Nelineární model tepelné soustavy a GPC regulátor
|
|
- Simona Kadlecová
- před 6 lety
- Počet zobrazení:
Transkript
1 Nelineární model tepelné sostavy a GP reglátor Ing Jan Mareš Školitel: oc Ing František šek, c Univerzita Pardbice Faklta chemicko-technologická Katedra řízení procesů
2 Obsah 1 Popis tepelné sostavy 2 Požadavky na reglaci 3 Matematický model sostavy a estavení bilančních rovnic b Naměření dat na reálném zařízení c ohledání neznámých parametrů d Verifikace Návrh prediktivního řízení 5 plikace s vyžitím linearizovaného model 6 Závěr
3 Reaktorová pec rčena pro řízené vyhřívání chemického reaktor velký pracovní rozsah teplot (cca 2 8, nelineární chování pece sostava se dvěma vstpy a jedním výstpem ovládání s vyžitím jednotky ompactrio a program LabVIEW Popis tepelné sostavy
4 Požadavky na reglaci Průběh teploty reaktor teplota reaktor sledje s minimálními odchylkami definovaný, dopřed známý průběh teploty, 8 lineární nárůst z okolní teploty do 8 a poté držování této teploty do konce eperiment 2 t, s
5 estavení bilančních rovnic ostava - dva vstpy, jeden výstp - stavy (,,, -měřená teplota okolí Izolace pirála Prostor Reaktor dt d c m E ( ( ( ( = σ σ α α β dt d c m ( ( ( 1 = σ σ α dt d c m OK O O ( ( ( ( = α α α α dt d c m OK OK O O ( ( ( ( ( ( 3 2 = = σ σ α σ α α
6 Naměření dat na reálném zařízení echnické prostředky řídicího systém: - programovatelná řídicí jednotko firmy National Instrments ompactrio - modl NI 9211 pro připojení termočlánk - modl NI 972 pro ovládání příkon topení pece
7 Naměření dat na reálném zařízení Požadavky na software: a měření teploty reaktor termočlánkem typ K b ovládání příkon topení c časová změna vstpního signál podle průběh v zadaném tetovém sobor d kládání hodnot měřené teploty a příkon topení ve zvoleném interval do tetového sobor
8 ohledání neznámých parametrů pomocí Optimization oolbo v ML minimalizace kriteria J = ( y y ( y M y M N Postp fnkce fminsearch na základě minimalizace kriteria mění dohledávané parametry model a v imlink s každo sado provede simlační eperiment Vektor parametrů je tak postpně iterován do svého optima
9 ohledání neznámých parametrů Identifikace poks 1 Identifikace poks 2 Identifikace poks 3 Identifikace poks P =13737 P = P = P =13813 P =81157 P =9828 P =91557 P = P =37 P =3272 P =726 P =7896 P =181 P =18823 P =16 P =16626 a =218 a =372 a =2886 a =172 a = a = a =3552 a =31215 a =1152 a =1257 a =1739 a =671 a =73319e- a =6679e- a =59698e- a =5926e- a O =616 a O =951 a O =898 a O =751 a O =573 a O =687 a O = 81 a O =91 beta =2 beta =11 beta =17 beta =2 1 =816e-5 1 =271e-5 1 =6638e- 1 =55116e- 2 =7 2 =2 2 =56 2 = 9 3 =25 3 =163 3 =27 3 =22 =927 =565 = 63 = 626 KRIERIUM KRIERIUM KRIERIUM KRIERIUM 38816
10 Verifikace nelineárního model model s každo vypočteno sado parametrů byl verifikován na ostatních třech eperimentech pro všechny eperimenty a všechna data bylo vypočteno kriterim (a jejich průměr pro jednotlivá data, e,
11 Verifikace nelineárního model PRMERŮ 1 PRMERŮ 2 PRMERŮ 3 PRMERŮ 1 K = K = K = K = K = K = K = K = K = 6628 K = K = K = K = 193 K = K = K = PRŮMĚRNÁ HONO K = 215,639 K = 31,3386 K =155,578 K =166,131 Matematický model popisje reálné chování sostavy spokojivě
12 Linearizace byla provedena rozvojem do aylorova polynom Je-li bod linearizace stáleným stavem, potom f(, =, a je možné získat standardní stavový model v odchylkovém tvar Linearizace model ( ( ( ( ( ( 3 2 1,, g g g y f f f J J y J J = = dt d ( ( ( ( ( J J y y J J = = dt d
13 Zavedením zjednodšení, že teplota okolí je konstantní se ze systém stává IO sostava - i a E jso hodnoty odpovídající stáleném stav - je J 1, - je první slopec J 2 - je definována jako Linearizace model ( ( ( ( [ ] [ ] = = E E dt d dt d dt d dt d [ ] 1 =
14 tatická charakteristika model tatická charakteristika linearizovaného model je tečna ke statické charakteristice neineárního model v bodě linearizace Na obrázk je kázáno, jak se charakteristiky pro různé příkony mění 15, E, W E =, 5, 1, 25, 5 W
