot a zpřehledňe tak výpočet. Standardní Rozdělení Velčna X Odhad nestota pravděpodobnost Nestota typ A (L INDIKD ) ( ) Koncové měrky např. ( O PŘÍSTRE ) 50mm Teplotní odchylka (OT D ) Chyba odečítání (OT D ) Konstrkční vlvy (OT D3 ) Tablka : Analýza nestot Koefcent ctlvost c Příspěvek k nestotě (y) s normální s ( ) 0,46µm rovnoměrné 0,46 0,5 rovnoměrné dle přístroe c.,5 0,89 rovnoměrné - -,89 0 výrobce rovnoměrné výrobce c. 4

5 6. Rozšířená nestota měření k.(y) Standardní nestota odhad hodnoty výstpní velčny (y) byla rčena s pravděpodobností P 68 %, t. pro koefcent rozšíření k. Pro no pravděpodobnost se nestota přepočte vynásobením koefcentem rozšíření k zvoleným dle tablky3. Koefcent rozšíření k Pravděpodobnost P 68% 95%,58 99% 3 99,7% Tablka 3: Koefcenty rozšíření v závslost na pravděpodobnost. V pra se vádí nestota výsledk měření rozšířená koefcentem rozšíření k, což pro normální rozdělení odpovídá pravděpodobnost pokrytí as 95 %. Případy standardní a rozšířené nestoty lstrované pro normální rozdělení. pásmo ±σ představe standardní nestot, pásmo ±b představe rozšířeno nestot pro k pásmo ±a představe rozšířeno nestot pro k Závěr Nestota měření nemůže růst do nekonečna. Msí být lmtována tak, abychom v měření měl alespoň něako stot. TP / Pro rovnoměrné rozdělení e dáno: 3 3 k. k TP k. TP k 3 3 TP.. toleranční pole, ve kterém se moho pohybovat naměřené hodnoty Pokd zštěná rozšířená nestota konkrétního měřdla přesáhne hodnot e patrné, že k. TP 3 někde nastala chyba. Zdroe nestoty mohly být nadhodnoceny nebo proces měření e v takových podmínkách, kdy výsledná nestota měření e přílš velká. Hodnoty takovéhoto měřdla maí tak velko nestot, že s nm nelze dosahovat důvěryhodných výsledků. Lteratra: [ ] Gde to the Epresson of ncertanty n Measrement (GM), frst edton, 993, corrected and reprnted 995, Internatonal Organzaton for Standardzaton (ISO), Geneva, 993 [ ] Kessel, W.: Messmethoden nd Modellbldng n Semnarnterlagen Messnscherhet nach GM prasgerecht bestmmen, Detsches Insttt für Normng (DIN) nd Physkalsch Technsche Bndesanstalt (PTB), Berln, 000 [ 3 ] ČSN EN ISO 453 Geometrcké požadavky na výrobky (GPS) Zkošení obrobků a měřdel Část : Pravdla rozhodování o prokazování shody nebo neshody se specfkacem. 5

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná

Více

Detailní porozumění podstatě měření

Detailní porozumění podstatě měření Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

Přesnost nepřímých měření Accuracy of Indirect Measurement TITLE

Přesnost nepřímých měření Accuracy of Indirect Measurement TITLE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

DODATEK. D0. Nejistoty měření

DODATEK. D0. Nejistoty měření DODATEK D4. Příklad výpočt nejistoty přímého měření D0. Nejistoty měření Výklad základů charakterizování přesnosti měření podaný v kap..3 je založen na pojmech chyba měření a správná hodnota měřené veličiny

Více

1. Určení vlnové délka světla pomocí difrakční mřížky

1. Určení vlnové délka světla pomocí difrakční mřížky FAKULTA STAVEBÍ KATEDRA FYZIKY 10FY1G Fzka G 1. Určení vlnové délka světla pomocí dfrakční mřížk Petr Pokorný Pavel Klmon Flp Šmejkal LS 016/17 skpna 1 datm měření: 19.. 017 Zadání Pomocí dfrakční mřížk

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

NEJISTOTA NEPŘÍMÉHO MĚŘENÍ URČENÁ METODOU MONTE CARLO UNCERTAINTY OF INDIRECT MEASUREMENT DETERMINED BY MONTE CARLO METHOD

NEJISTOTA NEPŘÍMÉHO MĚŘENÍ URČENÁ METODOU MONTE CARLO UNCERTAINTY OF INDIRECT MEASUREMENT DETERMINED BY MONTE CARLO METHOD VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )

Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NEJISTOTA NEPŘÍMÉHO MĚŘENÍ PRŮTOKU VZDUCHU BAKALÁŘSKÁ PRÁCE

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NEJISTOTA NEPŘÍMÉHO MĚŘENÍ PRŮTOKU VZDUCHU BAKALÁŘSKÁ PRÁCE VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FKULT ELEKTROTECHNIKY KOMUNIKČNÍCH TECHNOLOGIÍ ÚSTV UTOMTIZCE MĚŘICÍ TECHNIKY FCULTY OF ELECTRICL ENGINEERING ND COMMUNICTION DEPRTMENT OF CONTROL

Více

Dopravní plánování a modelování (11 DOPM )

Dopravní plánování a modelování (11 DOPM ) Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projekt ázev projekt Číslo a název šablony Ator Tematická oblast Číslo a název materiál Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ. Ing. Václav Duchoň ČMI OI Brno

KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ. Ing. Václav Duchoň ČMI OI Brno KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ Ing. Václav Duchoň ČMI OI Brno Skupiny měřidel úkol technického rozvoje PRM 2012 č. VII/4/12 velké množství jednotlivých měřidel délky 11 skupin,

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

Chyby měření 210DPSM

Chyby měření 210DPSM Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/06/13 TRACKER (LASER TRACKER LEICA) Praha říjen 013 KP

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Odvození rovnice pro optimální aerodynamické zatížení axiální stupně

Odvození rovnice pro optimální aerodynamické zatížení axiální stupně 1 Tato Příloha 801 je sočástí článk 19 Návrh axiálních a diagonálních stpňů lopatkových strojů, http://wwwtransformacni-technologiecz/navrh-axialnicha-diagonalnich-stpn-lopatkovych-strojhtml Odvození rovnice

Více

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor

Více

Interpretační dokumenty ID1 až ID6

Interpretační dokumenty ID1 až ID6 Prof. Ing. Mlan Holcký, DrSc. ČVUT, Šolínova 7, 66 08 Praha 6 Tel.: 224 353 842, Fax: 224 355 232 E-mal: holcky@klok.cvut.cz, k http://web.cvut.cz/k/70/prednaskyfa.html Metody navrhování Základní pojmy

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

Laboratorní cvičení L4 : Stanovení modulu pružnosti

Laboratorní cvičení L4 : Stanovení modulu pružnosti Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.

Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T. 7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:

Více

Hydrometrické vrtule a měření s nimi

Hydrometrické vrtule a měření s nimi Ing. Danel Mattas, CSc. Hydrometrcké vrtle a měření s nm (ČSN EN ISO 748 aj.) Danel Mattas 013 ČKSVV 013 Hydrometrcké vrtle a měření s nm Obsah Hydrometrcká měřdla a jejch údržba ČSN ISO 537, zejména čl.

Více

Příloha. Externí stabilita. Obr. 11 Výpočetní schéma opěrné stěny pro potřeby externí stability. Výška opěrné stěny

Příloha. Externí stabilita. Obr. 11 Výpočetní schéma opěrné stěny pro potřeby externí stability. Výška opěrné stěny Příloha PŘÍKLAD VÝPOČTU Pro doplnění vedené teore je veden praktcký výpočetní příklad. Jedná se o návrh vyztžené opěrné stěny s betonový prvky Gravty Stone a s výztží z geoříží Mragrd. Výškový rozdíl terénů,

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ MANAGEMENT PROCESŮ Systémy managementu měření se obecně v podnicích používají ke kontrole vlastní produkce, ať už ve fázi vstupní, mezioperační nebo výstupní. Procesy měření v sobě zahrnují nemalé úsilí

Více

HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ

HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ DOC.ING. JIŘÍ PERNIKÁŘ, CSC Požadavky na přesnost měření se neustále zvyšují a současně s tím i požadavky na vyhodnocení kvantifikovatelných charakteristik

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ

PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Je známo, že měření

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

Sylabus 18. Stabilita svahu

Sylabus 18. Stabilita svahu Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření

VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota

Více

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms

Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/0/13 SOUŘADNICOVÝ MĚŘICÍ STROJ (CMM) PORTÁLOVÝ Praha

Více

Členění podle 505 o metrologii

Členění podle 505 o metrologii Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová

Více

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE

NEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota

Více

Validace analytické metody

Validace analytické metody Nejoty v analytcké chem přednáška z cyklu Analytcká cheme II Patrk Kana 4. 9. 0 Proč valdace metod a nejoty výsledků? Výsledky analýz se v dnešní době čím dál tím víc podílejí na rozhodnutích s významným

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Česká metrologická společnost, z.s.

