APLIKOVANÉ PŘÍKLADY II
|
|
- Anežka Kovářová
- před 9 lety
- Počet zobrazení:
Transkript
1 APLIKOVANÉ PŘÍKLADY II 1) Záhon tvaru rovnostranného trojúhelníku o straně 8 m byl vysypán kamennou drtí. Kolik drti bylo spotřebováno, jestliže na 1 m plochy záhonu je jí třeba 5 kg? ) Kruhový park má rozlohu 1600 m. Napříč parkem přes jeho střed vede chodník. Jakou má délku? 3) V sudu tvaru válce o průměru podstavy 1,8 m je nalito hl vody. Do jaké výše sahá voda? 4) Kolem kruhového záhonu o průměru 7,5 m je vybetonován 1 m široký chodník o tloušťce 15 cm. Kolik m 3 betonu se na jeho stavbu spotřebovalo? Kolik cementu bylo použito, jestliže na 1 m 3 betonu je potřeba 00 kg cementu? 5) Tvarohový krém se prodává v balení po 1 dl v kelímku o poloměru dna,8 cm a horním poloměru 3,3 cm. Do jaké výšky sahá krém? 6) V kuchyni mají sadu šesti naběraček ve tvaru polokoule, jejichž vnitřní průměry jsou 5,76 cm, 6,44 cm, 7,6 cm, 10,46 cm, 1,41 cm a 8,1 cm. Kterou naběračku kuchař zvolí: a. jako odměrku 0,3 litrů na polévku b. jako odměrku 0,1 litrů na omáčku c. jako odměrku 0,05 litrů na šťávu 7) Kolik tun cukru se získá ze sklizené cukrovky, která byla zaseta na poli tvaru lichoběžníku se základnami 80 m a 0 m dlouhými a výškou o velikosti 140, když hektarový výnos cukrovky činil 38 tun a obsah cukru je 16%? 8) Bazén tvaru kvádru má délku 40 m a šířku 18 m. Je v něm hl vody. Vypočtěte obsah plochy bazénu, která je omývána vodou. 9) V rekreačním středisku jsou dva bazény, každý o rozloze 1000 m. Jeden bazén je čtvercový, druhý kruhový. Který bazén má větší obvod a o kolik metrů? 10) Na zahradu o výměře 800 m napršely 3 mm vody. Kolika desetilitrovými konvemi bychom stejně vydatně zalili tuto zahradu?
2 ŘEŠENÍ 1) Záhon tvaru rovnostranného trojúhelníku o straně 8 m byl vysypán kamennou drtí. Kolik drti bylo spotřebováno, jestliže na 1 m plochy záhonu je jí třeba 5 kg? a = 8 m v 8 = v + 4 v = 8 4 = = 48 = 6,98033 S = 1 a v = 4 6, m 8 5 = 700 kg 4 m Bylo spotřebováno 700kg drti. ) Kruhový park má rozlohu 1600 m. Napříč parkem přes jeho střed vede chodník. Jakou má délku? S kruhu = π r = 1600 m r = 1600 π d = r = 38 m Chodník má délku 38 m. 16 m 3) V sudu tvaru válce o průměru podstavy 1,8 m je nalito hl vody. Do jaké výše sahá voda? h hl =, m 3 d = 1,8 m r = 0,9 m V = π r h =, m 3 h = V π r =, = 0, m π 0,9 Voda sahá přibližně do výše 0,9 m.
