Stanovení nejistot výsledků zkoušky přesnosti/kalibrace vodorovných a svislých lineárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M.
|
|
- Karla Svobodová
- před 6 lety
- Počet zobrazení:
Transkript
1 Stanovení nestot výsledků zkošky přesnost/kalbrace vodorovných a svslých lneárních délkoměrů. Štěpánková, M.; Pročková, D.; Landsmann, M. Klíčová slova: zdro nestoty, standardní nestota, rozšířená nestota, koefcent ctlvost V dnešní době samotný výsledek bez dání nestoty e ž zcela bezcenný. Měřením reprezentatvního vzork téže velčny, třebaže za podmínek opakovatelnost, získáme totž pokaždé různé hodnoty. Tto různorodost maí na svědomí tzv. zdroe nestoty, které proces měření ovlvňí. Článek se věne všeobecném poednání o obo složkách nestot a systematckém postp pro výpočet výsledné, rozšířené nestoty. Naměřené hodnoty, které by měl být požty k výpočt (nestoty typ A) závsí na konkrétním přístro, a proto článek dává poze návod ak s nm pracovat a doporče, s důrazem na lneární délkoměry, aké vlvy by měl být zahrnty do nestoty typ B. Informace zde obsažené se tedy daí požít ako dobrý podklad k vyhodnocení ak nestot lneárních délkoměr, tak pro ostatní přístroe.. Úvod Účelem stanovení nestot př měření e zštění nterval hodnot okolo výsledk měření, který lze přřadt k hodnotě měřené velčny, neboť vyádření výsledků měření e úplné poze tehdy, pokd obsahe ak vlastní hodnot měřené velčny, tak nestot měření patřící k této hodnotě. Rozšířeno nestot měření e ntné brát v úvah především, pokd chceme prokázat shod č neshod měřdla/obrobk se stanoveným mezem nevětších dovolených chyb (MPE)/tolerancem. Pokd leží výsledek v tzv. rozsah nestoty, nemůže být vzhledem k nestotě měření, prokázána an shoda, an neshoda. Rozsah nestoty Rozsah nestoty Toleranční mez obrobk /nevětší dovolená chyba měřdla. Model měření Toleranční pole Toleranční mez obrobk /nevětší dovolená chyba měřdla Př vyhodnocení nestoty měření e nedůležtěším krokem vysthnot podstat prováděného měření. K tomto složí sestavení model měření, v němž so obsaženy všechny vlvy, které moho působt na výsledek měření. Tyto vlvy so označovány ako zdroe nestoty a způsobí, že výsledek měření nemůže být charakterzován poze edním číslem. Moho mez ně být zahrnty: Vlvy okolí Tlak, změna tlak Teplota, teplotní odchylka Relatvní vlhkost Magnetcké, elektrcké pole Osvětlení, příp. eho frekvence a tepelné vyzařování Hstota vzdch Čstota ovzdší, prostředí, prašnost Napáecí napětí, stablta, frekvence, harmoncké zkreslení Zemní smyčky Vlvy vázané na požté přístroe, etalony a vybavení Nestota požtého etalon Rozlštelnost odečt z přístroů Vntřní tření v přístroích Stablta (časová specfkace) přístroů Dynamcké chyby přístroů Zanedbané systematcké chyby Hystereze, mrtvý chod Specfkace výměnných částí přístroů Vlvy metody ztráty, svodové prody nterakce s měřeným předmětem vlastní ohřev odvod č přestp tepla Vlvy operátora nedodržen metodk elektrostatcké pole tepelné vyzařován osobní zvyklost, měřící síla náhodné omyly př odečtech nebo záps hodnot
2 Jako zdroe nestoty lneárních délkoměrů může být obecně važováno: o Nestota požtého etalon, v tomto případě koncové měrky Dle ISO 3650 pro koncové měrky stpně I centrální délka měrky msí ležet v mezích ±0,8µm o Teplotní odchylka važme-l teplot prostředí v laboratoř v rozmezí např. od 8 C do C, t.0 ± C o Chyba odečítání Závsí na nemenší hodnotě dílk na stpnc, který se pak podělí dvěm. Pokd se bde totž ryska pohybovat mez těmto nemenším dílky, chyba pozorovatele, že se přkloní k edné č drhé straně tvoří přblžně polovn. Např. pro 0,0mm e to 0,005, pro 0,05mm e to 0,05mm. o Konstrkční vlvy - ako např. vzáemné postavení měřítka a pohyblvé čelst, tzn. přímost, rovnnost, rovnoběžnost, kolmost Dle zvoleného délkoměr moho přbýt eště další vlvy, které zde neso zahrnty a so specfko konkrétního přístroe, proto e zde ponechán volný prostor k ech zvážení. Z grafckého model měření se odvodí matematcké vyádření závslost měřené velčny (výstpní velčny) Y na vstpních velčnách X. Y f (X, X,, X N ) Pro délkoměr vypadá schéma takto: TRANS D INDIK D L INDIKD DÉLKA L OT D.. OT Dn O PŘÍSTRD INDIK E L E O PŘÍSTRE L měřená velčna (v případě délkoměrů délka) O TD,, O TDn. vstpní velčny, které transformí ndkac kalbrovaného přístroe (délkoměr) a so tedy složkam eho odchylky od deální hodnoty. Mez ně patří např. vedené: teplotní odchylka OT D, chyba odečítání OT D, konstrkční vlvy OT D3 L E...délka požtého etalon (koncové měrky) L INDIKD úda kalbrovaného přístroe (délkoměr) O PŘÍSTRD.odchylka kalbrovaného přístroe (délkoměr) př podmínkách kalbrace O PŘÍSTRE.odchylka etalon (koncových měrek) př podmínkách kalbrace nestota koncových měrek Pro větev délkoměr platí: L INDIKD L + OT D + OT D + OT D3 + O PŘÍSTRD L L INDIKD - OT D - OT D - OT D3 - O PŘÍSTRD Pro větev koncových měrek platí: L E L + O PŘÍSTRE L L E - O PŘÍSTRE Z těchto rovnc vytvoříme model měření: O PŘÍSTRD L INDIKD L E + O PŘÍSTRE - OT D - OT D - OT D3
3 3. Postp pro stanovení standardní nestoty typ A e založen na stanovení nestoty statstcko analýzo sére pozorování, které so nezávslé a so sktečněny za stených podmínek. Počet takovýchto pozorování nesmí být menší než 0. V tomto případě by msela být zvážena spolehlvost odhad standardní nestoty a případně by se msel požít ný způsob rčení standardní nestoty. V případě lneárních délkoměrů není důvod k tom, aby počet měření byl redkován pod únosno mír (např. kvůl ceně měření ), a proto další způsoby vyhodnocení standardní nestoty typ A zde nevádím. Odhad (opakovaně měřené) vstpní velčny na základě n statstcky nezávslých pozorování e dán artmetckých průměrem ndvdálních naměřených hodnot: n...artmetcký průměr naměřených hodnot n Standardní nestota e v tomto případě rčena výběrovo směrodatno odchylko průměr. ( ). Výběrová směrodatná odchylka průměrů Výběrový rozptyl artmetckého průměr n ( ) n.. Výběrový rozptyl hodnot Pro zštění nestoty A msí být pomocí délkoměr provedeno měření koncové měrky menovtého rozměr např. 50 mm, ako zvoleného etalon, a to nelépe s počtem opakování 0. Postp pro stanovení standardní nestoty typ B e založen na stanovení nestoty ným způsobem, než statstckým vyhodnocením sére pozorování. Podklady pro rčení tohoto drh nestoty so: údae výrobce údae váděné v kalbračních lstech nebo ných certfkátech zkšenost s chováním a vlastnostm příslšných materálů a zařízení údae z dříve provedených měření nestot referenčních údaů převzatých z přírček Standardní nestota e rčena v závslost na rozdělení pravděpodobnost, se ktero moho zdroe nestoty č ovlvňící velčny nabývat ednotlvých hodnot mez svým kraním mezem, vz. Tablka. Znalost o vstpní velčně Hodnoty vstpní velčny se nacházeí v nterval [a + ; a - ] se steno pravděpodobností Např. úda výrobce pro měřící zařízení, rozmezí teplot, zaokrohlovací chyby Rozdělení pravděpodobnost Rovnoměrné (Pravoúhlé) Odhad vstpní velčny a a Standardní nestota 3 Hodnoty vstpní velčny se nacházeí v okolí střed nterval hodnot s větší pravděpodobností než na kraích Např. údae z kalbračního lst, výsledek předchozí statstcké analýzy Normální (Gasovo) µ σ Hodnoty vstpní velčny se nacházeí na kraích nterval hodnot s větší pravděpodobností než v eho střed. Vstpní velčna e popsána harmoncko fnkcí X.snΦ, fázový úhel Φ e neznámý v nterval [-π; +π]. Např. mechancké kmty př zatížení rozdělení 0 3
4 Tablka : rčení standardní nestoty typ B v závslost na rozdělení pravděpodobnost vstpní velčny. Pozn. V tablce so vedeny poze nepožívaněší typy rozdělení pravděpodobnost. Není zahrnto např. Lchoběžníkové, Bmodální-Dracovo, Smpsonovo Pro koncové měrky předpokládáme rovnoměrné rozdělení 0,8µm 0,46 Pro teplotní odchylk předpokládáme rovněž rovnoměrné rozdělení,5 Chyba odečítání se chová taktéž podle rovnoměrného rozdělení 5µm 3,89 4. Výpočet standardní nestoty odhad hodnoty výstpní velčny N N N y + + /.. r( ; ). odhadntá kovarance velčn X a X r( ; )......korelační koefcent c X X,.. X N N c e tzv. Koefcent ctlvost, který e hodnoto parcální dervace fnkce f dle vstpní velčny X pro odhad eí hodnoty. Popse do aké míry e odhad výstpní hodnoty y ovlvňován změnam v odhad vstpní velčny X. Za předpoklad, že velčny neso korelované, drhá část vztah odpadá, a vztah e redkován na: ( y) n c. ( ) Př kalbrac výškoměrů není předpokládána vzáemná závslost mez vstpním velčnam, a proto lze požít redkovaný vztah. 5. Analýza nestot Obsahe seznam všech zdroů nestot a zpřehledňe tak výpočet. Standardní Rozdělení Velčna X Odhad nestota pravděpodobnost Nestota typ A (L INDIKD ) ( ) Koncové měrky např. ( O PŘÍSTRE ) 50mm Teplotní odchylka (OT D ) Chyba odečítání (OT D ) Konstrkční vlvy (OT D3 ) Tablka : Analýza nestot Koefcent ctlvost c Příspěvek k nestotě (y) s normální s ( ) 0,46µm rovnoměrné 0,46 0,5 rovnoměrné dle přístroe c.,5 0,89 rovnoměrné - -,89 0 výrobce rovnoměrné výrobce c. 4
5 6. Rozšířená nestota měření k.(y) Standardní nestota odhad hodnoty výstpní velčny (y) byla rčena s pravděpodobností P 68 %, t. pro koefcent rozšíření k. Pro no pravděpodobnost se nestota přepočte vynásobením koefcentem rozšíření k zvoleným dle tablky3. Koefcent rozšíření k Pravděpodobnost P 68% 95%,58 99% 3 99,7% Tablka 3: Koefcenty rozšíření v závslost na pravděpodobnost. V pra se vádí nestota výsledk měření rozšířená koefcentem rozšíření k, což pro normální rozdělení odpovídá pravděpodobnost pokrytí as 95 %. Případy standardní a rozšířené nestoty lstrované pro normální rozdělení. pásmo ±σ představe standardní nestot, pásmo ±b představe rozšířeno nestot pro k pásmo ±a představe rozšířeno nestot pro k Závěr Nestota měření nemůže růst do nekonečna. Msí být lmtována tak, abychom v měření měl alespoň něako stot. TP / Pro rovnoměrné rozdělení e dáno: 3 3 k. k TP k. TP k 3 3 TP.. toleranční pole, ve kterém se moho pohybovat naměřené hodnoty Pokd zštěná rozšířená nestota konkrétního měřdla přesáhne hodnot e patrné, že k. TP 3 někde nastala chyba. Zdroe nestoty mohly být nadhodnoceny nebo proces měření e v takových podmínkách, kdy výsledná nestota měření e přílš velká. Hodnoty takovéhoto měřdla maí tak velko nestot, že s nm nelze dosahovat důvěryhodných výsledků. Lteratra: [ ] Gde to the Epresson of ncertanty n Measrement (GM), frst edton, 993, corrected and reprnted 995, Internatonal Organzaton for Standardzaton (ISO), Geneva, 993 [ ] Kessel, W.: Messmethoden nd Modellbldng n Semnarnterlagen Messnscherhet nach GM prasgerecht bestmmen, Detsches Insttt für Normng (DIN) nd Physkalsch Technsche Bndesanstalt (PTB), Berln, 000 [ 3 ] ČSN EN ISO 453 Geometrcké požadavky na výrobky (GPS) Zkošení obrobků a měřdel Část : Pravdla rozhodování o prokazování shody nebo neshody se specfkacem. 5
Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek
Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná
VíceDetailní porozumění podstatě měření
Nejistoty Účel Zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny Nejčastěji X X [%] X U X U [%] V roce 1990 byl vydán dokument WECC 19/90, který představoval
Více2. PŘESNOST MĚŘENÍ A1B38EMA P2 1
. ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,
VícePřesnost nepřímých měření Accuracy of Indirect Measurement TITLE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE
VícePosouzení přesnosti měření
Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení
VícePorovnání GUM a metody Monte Carlo
Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceNumerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První
Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá
VíceSÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.
SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí
VíceVyužití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
VíceDODATEK. D0. Nejistoty měření
DODATEK D4. Příklad výpočt nejistoty přímého měření D0. Nejistoty měření Výklad základů charakterizování přesnosti měření podaný v kap..3 je založen na pojmech chyba měření a správná hodnota měřené veličiny
Více1. Určení vlnové délka světla pomocí difrakční mřížky
FAKULTA STAVEBÍ KATEDRA FYZIKY 10FY1G Fzka G 1. Určení vlnové délka světla pomocí dfrakční mřížk Petr Pokorný Pavel Klmon Flp Šmejkal LS 016/17 skpna 1 datm měření: 19.. 017 Zadání Pomocí dfrakční mřížk
VíceREGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
VíceTepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má
Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po
VíceANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
VícePružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
VíceNEJISTOTA NEPŘÍMÉHO MĚŘENÍ URČENÁ METODOU MONTE CARLO UNCERTAINTY OF INDIRECT MEASUREMENT DETERMINED BY MONTE CARLO METHOD
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
VíceVyjadřování nejistot
ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění
VícePostup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy )
Postup pro kalibraci vyměřené zkušební dráhy pro stanovení konstanty vozidla W a účinného obvodu pneumatik (dále jen dráhy ) Kalibrace se provede porovnávací metodou pomocí kalibrovaného ocelového měřicího
VíceStaré mapy TEMAP - elearning
Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ NEJISTOTA NEPŘÍMÉHO MĚŘENÍ PRŮTOKU VZDUCHU BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FKULT ELEKTROTECHNIKY KOMUNIKČNÍCH TECHNOLOGIÍ ÚSTV UTOMTIZCE MĚŘICÍ TECHNIKY FCULTY OF ELECTRICL ENGINEERING ND COMMUNICTION DEPRTMENT OF CONTROL
VíceDopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.
Více2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU
VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého
Více3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina
3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních
VíceVÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT Bc. David Pietschmann.
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projekt ázev projekt Číslo a název šablony Ator Tematická oblast Číslo a název materiál Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
Více9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
VíceANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
VíceCHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.
CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt
VíceKALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ. Ing. Václav Duchoň ČMI OI Brno
KALIBRACE PRACOVNÍCH MĚŘIDEL Z OBORU DÉLKA NEJISTOTY MĚŘENÍ Ing. Václav Duchoň ČMI OI Brno Skupiny měřidel úkol technického rozvoje PRM 2012 č. VII/4/12 velké množství jednotlivých měřidel délky 11 skupin,
VíceLineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2
Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky
VíceKorelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
VíceÚvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
VíceChyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
VíceMODELOVÁNÍ A SIMULACE
MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký
VíceEKONOMICKO-MATEMATICKÉ METODY
. přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a
VíceČeská metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms
Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/06/13 TRACKER (LASER TRACKER LEICA) Praha říjen 013 KP
VíceMatematika I A ukázkový test 1 pro 2018/2019
Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete
VíceOdvození rovnice pro optimální aerodynamické zatížení axiální stupně
1 Tato Příloha 801 je sočástí článk 19 Návrh axiálních a diagonálních stpňů lopatkových strojů, http://wwwtransformacni-technologiecz/navrh-axialnicha-diagonalnich-stpn-lopatkovych-strojhtml Odvození rovnice
VícePřednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička
Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor
VíceInterpretační dokumenty ID1 až ID6
Prof. Ing. Mlan Holcký, DrSc. ČVUT, Šolínova 7, 66 08 Praha 6 Tel.: 224 353 842, Fax: 224 355 232 E-mal: holcky@klok.cvut.cz, k http://web.cvut.cz/k/70/prednaskyfa.html Metody navrhování Základní pojmy
Víceu (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo
Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)
VíceŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav
VíceLaboratorní cvičení L4 : Stanovení modulu pružnosti
Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,
VíceP13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
VíceMechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
Víceina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)
Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.
VíceMonte Carlo metody Josef Pelikán CGG MFF UK Praha.
Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný
VíceSdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.
7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:
VíceHydrometrické vrtule a měření s nimi
Ing. Danel Mattas, CSc. Hydrometrcké vrtle a měření s nm (ČSN EN ISO 748 aj.) Danel Mattas 013 ČKSVV 013 Hydrometrcké vrtle a měření s nm Obsah Hydrometrcká měřdla a jejch údržba ČSN ISO 537, zejména čl.
VícePříloha. Externí stabilita. Obr. 11 Výpočetní schéma opěrné stěny pro potřeby externí stability. Výška opěrné stěny
Příloha PŘÍKLAD VÝPOČTU Pro doplnění vedené teore je veden praktcký výpočetní příklad. Jedná se o návrh vyztžené opěrné stěny s betonový prvky Gravty Stone a s výztží z geoříží Mragrd. Výškový rozdíl terénů,
VíceSTANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
VíceAgregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
VíceStatistická energetická analýza (SEA)
Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve
VíceÚloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku
Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,
Více2. Posouzení efektivnosti investice do malé vtrné elektrárny
2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda
Více8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ
MANAGEMENT PROCESŮ Systémy managementu měření se obecně v podnicích používají ke kontrole vlastní produkce, ať už ve fázi vstupní, mezioperační nebo výstupní. Procesy měření v sobě zahrnují nemalé úsilí
VíceHODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ
HODNOCENÍ ZPŮSOBILOSTI KONTROLNÍCH PROSTŘEDKŮ DOC.ING. JIŘÍ PERNIKÁŘ, CSC Požadavky na přesnost měření se neustále zvyšují a současně s tím i požadavky na vyhodnocení kvantifikovatelných charakteristik
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
VícePružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
VícePŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ
PŘÍSPĚVEK K NEJISTOTÁM VÝSLEDKŮ MĚŘENÍ JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Je známo, že měření
VíceUrčeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
VíceSylabus 18. Stabilita svahu
Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních
Více3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT
PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v
VíceVYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ. #2 Nejistoty měření
VYSOKONAPĚŤOVÉ ZKUŠEBNICTVÍ # Nejistoty měření Přesnost měření Klasický způsob vyjádření přesnosti měření chyba měření: Absolutní chyba X = X M X(S) Relativní chyba δ X = X(M) X(S) - X(M) je naměřená hodnota
VíceČeská metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 221 082 254 e-mail: cms-zk@csvts.cz www.csvts.cz/cms
Česká metrologická společnost Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Kalibrační postp KP 1.1.3/0/13 SOUŘADNICOVÝ MĚŘICÍ STROJ (CMM) PORTÁLOVÝ Praha
VíceČlenění podle 505 o metrologii
Členění podle 505 o metrologii a. etalony, b. pracovní měřidla stanovená (stanovená měřidla) c. pracovní měřidla nestanovená (pracovní měřidla) d. certifikované referenční materiály Etalon: je ztělesněná
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ
ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová
VíceNEJISTOTA MĚŘENÍ. David MILDE, 2014 DEFINICE
NEJISTOTA MĚŘENÍ David MILDE, 014 DEFINICE Nejistota měření: nezáporný parametr charakterizující rozptýlení hodnot veličiny přiřazených k měřené veličině na základě použité informace. POZNÁMKA 1 Nejistota
VíceValidace analytické metody
Nejoty v analytcké chem přednáška z cyklu Analytcká cheme II Patrk Kana 4. 9. 0 Proč valdace metod a nejoty výsledků? Výsledky analýz se v dnešní době čím dál tím víc podílejí na rozhodnutích s významným
VíceSIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním
VíceVY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
VíceČeská metrologická společnost, z.s.
Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Metodika provozního měření MPM 4.1./01/17 METODIKA PROVOZNÍHO MĚŘENÍ NAPĚTÍ
Více9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně
9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky
VíceTeorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti
Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,
VíceZESILOVAČE S TRANZISTORY
ZSILOVČ S TNZISTOY STUPŇ S SPOLČNÝM MITOM U C o T U ~0.3V _ 0 0. 0.4 0.6 0.8.0 Pracovní o tranzstor je vázán caraterstam pole: (, ) (, ) a rovncí réo Krcoffova záona pro oletorový ovo:. U V prostorovém
VíceTyp UCE0 (V) IC (A) PCmax (W)
REDL 3.EB 11 1/13 1.ZADÁNÍ Změřte statické charakteristiky tranzistoru K605 v zapojení se společným emitorem a) Změřte výstupní charakteristiky naprázdno C =f( CE ) pro B =1, 2, 4, 6, 8, 10, 15mA do CE
VíceVyjadřování přesnosti v metrologii
Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus
VíceČeská metrologická společnost, z.s.
Česká metrologická společnost, z.s. Novotného lávka 5, 116 68 Praha 1 tel/fax: 1 08 54 e-mail: cms-zk@csvts.cz www.csvts.cz/cms Metodika provozního měření MPM 4.1./0/17 METODIKA PROVOZNÍHO MĚŘENÍ PROUDU
VíceOhmův zákon pro uzavřený obvod. Tematický celek: Elektrický proud. Úkol:
Název: Ohmův zákon pro uzavřený obvod. Tematcký celek: Elektrcký proud. Úkol: Zopakujte s Ohmův zákon pro celý obvod. Sestrojte elektrcký obvod dle schématu. Do obvodu zařaďte robota, který bude hlídat
VíceOtto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 14522
Otto DVOŘÁK 1 NEJISTOTA STANOVENÍ TEPLOTY VZNÍCENÍ HOŘLAVÝCH PLYNŮ A PAR PARABOLICKOU METODOU PODLE ČSN EN 145 UNCERTAINTY OF DETEMINATION OF THE AUTO-IGNITION TEMPERATURE OF FLAMMABLE GASES OR VAPOURS
Více6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a
VíceEXPERIMENTÁLNÍ METODY. Ing. Jiří Litoš, Ph.D.
EXPERIMENTÁLNÍ METODY Ing. Jiří Litoš, Ph.D. 01 Experimentální zkoušení KDE? V laboratoři In-situ (na stavbách) CO? Modely konstrukčních částí Menší konstrukční části Modely celých konstrukcí Celé konstrukce
VíceVýběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
VíceCvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování
Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě
VíceNejistoty v mìøení III: nejistoty nepøímých mìøení
Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí
VíceČSN RYCHLÁ METODA STANOVENÍ CELKOVÉ OBJEMOVÉ AKTIVITY ALFA
ČSN 75 7613 RYCHLÁ METODA STANOVENÍ CELKOVÉ OBJEMOVÉ AKTIVITY ALFA Barbora Sedlářová, Eduard Hanslík Výzkumný ústav vodohospodářský T. G. Masaryka, veřejná výzkumná instituce ČSN EN ISO 10703 Kvalita vod
VíceRegresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
VíceSIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ
bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého
Vícepravděpodobnost záporné výchylky větší než 2,5σ je 0,6%
.NOISE Šmová analýza ezstory a polovodčové prvky jso zdroj vlastního šm. Šmová analýza = analýza pronkání těchto šmů na výstp obvod. Výstpní šm se pak může přepočítat přes vstpně-výstpní přenos zpět na
VíceStavba slovníku VIM 3: Zásady terminologické práce
VIM 1 VIM 2:1993 ČSN 01 0115 Mezinárodní slovník základních a všeobecných termínů v metrologii VIM 3:2007 International Vocabulary of Metrology Basic and General Concepts and Associated Terms Mezinárodní
VíceStatistické vyhodnocení zkoušek betonového kompozitu
Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení
Více- 1 - Obvodová síla působící na element lopatky větrné turbíny
- - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny
VícePOROVNÁNÍ MEZI SKUPINAMI
POROVNÁNÍ MEZI SKUPINAMI Potřeba porovnání počtů mez určtým skupnam jednců např. porovnání počtů onemocnění mez kraj nebo okresy v prax se obvykle pracuje s porovnáním na 100.000 osob. Stuace ale nebývá
VíceVícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
VíceVšechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
VíceRegulační diagramy (Control charts, Shewhart s diagrams)
Regulační diagramy (Control charts, Shewhart s diagrams) diagram spolu s horní nebo/a dolní í, do kterého se zakreslují hodnoty nějakého statistického ukazatele pro řadu výběrů nebo podskupin, obvykle
VíceMETODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ
1.6.2018 METODIKA PRO KONTROLU POSUVNÝCH MĚŘIDEL A HLOUBKOMĚRŮ Posuvná měřidla jsou délková měřidla s rovnoběžnými rovinnými plochami, mezi kterými lze v daném měřícím rozsahu měřidla měřit rozměry vně
VícePravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Více1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:
C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační
Více