Česká metrologická společnost, z.s. Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Metodika provozního měření MPM 4.1./01/17 METODIKA PROVOZNÍHO MĚŘENÍ NAPĚTÍ

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

ZESILOVAČE S TRANZISTORY

ZESILOVAČE S TRANZISTORY ZSILOVČ S TNZISTOY STUPŇ S SPOLČNÝM MITOM U C o T U ~0.3V _ 0 0. 0.4 0.6 0.8.0 Pracovní o tranzstor je vázán caraterstam pole: (, ) (, ) a rovncí réo Krcoffova záona pro oletorový ovo:. U V prostorovém

Více

Typ UCE0 (V) IC (A) PCmax (W)

Typ UCE0 (V) IC (A) PCmax (W) REDL 3.EB 11 1/13 1.ZADÁNÍ Změřte statické charakteristiky tranzistoru K605 v zapojení se společným emitorem a) Změřte výstupní charakteristiky naprázdno C =f( CE ) pro B =1, 2, 4, 6, 8, 10, 15mA do CE

Více

Vyjadřování přesnosti v metrologii

Vyjadřování přesnosti v metrologii Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus

Více

Česká metrologická společnost, z.s.

Česká metrologická společnost, z.s. Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Metodika provozního měření MPM 4.1./0/17 METODIKA PROVOZNÍHO MĚŘENÍ PROUDU

Více

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:

Ohmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol: Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat

Více

Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522

Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522 Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 145 UNCERTAINTY OF DETEMINATION OF THE AUTO-IGNITION TEMPERATURE OF FLAMMABLE GASES OR VAPOURS

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

EXPERIMENTÁLNÍ METODY. Ing. Jiří Litoš, Ph.D.

EXPERIMENTÁLNÍ METODY. Ing. Jiří Litoš, Ph.D. EXPERIMENTÁLNÍ METODY Ing. Jiří Litoš, Ph.D. 01 Experimentální zkoušení KDE? V laboratoři In-situ (na stavbách) CO? Modely konstrukčních částí Menší konstrukční části Modely celých konstrukcí Celé konstrukce

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování

Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě

Více

Nejistoty v mìøení III: nejistoty nepøímých mìøení

Nejistoty v mìøení III: nejistoty nepøímých mìøení Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí

Více

ČSN RYCHLÁ METODA STANOVENÍ CELKOVÉ OBJEMOVÉ AKTIVITY ALFA

ČSN RYCHLÁ METODA STANOVENÍ CELKOVÉ OBJEMOVÉ AKTIVITY ALFA ČSN 75 7613 RYCHLÁ METODA STANOVENÍ CELKOVÉ OBJEMOVÉ AKTIVITY ALFA Barbora Sedlářová, Eduard Hanslík Výzkumný ústav vodohospodářský T. G. Masaryka, veřejná výzkumná instituce ČSN EN ISO 10703 Kvalita vod

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

pravděpodobnost záporné výchylky větší než 2,5σ je 0,6%

pravděpodobnost záporné výchylky větší než 2,5σ je 0,6% .NOISE Šmová analýza ezstory a polovodčové prvky jso zdroj vlastního šm. Šmová analýza = analýza pronkání těchto šmů na výstp obvod. Výstpní šm se pak může přepočítat přes vstpně-výstpní přenos zpět na

Více

Stavba slovníku VIM 3: Zásady terminologické práce

Stavba slovníku VIM 3: Zásady terminologické práce VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní

Více

Statistické vyhodnocení zkoušek betonového kompozitu

Statistické vyhodnocení zkoušek betonového kompozitu Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

POROVNÁNÍ MEZI SKUPINAMI

POROVNÁNÍ MEZI SKUPINAMI POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a

Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)

Více

Regulační diagramy (Control charts, Shewhart s diagrams)

Regulační diagramy (Control charts, Shewhart s diagrams) Regulační diagramy (Control charts, Shewhart s diagrams) diagram spolu s horní nebo/a dolní í, do kterého se zakreslují hodnoty nějakého statistického ukazatele pro řadu výběrů nebo podskupin, obvykle

Více

METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ

METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ 1.6.2018 METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ Posuvná měřidla jsou délková měřidla s rovnoběžnými rovinnými plochami, mezi kterými lze v daném měřícím rozsahu měřidla měřit rozměry vně

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti

Více

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační

Více