15 Generalized Predictive ontroller Prediktivní řízení vychází z myšlenky vypočítat akční zásah minimalizací účelové fnkce na daném predikčním horizont N J = e e λ pro výpočet bdocího výstp sostavy se vyžívá predikční model ve tvar lineární diferenční rovnice V maticovém zápis y = G Minimalizací účelové fnkce je možné vypočítat akční zásah Fh = ( G G λi 1 G (w Fh Pozn: Změno formlací predikčního model je možné sestavit GP reglátor s integračním charakterem
16 Vyžití linearizovaného model Nelineární chování reglované sostavy je možné v rčitém interval nahradit lineárním modelem Pokd je modelů více je možné mezi nimi v průběh reglace přecházet nebo interpolovat na základě aktálního výstp sostavy
17 plikace metody elkový algoritms reglace 1 Přípravná fáze vypočítat parametry lineárního model v předem daných bodech linearizace 2 Reglace a změřit aktální teplot reaktor b na základě teploty zvolit dvojici nejbližších lineárních modelů c interpolací vypočítat konkrétní hodnoty predikčního model d vypočítat aktální akční zásah
18 imlované reglační pochody - PI 3,W y,w, e, r I PI 3,38 223
19 imlované reglační pochody GP 3,W y,w, e, konstantní model LIN = 2
20 imlované reglační pochody GP 3,W y,w, e, model linearizovaný v pěti bodech LIN = 2; 2; ; 6; 8
21 imlované reglační pochody GP 3,W y,w, e, konstantní model, integrační charakter LIN = 2
22 imlované reglační pochody GP 3,W y,w, e, model linearizovaný v pěti bodech, integrační charakter LIN = 2; 2; ; 6; 8
23 Závěr Práce se zabývá sestavením nelineárního matematického model reaktorové pece, včetně dohledání neznámých parametrů a verifikace, a prediktivním řízením s vyžitím linearizovaného model Pro reglaci je vyžit: reglátor Generalized Predictive ontroller, který - vyžívá znalost bdocího průběh žádané hodnoty - respektje nelinearit sostavy reglátor PI, který - je nastaven metodo Σ
24 Závěr Kvadratická reglační plocha Procentálně vzhledem k PI GP bez integračního charakter, lin 5 bodů Q = ,93 % GP s integračním charakterem, lin 5 bodů Q = 72,5 % GP bez integračního charakter, konst model Q = % GP s integračním charakterem, konst model Q = 6533,5 % PI reglátor, nast metodo Σ Q = 133,6 1 % Podobné výsledky dává i nezmíněná reglace GP reglátorem s modelem linearizovaným ve třech bodech (pro LIN = 2; ; 8
25 Závěr le zadání je vyhovjícím řešením reglátor GP s integračním charakterem a linearizovaným modelem v pěti bodech alší postp implementace reglace sostavy dalšími vybranými metodami, které zohlední znalost bdocího průběh žádané hodnoty a nelinearit sostavy
Laboratorní úloha Seřízení PI regulátoru
Laboratorní úloha Seřízení PI reglátor 1. Stanovení optimálních parametrů (r 0 (zesílení), I (časová integrační konstanta)) reglátor PI pro reglaci sostavy tří nádrží vyžitím přechodové odezvy reglované
MINIMALIZACE NÁKLADŮ A AUTOMATICKÉ ŘÍZENÍ THE COST MINIMIZATION AND AUTOMATIC CONTROL
Ročník 3, Číslo 5, 8 IIALIACE ÁKLADŮ A AUOAICKÉ ŘÍEÍ HE COS IIIAIO AD AUOAIC COROL František Dšek, Daniel Honc Anotace: Řízení vcházející z ekonomických kritérií se požívá obvkle až ve všších úrovních
Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek
Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná
Číslicové řízení procesů
Číslicové řízení procesů čební text VOŠ a SPŠ Ktná Hora Ing. Lděk Kohot Základní pojmy číslicového řízení Rozdělení řízení podle průběh signálů logické řízení binární signály (RUE, FALSE) analogové řízení
NÁHRADA REÁLNÉHO ZAŘÍZENÍ MODELEM V SIMULINKU
NÁHR REÁLNÉHO ZŘÍZENÍ MOELEM V IMULINKU J. Mareš*, F. ušek**,.honc** * Vysoká škola chemicko-technologická, Ústav počítačové a řídicí techniky echnická 5, 66 8 Praha 6, Česká Republika ** Univerzita Pardubice,
Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček
Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického
TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS
TRANSFORMACE BLOKOVÉHO SCHÉMATU NA CELKOVÝ PŘENOS Vladimír Hanta Vsoká škola chemicko technologická v Praze, Ústav počítačové a řídicí technik Abstrakt Algebra blokových schémat a požití Masonova pravidla
Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.
Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického
Verifikace modelu VT přehříváků na základě provozních měření
Verifikace modelu VT přehříváků na základě provozních měření Jan Čejka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF
FEKT VUT v Brně ESO / P7 / J.Boušek 1 FEKT VUT v Brně ESO / P7 / J.Boušek 2
UML FK VU V RNĚ J.ošek / lektronické sočástky / P6 echnologie výroby bipolárního tranzistor echnologie výroby bipolárního tranzistor slitinová Diskrétní tranzistor Kolektor sbstrát difúzní PAXNÍ MSA ntegrovaný
Příklady k přednášce 1. Úvod. Michael Šebek Automatické řízení 2019
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 09 08.0.09 Kyvadlo řízené momentem Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ = M ro moment setrvačnosti J = ml = M Flsinϕ c = M mgl sinϕ
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH
POUŽITÍ REAL TIME TOOLBOXU PRO REGULACI HLADIN V PROPOJENÝCH VÁLCOVÝCH ZÁSOBNÍCÍCH P. Chalupa Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav řízení procesů Abstrakt Příspěvek se zabývá problémem
Studentská tvůrčí a odborná činnost STOČ 2015
Stdentská tvůrčí a odborná činnost STOČ 215 MATEMATICKÉ MODELY ZAVĚŠENÍ AUTOMOBILU Jan MACHÁČEK Vysoká škola báňská Technická niverzita Ostrava 17. listopad 15/2172 78 33 Ostrava-Porba 23. dbna 215 FAI
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Numerické metody a programování. Lekce 7
Numerické metody a programování Lekce 7 Řešení nelineárních rovnic hledáme řešení x problému f x = 0 strategie: odhad řešení iterační proces postupného zpřesňování řešení výpočet skončen pokud je splněno
ADAPTIVNÍ ŘÍZENÍ SYSTÉMU TŘÍ NÁDRŽÍ V PROSTŘEDÍ MATLAB&SIMULINK
ADAPIVNÍ ŘÍZENÍ SYSÉMU ŘÍ NÁDRŽÍ V PROSŘEDÍ MALAB&SIMULINK P. Navráti, V. Bobál Ústav řízení procesů, Institt řízení procesů a aplikované informatik Univerzita omáše Bati ve Zlíně Náměstí. G. Masarka 275,
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění
Příklady k přednášce 1. Úvod
Příklady k řednášce. Úvod Michael Šebek Atomatické řízení 08 9-6-8 Kyvadlo řízené momentem Atomatické řízení - Kybernetika a robotika Pohybová rovnice (. Newtonův zákon ro rotaci) J ϕ M ro moment setrvačnosti
1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření
8. Sběr a zpracování technologických proměnných
8. Sběr a zpracování technologických proměnných Účel: dodat v částečně předzpracovaném a pro další použití vhodném tvaru ucelenou informaci o procesu pro následnou analyzu průběhu procesu a pro rozhodování
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
Princip gradientních optimalizačních metod
Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní
Aproximace a interpolace
Aproximace a interpolace Aproximace dat = náhrada nearitmetické veličiny (resp. složité funkce) pomocí aritmetických veličin. Nejčastěji jde o náhradu hodnot složité funkce g(x) nebo funkce zadané pouze
Popis metod CLIDATA-GIS. Martin Stříž
Popis metod CLIDATA-GIS Martin Stříž Říjen 2008 Obsah 1CLIDATA-SIMPLE...3 2CLIDATA-DEM...3 2.1Metodika výpočtu...3 2.1.1Výpočet regresních koeficientů...3 2.1.2 nalezených koeficientu...5 2.1.3Výpočet
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení
Praha technic/(4 -+ (/T'ERATU"'P. ))I~~
Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
2. PŘESNOST MĚŘENÍ A1B38EMA P2 1
. ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,
Chyby při matematickém modelování aneb co se nepovedlo
ŠKOMAM 019, 9. 1. 019 Chyby při matematickém modelování aneb co se nepovedlo Petr Beremlijski Katedra aplikovaná matematiky Faklta elektrotechniky a informatiky Vysoká škola báňská - Technická niverzita
PREDIKTIVNÍ ŘÍZENÍ NELINEÁRNÍHO SYSTÉMU
PREDIKIVNÍ ŘÍZENÍ NELINEÁRNÍHO SYSÉMU P. Chalupa Univerzita omáše Bati ve Zlíně Fakulta aplikované informatiky Ústav řízení procesů Nad Stráněmi 45, 76 5 Zlín Abstrakt Příspěvek zkoumá možnosti použití
