Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
|
|
- Richard Kučera
- před 6 lety
- Počet zobrazení:
Transkript
1 Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
2 Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D. (2014). Mining of massive datasets. Cambridge University Press. [ ]
3 Co je síť? Tradiční paradigma v analýze dat předpokládá, že je každá datová instance nezávislá na jiné. Ale, často mohou být instance spojeny s jinými prostřednictvím různých typů vztahů. Jednotlivé instance mohou být popsány různými atributy. Vzniká tak síť instancí, které jsou propojeny vazbami vzniká síť instancí (uzlů), které jsou propojeny odkazy (hranami). Jak uzly tak hrany mohou mít různé atributy (číselné nebo kategoriální, nebo složitější (např. časové řady).
4 Sociální sítě Sociální sítě V užším slova smyslu např. Facebook (neorient.) nebo Twitter (orient.) V širším slova smyslu kolekce entit propojených odkazy, vazbami (!existuje alespoň jeden odkaz) v mnoha případech sítě nejsou náhodné Lidé, kteří jsou přáteli Počítače, které jsou propojeny do poč. sítě Webové stránky, které se odkazují na jiné Interakce proteinů Analýza sociálních dat (Social Network Analysis, SNA)
5 Terminologie Terminologie (v různých oborech) points lines discipline vertices, nodes edges, arcs math= graph theory routers links computer science sites bonds physics actors ties, relations sociology
6 Network Science Co je NS? NS je věda o komplexních (tj. složitých, ale i složených ) systémech reprezentovaných (typicky dynamickými) sítěmi Sociální, biologické, atd. Opírá se o: Síťová data Síťové modely Síťové algoritmy Statistické vlastnosti síťových dat
7 Komplexní sítě Komplexní systém: sbírka interagujících prvků projevujících globální dynamiku, která vyplývá z činnosti (chování) jeho částí bez organizovaného centralizovaného řízení. Complex networks - networks whose structure is irregular, complex and dynamically evolving in time. Wikipedie: In the context of network theory, a complex network is a graph (network) with non-trivial topological features features that do not occur in simple networks such as lattices or random graphs but often occur in real graphs.
8 Kořeny NS Graph Theory Statistical Mechanics Nonlinear Dynamics Games and Learning Data mining ( graph mining ) and machine learning Algorithms Complexity theory
9 Aplikace NS Social networks and social media Economic networks Biology Ecology Network medicine Climate science Brain Science and Neuroscience Web Internet and computer networks Scientometrics..
10 Proč se zabývat sítěmi? Jsou všude kolem nás Čím dál tím více systémů lze modelovat sítěmi Jejich analýza poskytuje mnoho zajímavých informací o reálném světě Stávající sítě ale rostou Problém s velikostí sítí Máme výpočetní prostředky pro jejich studium Úkolem je ale vyvinout nástroje pro práci s rozsáhlými sítěmi
11 Příklady sítí Sítě Sociální Informační Biologické Technologické
12 Sociální sítě Linky znamenají sociální vazby Sítě známostí Newman: The structure and function of complex networks, 18th page
13 Romantic relations in highschool
14 Jiné sociální sítě ové sítě Sítě spolupráce Sítě autorů, resp. spoluautorů Herecké sítě
15 exchanges in a company
16 Phone calls in a country
17 Socio-epidemic networks
18 Informační (znalostní) sítě Entity představují informace, odkazy (linky) sdružují (spojují) informace Citační sítě The World Wide Web
19 Technologické sítě Sítě vybudované pro účely distribuce určité komodity Internet Sítě aerolinií Telefonní sítě Transportní sítě Silniční, železniční, energetické
20 US highway network
21 Airline network
22 PoP-level Internet2 network
23 Biologické sítě Interakce protein-protein Potravinové sítě (řetězce) Uzly živočišné druhy Linky druh živící se jiným druhem
24 Metabolic networks
25 Protein interaction networks
26 Brain networks - Structural vs Functional networks
27 Internet - vizualizace Komplexní sítě s biliony uzlů nelze přesně zobrazit, musíme se spokojit s přibližnou vizualizací
28 A dál? Svět plný sítí. Co s nimi? Chceme: Porozumět jejich topologii Měřit jejich vlastnosti Studovat jejich chování (vývoj, dynamiku změn) Vytvářet realistické modely Vytvářet užitečné algoritmy
29 Metody analýzy dat I (Data Analysis I) Typy a reprezentace sítí (TYPES AND REPRESENTATION OF NETWORKS)
30 Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [ ] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press. [93-97]
31 Základní pojmy Orientovaný (directed), neorientovaný (undirected) graf, hrany, vrcholy, relace incidence Smyčka (loop), izolovaný vrchol, multihrana, Stupeň (degree) Ohodnocený (weighted) graf (síť) - hranové, vrcholové, cena (váha, ohodnocení) Multigraf, prostý (simple) graf, úplný (complete) graf, bipartitní graf (2-mode graph), regulární graf, strom
32 Základní pojmy Sled (walk), tah (trail), cesta (path), kružnice, cyklus, úplný uzavřený s., t., c. Dostupnost (dosažitelnost) vrcholu Vzdálenost (distance) 2 Souvislost (connectedness), komponenta (component)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.
VíceMetody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)
Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Albert-László Barabási. Network Science http://barabasi.com/networksciencebook/ kapitoly 1 a 2 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_
VíceMetody analýzy dat I. Míry a metriky - pokračování
Metody analýzy dat I Míry a metriky - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira Jr, W. (2014). Data Mining and Analysis:
VíceMetody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování
Metody analýzy dat I (Data Analysis I) Rozsáhlé struktury a vlastnosti sítí (Large-scale Structures and Properties of Networks) - pokračování Základní (strukturální) vlastnosti sítí Stupně vrcholů a jejich
VíceMetody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy
Metody analýzy dat I (Data Analysis I) Strukturální vlastnosti sítí 1. krok analýzy Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [235-270] Zaki, M. J., Meira Jr, W.
VíceZáklady informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
VíceMetody analýzy dat I (Data Analysis I) Míry a metriky (Measures and Metrics) - - pokračování
Metody analýzy dat I (Data Analysis I) Míry a metriky (Measures and Metrics) - - pokračování Literatura Newman, M. (2010). Networks: an introduction. Oxford University Press. [168-193] Zaki, M. J., Meira
VíceÚvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
VíceModerní aplikace statistické fyziky II - TMF050
Moderní aplikace statistické fyziky II - TMF050 Body 2, E-Kredity 3, 2/0 Zk - LS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu fzu.cz kmenově: externě: ÚTF UK FZÚ AV ČR, v.v.i. oddělení
VíceGrafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
VíceZákladní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
VíceJan Březina. 7. března 2017
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 7. března 2017 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
VíceNávrh a implementace algoritmů pro adaptivní řízení průmyslových robotů
Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek
VíceÚvod do GIS. Prostorová data I. část. Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium.
Úvod do GIS Prostorová data I. část Pouze podkladová prezentace k přednáškám, nejedná se o studijní materiál pro samostatné studium. Karel Jedlička Prostorová data Analogová prostorová data Digitální prostorová
VíceGrafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Více07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
VíceZáklady informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
VíceDiagnostika síťových aplikací - Zkouška
Diagnostika síťových aplikací - Zkouška Radek Mařík, January 19, 2018 1 Zkouška B2M32DSA a její hodnocení, platí od 1. 1. 2018 Zkoušení mohou být jen ti studenti, kteří získali zápočet ze cvičení. Zkouška
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Prostorová analýza dat (PAD) Číslo předmětu: 548-0044 Garantující institut: Garant předmětu: Institut geoinformatiky doc. Dr. Ing. Jiří Horák Kredity: 5
VíceNěkteré potíže s klasifikačními modely v praxi. Nikola Kaspříková KMAT FIS VŠE v Praze
Některé potíže s klasifikačními modely v praxi Nikola Kaspříková KMAT FIS VŠE v Praze Literatura J. M. Chambers: Greater or Lesser Statistics: A Choice for Future Research. Statistics and Computation 3,
VíceTeorie grafů. Teoretická informatika Tomáš Foltýnek
Teorie grafů Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Opakování z minulé přednášky Co je to složitostní třída? Jaké složitostní třídy známe? Kde leží hranice mezi problémy řešitelnými
VíceBuněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna
Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných
VíceVLASTNOSTI GRAFŮ. Vlastnosti grafů - kap. 3 TI 5 / 1
VLASTNOSTI GRAFŮ Vlastnosti grafů - kap. 3 TI 5 / 1 Pokrytí a vzdálenost Každý graf je sjednocením svých hran (jak je to přesně?).?lze nalézt složitější struktury stejného typu, ze kterých lze nějaký graf
Více2. přednáška z předmětu GIS1 Data a datové modely
2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.
VícePB050: Modelování a predikce v systémové biologii
PB050: Modelování a predikce v systémové biologii David Šafránek 21.10.2009 Obsah Pojem modelu a simulace in silico opakování Obsah Pojem modelu a simulace in silico opakování Workflow systémové biologie
VíceInteligentní systémy a neuronové sítě
Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist
VíceAlbert-László Barabási
Obsah 1. Úvod, kdo je kdo :-) 2. Co to je síťování? Od definice po praktické ukázky 3. MAS jako platforma pro cestovní ruch 4. Cílené formování sítí (osobní, profesní, placené) 5. Informační technologie
VíceRastrová reprezentace
Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,
VíceKostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 548-0057 Garantující institut: Garant předmětu: Základy geoinformatiky (ZGI) Institut geoinformatiky doc. Ing. Petr Rapant, CSc. Kredity:
VíceMultimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Literatura Havaldar P., Medioni G.: Multimedia Systems: Algorithms, Standards, and Industry Practices. Course
VíceZdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
VíceDynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
VíceDatové typy a struktury
atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro
VíceMarketingové využití internetu
Marketingové využití internetu Obsah dnešní přednášky Internet, web 2.0 Dlouhý chvost, reputační systémy Využití internetu pro marketingové účely Webové prohlížeče a optimalizace stránek Typy reklamy Facebook
VíceNeuropočítače. podnět. vnímání (senzory)
Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního
VíceSAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS
SAFETY IN LOGISTIC TRANSPORT CHAINS USING THEORY OF GRAPHS Jan Chocholáč, Martin Trpišovský, Petr Průša 1 ABSTRACT This article focuses on the elementary explanation of safety requirement in logistic transport
VíceMetody analýzy dat II
Metody analýzy dat II Detekce komunit MADII 2018/19 1 Zachary s club, Collaboration network in Santa Fe Institute, Lusseau s network of Bottlenose Dolphins 2 Web Pages, Overlaping communities of word associations
VíceAlgoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů)
Algoritmy a struktury neuropočítačů ASN P9 SVM Support vector machines Support vector networks (Algoritmus podpůrných vektorů) Autor: Vladimir Vapnik Vapnik, V. The Nature of Statistical Learning Theory.
VíceStřední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_05_SÍTĚ_P2 Číslo projektu: CZ 1.07/1.5.00/34.1077
VícePOKROČILÉ POUŽITÍ DATABÁZÍ
POKROČILÉ POUŽITÍ DATABÁZÍ Barbora Tesařová Cíle kurzu Po ukončení tohoto kurzu budete schopni pochopit podstatu koncepce databází, navrhnout relační databázi s využitím pokročilých metod, navrhovat a
VíceProblémy třídy Pa N P, převody problémů
Problémy třídy Pa N P, převody problémů Cvičení 1. Rozhodněte o příslušnosti následujících problémů do tříd Pa N P(N PCověříme později): a)jedanýgrafsouvislý? danýproblémjeztřídy P,řešíhonapř.algoritmyDFS,BFS.
VíceModely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
VíceTeorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit
Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo
VícePostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa
Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze
VíceFormální konceptuální analýza
moderní metoda analýzy dat 14. října 2011 Osnova Informatika 1 Informatika 2 3 4 Co je to informatika? Co je to informatika? Computer science is no more about computers than astronomy is about telescopes.
VíceArchitektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
VíceCZ.1.07/1.5.00/
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
VíceHledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
VíceJarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Více4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
VíceInformatika. tercie. Mgr. Kateřina Macová 1
Informatika tercie Mgr. Kateřina Macová 1 Provozní řád učebny informatiky Žáci smí být v učebně výhradně za přítomnosti vyučujícího. Do učebny smí vstoupit a učebnu smí opustit pouze na pokyn vyučujícího.
VíceMetody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
VíceJan Březina. Technical University of Liberec. 21. dubna 2015
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 21. dubna 2015 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
VíceData Science projekty v telekomunikační společnosti
Data Science projekty v telekomunikační společnosti Jan Romportl Chief Data Scientist, O2 Czech Republic Data, mapa a teritorium Data Science Mezioborová technicky orientovaná oblast, která se zabývá inovativním
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
VíceMetody analýzy dat II
Metody analýzy dat II Vzorkování (Sampling) MAD2 2018/19 1 Literatura http://tuvalu.santafe.edu/~aaronc/courses/53 52/csci5352 2017 L9.pdf https://cs.stanford.edu/~jure/pubs/samplingkdd06.pdf https://www.cs.purdue.edu/homes/neville/co
VíceInovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Internet a zdroje Úvodní hodina Základní informace Název předmětu:
VíceArchitektury Informačních systémů. Jaroslav Žáček
Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?
VíceMODERNÍ APLIKACE STATISTICKÉ FYZIKY I
MODERNÍ APLIKACE STATISTICKÉ FYZIKY I NTMF049, 2/0 Zk - ZS Miroslav Kotrla a František Slanina kotrla@fzu.cz slanina@fzu.cz externě: ÚTF UK kmenově: FZÚ AV ČR, v.v.i., Praha 8 oddělení teorie kondenzovaných
VíceMultimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Literatura Havaldar P., Medioni G.: Multimedia Systems: Algorithms, Standards, and Industry Practices. Course
VíceObsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
VíceGIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
VíceKolaborativní aplikace
Kolaborativní aplikace Michal Máčel Vema, a. s. Okružní 3a, 638 00 Brno - Lesná, macel@vema.cz Tomáš Hruška Fakulta informačních technologií Vysokého učení technického v Brně, Ústav informačních systémů,
VíceTGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
VíceGeoinformatika. I Geoinformatika a historie GIS
I a historie GIS jaro 2014 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Motivace Proč chodit na přednášky?
VíceGEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 3
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 3 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)
VíceSuffixové stromy. Osnova:
Suffixové stromy http://jakub.kotrla.net/suffixtrees/ Osnova: Motivační příklad Přehled možných řešení Definice suffixového stromu Řešení pomocí suffixových stromů Konstrukce suffixového stromu Další použití,
VíceJan Březina. Technical University of Liberec. 30. dubna 2013
TGH11 - Maximální párování a související problémy Jan Březina Technical University of Liberec 30. dubna 2013 Bipartitní grafy Bipartitní graf - je obarvitelný dvěma barvami. Tj. V lze rozělit na disjunktní
VíceÚvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
VíceTGH08 - Optimální kostry
TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení
Více5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
VíceModerní systémy pro získávání znalostí z informací a dat
Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0259 Garantující institut: Garant předmětu: Exaktní metody rozhodování Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková,
VíceKartografické modelování V Topologické překrytí - Overlay
Kartografické modelování V Topologické překrytí - Overlay jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech
VíceOperační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VícePROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.
Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché
VíceParalelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
VíceMBI - technologická realizace modelu
MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,
VíceDobývání znalostí z webu web mining
Dobývání znalostí z webu web mining Web Mining is is the application of data mining techniques to discover patterns from the Web (Wikipedia) Tři oblasti: Web content mining (web jako kolekce dokumentů)
VíceBinární vyhledávací stromy pokročilé partie
Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald
VíceMetody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka
Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce
VíceVyhledávání a orientace ve vědeckých informacích z pohledu citační analýzy
Vyhledávání a orientace ve vědeckých informacích z pohledu citační analýzy Mgr. Jakub Szarzec Národní technická knihovna Searching Session 2014 7. 10. 2014 Národní technická knihovna Úvodem Vědecká informace.
VíceWeb based dynamic modeling by means of PHP and JavaScript part II
Web based dynamic modeling by means of PHP and JavaScript part II Jan Válek, Petr Sládek Pedagogická fakulta Masarykova Univerzita Poříčí 7, 603 00 Brno Úvodem Rozvoj ICT s sebou nese: Zásadní ovlivnění
VíceGIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Více4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
VíceGEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 6 Lubomír Vašek Zlín 2013 Obsah... 3 1. Základní pojmy... 3 2. Princip rastrové reprezentace... 3 2.1 Užívané
VíceGRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
VíceEvropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 8 SÍTĚ NAČIPU (NOC) doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze Hana
VíceStromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
VíceProfilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
VíceTGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
VíceVyužití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
VíceTGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
VíceInformační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází
1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,
VíceORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
VíceMarketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)
Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod
VíceGrafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Více