3 5) Kolem kruhového záhonu o průměru 7,5 m je vybetonován 1 m široký chodník o tloušťce 15 cm. Kolik m 3 betonu se na jeho stavbu spotřebovalo? Kolik cementu bylo použito, jestliže na 1 m 3 betonu je potřeba 00 kg cementu? h = 15 cm = 0,15 m d = 7,5 m r 1 = 3, m = 4,75 m, r = 3,75 m V 1 = π r 1 h V = π r h V = V 1 V = π h (r 1 r ) = 4,0035 m 3 4, = 800,7 kg Spotřebovalo se 4,0035 m 3 betonu a bylo použito 800,7 kg cementu. 6) Tvarohový krém se prodává v balení po 1 dl v kelímku o poloměru dna,8 cm a horním poloměru 3,3 cm. Do jaké výšky sahá krém? 1 dl = 100 cm 3 r =,8 cm V = π r h = 100 cm 3 h = V π r = 100 = 4, cm π,8 Krém sahá přibližně do výše 4 cm. 7) V kuchyni mají sadu šesti naběraček ve tvaru polokoule, jejichž vnitřní průměry jsou 5,76 cm, 6,44 cm, 7,6 cm, 10,46 cm, 1,41 cm a 8,1 cm. Kterou naběračku kuchař zvolí: a. jako odměrku 0,3 litrů na polévku - čtvrtá b. jako odměrku 0,1 litrů na omáčku - třetí c. jako odměrku 0,05 litrů na šťávu - první V = 4 π r3 3 V 1 = π (,88 3 ) cm 3 dm 3 V 1 50,0053 0, V 69,8885 0, V 3 100,186 0,10019 V 4 99,463 0,99463 V 5 500,1079 0, V 6 140,0930 0,140093
4 8) Kolik tun cukru se získá ze sklizené cukrovky, která byla zaseta na poli tvaru lichoběžníku se základnami 80 m a 0 m dlouhými a výškou o velikosti 140 m, když hektarový výnos cukrovky činil 38 tun a obsah cukru je 16%? v c a (a + c) v (80 + 0) 140 S = = = m m = 3,5 ha výnos cukrovky z pole = 3,5 38 = 133 t množství cukru = 133 0,16 = 1,8 t Získá se 1,8 t cukru. 9) Bazén tvaru kvádru má délku 40 m a šířku 18 m. Je v něm hl vody. Vypočtěte obsah plochy bazénu, která je omývána vodou. V = a b c, hl = m = c c = 1080 = 1,5 m a b c plocha omývaná vodou = a b + a c + b c = , ,5 = 894 m Obsah plochy bazénu, která je omývána vodou je 894 m. 10) V rekreačním středisku jsou dva bazény, každý o rozloze 1600 m. Jeden bazén je čtvercový, druhý kruhový. Který bazén má větší obvod a o kolik metrů? S čtverce = a = 1600 m a = 40 m o čtverce = 4 a = 4 40 = 160 m S kruhu = π r = 1600 m r 16 m o kruhu = π r = π 16 = 100,48 m Čtvercový bazén má o 59,5 m větší obvod.
5 11) Na zahradu o výměře 800 m napršely 3 mm vody. Kolika desetilitrovými konvemi bychom stejně vydatně zalili tuto zahradu? výměra = 800m = dm výška vody = 3mm = 0,3cm = 0,03 dm objem vody = ,03 = 400d m 3 = 400 l Zahradu bychom stejně zalili 40 konvemi. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Hana Bednaříková. Dostupné z Metodického portálu ISSN: , financovaného z ESF a státního rozpočtu ČR. Provozuje Národní ústav pro vzdělávání, školské poradenské zařízení pro další vzdělávání pedagogických pracovníků (NÚV).
Příklady pro 8. ročník
Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je
VíceTento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
VíceAutor: Jana Krchová Obor: Matematika. Hranoly
Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
VíceTělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání.
9. Hranol 6. ročník 9. Hranol 9.1. Volné rovnoběžné promítání Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání. Zásady : 1) Plochy, které jsou rovnoběžné s naší rýsovací plochou zobrazujeme
VíceM - Příprava na 2. čtvrtletku - třída 3ODK
M - Příprava na 2. čtvrtletku - třída 3ODK Učebnice určená k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
VíceS = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceM - Příprava na 1. zápočtový test - třída 2SB
M - Příprava na 1. zápočtový test - třída 2SB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Výpočty s hustotou Číslo DUM: III/2/FY/2/1/10 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Výpočty s hustotou Číslo DUM: III/2/FY/2/1/10 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová
VíceStereometrie pro studijní obory
Variace 1 Stereometrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vzájemné polohy prostorových
VíceStereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Více10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
VícePříklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
VíceVzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
Více1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
VíceDUM - Digitální Učební Materiál
DUM - Digitální Učební Materiál Název školy : Střední odborné učiliště, Lišov tř. 5. května 3 373 72 Lišov IČO: 75050111 REDIZO: 651023599 Vzdělávací oblast : Truhlář Předmět : Matematika Název a číslo
Více7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC
Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.
VícePřípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
VíceKolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.
DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
Více4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.
Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má
VíceMatematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
VíceČtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
VíceKružnice. Délka kružnice (obvod kruhu)
Kružnice Délka kružnice (obvod kruhu) Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing Šárka Macháňová Dostupné z Metodického portálu wwwrvpcz, ISSN: 1802-4785, financovaného z ESF a
Více+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa
1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem
VíceMetodické pokyny k pracovnímu listu č Povrchy a objemy těles II
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a
VícePříprava na závěrečnou písemnou práci
Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721
VíceOBJEM A POVRCH TĚLESA
OBJEM A POVRCH TĚLESA 9. Objem tělesa (např. krychle, kvádr) je prostor, který těleso tvoří. Zjednodušeně řečeno vyjadřuje, kolik vody do uvedeného tělesa nalijete. Objem se počítá v metrech krychlových
VíceTest č.2. Příjímací zkoušky z matematiky. Matematika s Jitkou - přijímačky na SŠ 1
Příjímací zkoušky z matematiky Matematika s Jitkou - přijímačky na SŠ 1 MATEMATIKA ILUSTRAČNÍ TEST 1 Základní informace k zadání zkoušky Didaktický test obsahuje 17 úloh. Časový limit pro řešení didaktického
VíceSTEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím
VícePříprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
VíceÚlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
VícePovrch a objem válce - slovní úlohy
Povrch a objem válce - slovní úlohy 1) Vodní nádrž má tvar válce s průměrem podstavy 4,2m a je hluboká 80 cm. Za jak dlouho se naplní 10 cm pod okraj přítokem, kterým přitéká 2 litry za sekundu? 2) Kolem
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila
VíceI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme
VíceVálec - slovní úlohy
Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný
VícePojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
VícePŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát
VíceVypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'
VíceSlouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 11. 1. 2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
VícePovrch a objem těles
Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová
VíceMATEMATIKA. 1 Základní informace k zadání zkoušky
MATEMATIKA PŘIJÍMAČKY MSK 2011 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceZákladní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
VíceFormáty výkresů a úprava výkresových listů
Formáty výkresů a úprava výkresových listů Formáty výkresů Rozměry výkresových listů a předtisků pro všechny druhy technických výkresů používaných ve všech oblastech průmyslu a ve stavebnictví předepisuje
VíceDigitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51
VícePřímá a nepřímá úměrnost
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Přímá
VíceVLASTNOSTI LÁTEK. Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky s vlastnostmi a měřením látek.
VLASTNOSTI LÁTEK Anotace: Materiál je určen k výuce přírodovědy ve 4. ročníku ZŠ. Seznamuje žáky s vlastnostmi a měřením látek. Vlastnosti látek vlastnosti látek kolem sebe můžeme měřit pomocí měřicích
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Optické vlastnosti oka Číslo DUM: III/2/FY/2/3/17 Vzdělávací předmět: Fyzika Tematická oblast: Optika Autor: Ing. Markéta Střelcová Anotace: Žák se seznámí
VíceGeometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační
VícePovrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
VíceSOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol
Krajský úřad Pardubického kraje - odbor školství Jednota českých matematiků a fyziků, pobočka Pardubice Střední škola automobilní Ústí nad Orlicí 26.3.2019 SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické
VíceSMART Notebook verze Aug
SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 3.9.2012 Pro ročník: 6. až 9. Vzdělávací obor předmět: Matematika Klíčová slova:
VíceANALYTICKÉ INFORMACE ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 2006
ZEMĚDĚLSTVÍ V PARDUBICKÉM KRAJI V ROCE 26 Výměra zemědělské půdy V roce 26 byla výměra zemědělské půdy v Pardubickém kraji 231,9 tis. ha, z čehož 78,5 % zaujímala orná půda a 21,1 % trvalé travní porosty.
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast:
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Skládání a rozkládání sil Číslo DUM: III/2/FY/2/1/17 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra
VíceČíslo projektu: CZ.1.07/1.4.00/ Název DUM: Lom světla II.část Číslo DUM: III/2/FY/2/3/18 Vzdělávací předmět: Fyzika Tematická oblast: Optika
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Lom světla II.část Číslo DUM: III/2/FY/2/3/18 Vzdělávací předmět: Fyzika Tematická oblast: Optika Autor: Ing. Markéta Střelcová Anotace: Žák se seznámí
VíceMIŠ MAŠ. 17 OBVODY, obsahy 7.4.2014.notebook. May 18, 2015. Základní škola Nýrsko, Školní ulice, příspěvková organizace.
Základní škola Nýrsko, Školní ulice, příspěvková organizace (www.sumavanet.cz/zsskolni/projekt2 zakladni.asp) Název projektu: MIŠ MAŠ Moderní Interaktivní Škola Možností a Šancí (pro každého žáka) Číslo
VíceČtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
VíceÚlohy. b) číslo 0,8 o 35% d) číslo 220 o 22 % 1 % ze z 10,80 Kč č 10,80 Kč 103,5 = 1117,80 Kč
2. Obnos 1080 Kč představuje základ z, ze kterého počítáme procentovou část č, odpovídající počtu procent p 3,5; vypočítanou procentovou část pak přičteme k základu. 1. způsob: z 1080 Kč p 103,5 č... Kč
VícePoměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku
Poměry a úměrnosti Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku S poměrem lze pracovat jako se zlomkem a : b = a b porovnávat,
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceOBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!!
ZS1MP_PDM2 Didaktika matematiky 2 Katedra matematiky PedF MU v Brně Růžena Blažková, Milena Vaňurová OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!! Text vychází
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
VíceProjekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník
Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014
VíceMATEMATIKA 7. ročník II. pololetí
MATEMATIKA 7. ročník II. pololetí Racionální čísla A) Vypočítejte a výsledek zapište v základním tvaru popř. ve tvaru smíšeného čísla 5-7 - - 8 + 5 4 ( 9 7 + ) ( - 9 ) (- 0,) ( - ) + ( - 4 ) B) Vypočítejte
VíceDigitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceDoučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy
Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník
VíceObchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek Pracovní list DUMu v rámci projektu Evropské peníze pro Obchodní akademii Písek", reg. č. CZ.1.07/1.5.00/34.0301 Číslo a název
VícePřijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceMATEMATIKA a JEJÍ APLIKACE
pracovní listy MATEMATIKA a JEJÍ APLIKACE zpracoval Jiří Karas OBSAH PRACOVNÍ LIST č. 1............................................ 2 Výpočet plochy 6. ročník PRACOVNÍ LIST č. 2............................................
VíceMATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.
MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Brzdné síly Číslo DUM: III/2/FY/2/1/18 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Brzdné síly Číslo DUM: III/2/FY/2/1/18 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceKONTROLA. Zpracoval Ing. Jan Weiser
Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jan Weiser. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozuje Národní
VícePASPORT MÍSTNÍCH KOMUNIKACÍ - Obec Deštné - ZIMNÍ ÚDRŽBA
ÚK51 ÚK50 ÚK53 ÚK45 19c ÚK46 ÚK49 ÚK52 II/309 ÚK58 ÚK48 II/309 ÚK47 ÚK41 21c ÚK40 ÚK42 20c III/3093 ÚK43 ÚK44 ÚK38 13d II/310 13d ÚK30 ÚK39 ÚK37 ÚK36 ÚK35 ÚK34 ÚK21 10d 9c ÚK15 7c ÚK19 ÚK17 26c 27c 26c-M1
Vícematematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je
1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší
VíceSOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě
SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.
VíceSOUBOR OTÁZEK. 7.ročník
2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Více6. Čtyřúhelníky, mnohoúhelníky, hranoly
6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,
VíceKód VM: 42_ INOVACE_1SMO45 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/
Kód VM: 42_ INOVACE_1SMO45 Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/21.2581 Autor: Mgr. Marie Smolíková Datum: 6. 2. 2012 Ročník: 7. Vzdělávací oblast: Matematika
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceF - Mechanika kapalin - I
- Mechanika kapalin - I Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
VíceObecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
VíceT = HMR DMR T = ES - EI
Tolerování rozměrů Skutečné rozměry vyrobené součásti se vždy liší od jmenovitých rozměrů udaných na výkrese kótami. Aby bylo dosaženo souladu mezi požadavky konstrukce a výrobou, zavádí se tolerování
VíceČíslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Měření teploty Číslo DUM: III/2/FY/2/1/14 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální
Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Měření teploty Číslo DUM: III/2/FY/2/1/14 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:
VíceNázev: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu
SLOVNÍ ÚLOHY OBVOD A OBSAH KRUHU Název školy: Základní škola Karla Klíče Hostinné Autor: Mgr. Hana Kuříková Název: VY_32_INOVACE_01_C_12_Slovní úlohy obvod a obsah kruhu Téma: Matematika 8.ročník Číslo
VíceGrafické sčítání úseček teorie
Grafické sčítání úseček teorie Nezáleží na tom, kterou úsečku přeneseme na polopřímku jako první. Úsečka AD je grafickým součtem úseček AB a CD. Příklad 1 Hana jde ze školy na poštu, z pošty do knihovny.
VíceObchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek
Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Písek Pracovní list DUMu v rámci projektu Evropské peníze pro Obchodní akademii Písek", reg. č. CZ.1.07/1.5.00/34.0301 Číslo a název
VíceMateřská škola a Základní škola při dětské léčebně, Křetín 12
Mateřská škola a Základní škola při dětské léčebně, Křetín 12 VY_32_INOVACE_DUM.M.17 Autor: Mgr. Miroslav Páteček Vytvořeno: duben 2012 Matematika a její aplikace Klíčová slova: Třída: Anotace: Zlomky,
Vícef(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =
Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží
VíceMatematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
VíceUrčete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.
1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:
VíceZapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
7. Kruh, kružnice, válec 7. ročník - 7. Kruh, kružnice, válec 7.1 Kruh, kružnice 7.1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed
VíceM - Příprava na 3. čtvrtletku - třída 3ODK
M - Příprava na 3. čtvrtletku - třída 3ODK Učebnice je určena pro přípravu na 3. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
Více