Pravděpodobnostní (Markovské) metody plánování, MDP - obsah
Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní plánování - motivace. Nejistota ve výběr akce Markovské rozhodovací procesy Strategie plán (control policy) Částečně pozorovatelné
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany
3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Řízení laboratorní soustavy prediktivním regulátorem s uvažováním omezení Bc. Patrik Mišenčík Diplomová práce 2014 Prohlašuji: Tuto práci jsem
Automatizační technika. Obsah
Akademický rok 2016/2017 Připravil: Radim Farana Atomatizační tecnika Úvod do atomatizace 2 Obsa Obsa předmět Cíl předmět Požadavk na absolvování Základní pojm z teorie sstémů Základní pojm z teorie řízení
1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí
Obsah. Gain scheduling. Obsah. Linearizace
Regulace a řízení II Řízení nelineárních systémů Regulace a řízení II Řízení nelineárních systémů - str. 1/29 Obsah Obsah Gain scheduling Linearizace Regulace a řízení II Řízení nelineárních systémů -
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu
1 Portál pre odborné publikovanie ISSN 1338-0087 Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu Brázdil Michal Elektrotechnika 25.04.2011 V praxi se často setkáváme s procesy,
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24
teorie elektronických obvodů Jiří Petržela modelování
Jiří Petržela při tvorbě modelu je třeba uvážit fyzikální podstatu prvků požadovanou přesnost řešení stupeň obtížnosti modelu (jednoduché pro ruční výpočty, složitější pro počítač) účel řešení programové
Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011
Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
Algoritmy řízení a regulace výstupního napěťového střídače diesel-elektrické napájecí jednotky
Ročník 010 Číslo IV Algoritmy řízení a reglace výstpního napěťového střídače diesel-elektrické napájecí jednotky 1 Z. Perotka, 1 T. Glasberger, 1 J. Molnár 1 Regionální inovační centrm elektrotechniky
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012
Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy
Vyměníme druhý řádek s posledním a vynulujeme 2. sloupec pod diagonálou:
Příklad : Gassovo eliminační metodo řešte sostav rovnic: Řešení: Napíšeme rozšířeno matici sostavy tj matici tvořeno koeficienty neznámýc ke kterým přidáme slopec pravýc stran: R Tto matici převedeme ekvivalentními
DODATEK. D0. Nejistoty měření
DODATEK D4. Příklad výpočt nejistoty přímého měření D0. Nejistoty měření Výklad základů charakterizování přesnosti měření podaný v kap..3 je založen na pojmech chyba měření a správná hodnota měřené veličiny
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ
VYUŽITÍ METOD PŘÍMÉHO HLEDÁNÍ OPTIMA PŘI PREDIKTIVNÍM ŘÍZENÍ P. Chalupa, J. Novák Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Centrum aplikované kybernetiky Abstrakt Příspěvek se zabývá
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
AUTOMATICKÁ IDENTIFIKACE PARAMETRŮ VENTILŮ
AUTOMATICKÁ IDENTIFIKACE PARAMETRŮ VENTILŮ P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení procesů a výpočetní techniky Abstrakt Příspěvek se zabývá identifikací
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Řízení tepelné soustavy s dopravním zpožděním pomocí PLC
Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Jan Beran TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický
Circular Harmonics. Tomáš Zámečník
Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích
Modelování a simulace
Modelování a simulace Doc Ing Pavel Václavek, PhD Modelování a simulace Úvod - str /48 Obsah a organizace Obsah a org Cíl předmětu Náplň přednášek Vyučující Hodnocení Literatura Modelování a simulace Úvod
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Hledání extrémů funkcí
Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání
Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.
Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:
LBB 1990/00 Řídicí jednotka
Konferenční systémy LBB 1990/00 Řídicí jednotka LBB 1990/00 Řídicí jednotka www.boschsecritysystems.cz Srdce systém evakačního rozhlas Plena Voice Alarm System Certifikát TÜV pro norm IEC 60849 a EZÚ pro
WP01: WP25 Pokročilé zkušební metody pro spalovací motory Vedoucí konsorcia podílející se na pracovním balíčku
Popis obsah balíčk WP25 Pokročilé zkšební metody pro spalovací motory WP01: WP25 Pokročilé zkšební metody pro spalovací motory Vedocí konsorcia podílející se na pracovním balíčk TÜV SÜD Czech s.r.o., zodpov.
Základy kybernetiky. M. Schlegel ZČU v Plzni, FAV, KKY. Obsah
Základy kybernetiky M. Schlegel schlegel@kky.zc.cz ZČU v Plzni, FAV, KKY Obsah. Co je to kybernetika? - Historická exkrze. Bdocnost.. Systémy, informace, zpětná vazba, stabilita. 3. Lineární systémy -
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.2 ZS 2010/2011. reg Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 10.2 reg-2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření Teorie
EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
Geometrické transformace
1/15 Předzpracování v prostoru obrazů Geometrické transformace Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/
Základy elektrotechniky
Zálady eletrotechniy Přednáša Zesilovače s tranzistory, operační zesilovače Stpeň se společným emitorem (SE) Pracovní bod tranzistor je vázán: jeho charateristiami podle b h (i b, ) i h (i b, ) a rovnicí
MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbranu, část
MĚŘENÍ Laboratorní cvičení z měření Měření přenosových vlastností dvojbran, část 3-12-1 Výkový materiál Číslo projekt: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výky prostřednictvím ICT
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Cvičení č. 2 NÁVRH TEPLOVODNÍHO PODLAHOVÉHO VYTÁPĚNÍ
SÁLAVÉ A PRŮMYSLOVÉ VYTÁPĚNÍ Cvičení č NÁVRH TEPLOVODNÍHO PODLAHOVÉHO VYTÁPĚNÍ Ing Jindřich Boháč JindrichBohac@fscvtcz +40-435-488 ístnost B1 807 1 Sálavé vytápění = PŘEVÁŽNĚ sálavé vytápění ROZDĚLENÍ
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
DUM 02 téma: Spojitá regulace - výklad
DUM 02 téma: Spojitá regulace - výklad ze sady: 03 Regulátor ze šablony: 01 Automatizační technika I Určeno pro 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací
Numerická matematika Písemky
Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva
13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách
13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních
Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
DUM 19 téma: Digitální regulátor výklad
DUM 19 téma: Digitální regulátor výklad ze sady: 03 Regulátor ze šablony: 01 Automatizační technika I Určeno pro 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací
FPC-500 Konvenční ústředna EPS
Systémy EPS FPC-500 Konvenční ústředna EPS FPC-500 Konvenční ústředna EPS www.boschsecrity.cz Vysoce moderní optika vhodná pro veřejná prostranství Displej LCD s prostým textem K dispozici pro 2, 4 nebo
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová
1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních