Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch
|
|
- Alžběta Brožová
- před 9 lety
- Počet zobrazení:
Transkript
1 Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz
2 Přehled (1) Princip rekonstrukce ploch technické praxe z mračna bodů Bodová fáze příprava a předzpracování Polygonální reprezentace Tvarová fáze segmentace, aproximace oblasti daným typem plochy Hraniční reprezentace Polygonální reprezentace příklady v programu Rhinoceros Analytická reprezentace Analytická vyjádření hraničně reprezentovaných objektů Bézierovy plochy Racionální Bézierovy plochy Plátování Příklady ploch 1 Rekonstrukce ploch Petra Surynková, 2011
3 Přehled (2) Aproximace ploch Bézierovými pláty Body vstupní množiny tvoří pravidelnou mřížku Body vstupní množiny jsou rozmístěny náhodně Programová demonstrace Další vylepšování tvaru aproximující plochy Evoluce uzavřených a otevřených B-spline křivek objasnění problému Evoluce Bézierových ploch Programová demonstrace Závěr a budoucí práce 2 Rekonstrukce ploch Petra Surynková, 2011
4 Rekonstrukce ploch (1) Digitální dokumentace reálných povrchů rekonstrukce ploch je využívána v řadě odvětvích vědy a průmyslu dokumentace soch a památek, architektura, stavitelství, design,... vytvoření CAD modelu z daného mračna bodů body v prostoru, v obecné úloze známe jen prostorové souřadnice Bodová fáze příprava a předzpracování mračna bodů získáváme 3D skenováním reálných povrchů nutné počítat s nepřesností v měření skenování se provádí vícekrát z různých stanovišť, jednotlivé,,skeny se následně slučují ve výsledném mračnu bodů mohou být redundantní data nutné odstranit ztenčující algoritmy 3 Rekonstrukce ploch Petra Surynková, 2011
5 Rekonstrukce ploch (2) Polygonální reprezentace celá řada algoritmů využívající dělení prostoru základem Voronoiovy diagramy, Delaunay triangulace výsledkem těchto metod bývá velice často trojúhelníková síť aproximující zadanou množinu bodů velice komplikovaný problém, dosud neexistují uspokojivé univerzální řešící postupy Tvarová fáze převod trojúhelníkové sítě do CAD reprezentace implicitní nebo parametrické vyjádření ploch segmentace detekce a rozdělení na oblasti s,,rozdílnou geometrií tj. nalezení rovinné oblasti, části válcových ploch nebo obecné plochy (freeform patches) není jednoduché aproximace oblasti typem plochy určeného při segmentaci (surface fitting) 4 Rekonstrukce ploch Petra Surynková, 2011
6 Hraniční reprezentace (1) Polygonální reprezentace jedna z nejčastěji používaných reprezentací objektů v počítačové grafice základním prvkem nejčastěji trojúhelník, někdy čtyřúhelník nebo mnohoúhelníky (nutné určovat konvexitu) polygon je nejčastěji reprezentován pouze svými vrcholy pořadí vrcholů a tudíž i pořadí jeho stran určuje orientaci celého polygonu při rekonstrukci ploch vstupem množina bodů, známe prostorové souřadnice, obecně nevíme nic dalšího díky polygonální reprezentaci, určíme návaznost bodů vstupní množiny jde o vygenerování prvotního povrchu plochy, který se dále zpracovává 5 Rekonstrukce ploch Petra Surynková, 2011
7 Hraniční reprezentace (2) Polygonální reprezentace příklady trojúhelníkové sítě 6 Rekonstrukce ploch Petra Surynková, 2011
8 Hraniční reprezentace (3) Polygonální reprezentace příklady reálných dat a jejich trojúhelníkových sítí 7 Rekonstrukce ploch Petra Surynková, 2011
9 8 Rekonstrukce ploch Petra Surynková, 2011
10 9 Rekonstrukce ploch Petra Surynková, 2011
11 10 Rekonstrukce ploch Petra Surynková, 2011
12 Ukázka trojúhelníkových sítí naskenovaných reálných objektů Využití modelovacích funkcí a nástrojů v programu Rhinoceros 11 Rekonstrukce ploch Petra Surynková, 2011
13 Hraniční reprezentace (4) Analytická reprezentace rozsáhlá teorie diferenciální geometrie křivek a ploch nejčastěji parametrický popis, implicitní popis (méně) výhody základní předností analytického vyjádření ploch je jeho přesnost například v architektuře vysoce žádoucí analytické vyjádření ploch umožňuje měřit povrch plochy lze poměrně snadno editovat lze měnit tvar plochy s plochami lze provádět různé operace dělení nebo průniky parametricky vyjádřené funkce jsou jednoduše diferencovatelné objekty takto popsané se snadno navazují 12 Rekonstrukce ploch Petra Surynková, 2011
14 Hraniční reprezentace (5) v analytické formě bývá obtížné (někdy dokonce nemožné) vyjádřit složitý objekt jako celek složité objekty proto popisujeme parametricky jako objekty složené z jednodušších částí vytváření výsledných objektů napojováním ploch tzv. plátů se v počítačové grafice označuje jako plátování k popisu ploch technické praxe budeme používat Bézierovy a racionální Bézierovy plochy definice, speciální příklady, které lze v rekonstrukci povrchů využít napojování Bézierových plátů 13 Rekonstrukce ploch Petra Surynková, 2011
15 Bézierovy plochy (1) Bézierova plocha stupně je určena ( m1) ( n1) m n i0 j0 mn řídícími body a vztahem m n Q( u, v) P B ( u) B ( v), u 0,1, v 0,1 ij i j bázové funkce k-tého stupně B ( t), k n, m k i jsou Bernsteinovy polynomy k i k i ( ) k (1 ) Bi t t t i t 0,1, i 0,1,..., k 14 Rekonstrukce ploch Petra Surynková, 2011
16 Bézierovy plochy (2) Bézierova plocha stupně mn Bézierova plocha prochází rohovými body sítě a okrajové křivky plochy jsou Bézierovými křivkami pro okraje sítě tečná rovina v bodě podobně pro další rohové body P00 je určena body P00, P10, P01 Q(0,0) P Q(0,1) P Q(1,0) P Q(1,1) P 00 0n m0 mn okrajová křivka např.: n n Q(0, v) P0 jb j( v) j0 15 Rekonstrukce ploch Petra Surynková, 2011
17 Bézierovy plochy (3) Bézierova plocha stupně mn P m0 P 00 P mn P 0n 16 Rekonstrukce ploch Petra Surynková, 2011
18 Bézierovy plochy (4) Bézierova plocha stupně mn P m0 P 00 P mn n n Q(0, v) P0 jb j( v) j0 P 0n m m Q( u,1) Pin Bi ( u) 17 Rekonstrukce ploch Petra Surynková, 2011 i0
19 Bézierovy plochy (5) Bézierova plocha stupně mn křivky plochy a jejich řídící polygony 18 Rekonstrukce ploch Petra Surynková, 2011
20 Bézierovy plochy (6) Bézierova plocha stupně mn křivky plochy a jejich řídící polygony 19 Rekonstrukce ploch Petra Surynková, 2011
21 Bézierovy plochy (7) Bézierova bikubická plocha m3, n Q( u, v) Pij Bi ( u) B j ( v), u 0,1, v 0,1 i0 j ( ) (1 ) P00 P01 P02 P03 B t t B ( t) 3 t(1 t) B ( t) 3 t (1 t) B () t t M B T T 3 2 (, ) 1 T Q u v UM BPM BV u u u M BPM B v P P P P P P P P P P P P P 3 v v Rekonstrukce ploch Petra Surynková, 2011
22 Bézierovy plochy (8) Bézierova bikubická plocha m3, n3 v Matlabu nepočítáme se symbolickými proměnnými plně využíváme podporu počítání s maticemi určujeme matici kořenů Bernsteinových polynomů určujeme matici koeficientů Bernsteinových M B polynomů z kořenů Bernsteinových polynomů umíme zpětně určit koeficienty polynomů dále vyhodnocujeme Bernsteinovy polynomy v hodnotách parametrů u a v u, v reprezentovány jako vektory, vyhodnocení Bern. pol. ukládáme do matic Rekonstrukce ploch Petra Surynková, 2011 M B
23 Bézierovy plochy (9) Plátování mějme dva Bézierovy pláty první z nich je určen sítí řídících bodů Qij, i 0,..., s; j 0,..., n druhý je určen sítí řídících bodů Rij, i 0,..., t; j 0,..., n počet bodů ve směru v je stejný pro oba pláty a je roven n pláty navazujeme ve směru u Napojení C 0 QR, pláty mají společnou stranu, tj. Q( u,1) R(0, v), toho docílíme ztotožněním řídících bodů, které určují příslušnou stranu tj. pláty mají společnou hraniční lomenou čáru a různé příčné tečné vektory Q, 0,..., sj R0 j j n 22 Rekonstrukce ploch Petra Surynková, 2011
24 Bézierovy plochy (10) Napojení 0 C 23 Rekonstrukce ploch Petra Surynková, 2011
25 Bézierovy plochy (11) Napojení C 1 1 pokud společná strana plátů je C spojitá a jsou-li identické příčné tečné vektory ve směru u podél této strany 1 tj. shoda C spojité strany a splnění následující vztahu pro body řídících polygonů obou plátů Q, 0,..., sj Qs 1 j R1 j R0 j j n řídící body společné strany plátů leží ve středu úseček, které spojují vždy předposlední bod řídícího polygonu plátu R ve směru u s druhým bodem plátu Q ve stejném směru 1 G spojitost pokud je splněna lineární závislost s koeficientem k>0 Qsj Qs 1 j k R1 j R0 j, j 0,..., n 24 Rekonstrukce ploch Petra Surynková, 2011
26 Bézierovy plochy (12) Napojení 1 C 25 Rekonstrukce ploch Petra Surynková, 2011
27 Bézierovy plochy (13) Napojení 0 C 26 Rekonstrukce ploch Petra Surynková, 2011
28 Bézierovy plochy (14) Napojení 1 C 27 Rekonstrukce ploch Petra Surynková, 2011
29 Bézierovy plochy (15) Speciální příklady Bézierových ploch bilineární Bézierova plocha tj. m1, n1 je určena 2x2 řídícími body u-křivky a v-křivky jsou pouze úsečky výpočtem lze dokázat, že tímto způsobem lze nadefinovat pouze část roviny (pokud řídící body leží v jedné rovině) nebo část hyperbolického paraboloidu P 10 P 11 P 01 P Rekonstrukce ploch Petra Surynková, 2011
30 Bézierovy plochy (16) Speciální příklady Bézierových ploch P 11 hyperbolický paraboloid jako bilineární Bézierova ploch P P00 29 Rekonstrukce ploch Petra Surynková, 2011 P
31 Bézierovy plochy (17) Speciální příklady Bézierových ploch Bézierova plocha mn, kde m 1 výpočtem lze dokázat, že tímto způsobem dostáváme přímkové plochy P 15 P 04 P 11 P 12 P 02 P 00 P 03 P 10 P Rekonstrukce ploch Petra Surynková, 2011 P 01
32 Bézierovy plochy (18) Speciální příklady Bézierových ploch Bézierova plocha mn, kde m 1 při speciální volbě řídících bodů válcová plocha P 10 P 12 P 14 P 00 P 02 P 04 P 01 P 03 P Rekonstrukce ploch Petra Surynková, 2011 P 05
33 Bézierovy plochy (19) Speciální příklady Bézierových ploch Bézierova plocha mn, kde m 1 při speciální volbě řídících bodů kuželová plocha P10 P11 P12 P13 P14 P15 P 00 P 02 P 04 P 01 P Rekonstrukce ploch Petra Surynková, 2011 P 05
34 Bézierovy plochy (20) Speciální příklady Bézierových ploch Bézierova plocha mn, kde m2, n2 další speciální volby hyperbolický paraboloid P 10 P 12 P 20 P 22 P 11 P 00 P 21 P 02 P Rekonstrukce ploch Petra Surynková, 2011
35 Racionální Bézierovy plochy (1) K řídícím bodům jsou přiřazeny tzv. váhy jestliže jsou všechny váhy rovny jedné, přechází racionální Bézierova plocha v Bézierovu plochu racionální Bézierovy plochy jsou zobecněním Bézierových ploch dovolují přesný popis kvadrik, lze popsat více speciálních ploch vychází z toho, že kromě paraboly nelze Bézierovými křivkami popsat kuželosečky pro modelování k dispozici další parametry, měníme tvar plochy bez změny řídících bodů Q( u, v) u m n i0 j0 m n i0 j0 m n w P B ( u) B ( v) ij ij i j m n w B ( u) B ( v) ij i j 0,1, v 0,1 34 Rekonstrukce ploch Petra Surynková, 2011 w ij
36 Racionální Bézierovy plochy (2) P Speciální příklady racionálních Bézierových ploch př. ¼ rotační válcové plochy r,0,0 P r,0, v P P P P r, r,0 r, r, v 0, r,0 0, r, v w w w w w w v výška, r poloměr válce P P Rekonstrukce ploch Petra Surynková, 2011 P 10 P 12 P 02 P 11
37 Racionální Bézierovy plochy (3) Speciální příklady racionálních Bézierových ploch př. 1/16 anuloidu P00 0, R, r w00 1 P10 R, R, r 2 w10 2 P R,0, r w P 0, R r, r P R r, R r, r P R r,0, r P 0, R r,0 P R r, R r,0 P R r,0,0 w w w w w w r, R poloměr kružnic P P P 02 P 10 P 20 P Rekonstrukce ploch Petra Surynková, 2011 P 22 P 11 P 12
38 Racionální Bézierovy plochy (4) Speciální příklady racionálních Bézierových ploch př. 1/8 koule P00 0,0, r w00 1 P10 r,0, r w P20 r,0,0 w 1 P P P P P P ,0, r r, r, r r, r,0 0,0, r 0, r, r 0, r,0 w w w w w w P P P r - poloměr koule P 11 P 10 P 21 P Rekonstrukce ploch Petra Surynková, 2011 P 22 P 12
39 Programová demonstrace Ukázka obecných racionálních Bézierových plátů v prostředí Matlab 38 Rekonstrukce ploch Petra Surynková, 2011
40 Aproximace ploch Bézierovými pláty (1) Vstupní množina body v prostoru, známe pouze souřadnice Zjednodušení body tvoří v půdoryse pravidelnou obdélníkovou mřížku Rekonstrukce ploch Petra Surynková, 2011
41 Aproximace ploch Bézierovými pláty (2) Vstupní množina body v prostoru, známe pouze souřadnice Zjednodušení body tvoří v půdoryse pravidelnou obdélníkovou mřížku známe m n X ( u, v) P B ( u) B ( v), u 0,1, v 0,1 i0 j0 bodům přiřadíme parametry podle mřížky m n m n tj. X ( u, v ) P B ( u ) B ( v ) m n ij i j hledáme k l ij i k j l i0 j Rekonstrukce ploch Petra Surynková, 2011, u v k l 0,,,,,, ,,,,,
42 Aproximace ploch Bézierovými pláty (3) mn stupeň plochy volíme podle toho, zda chceme plochu interpolovat nebo aproximovat pokud máme o ploše další informace např. jde o body klenby, můžeme předpokládat nízký stupeň plochy, nebo stupeň dokonce známe hledáme řídící body ve smyslu metody nejmenších P ij čtverců využíváme funkcí Matlabu k řešení přeurčené soustavy rovnic jedna rovnice soustavy m m m n n n X ( u, v ) B ( u ), B ( u ),..., B ( u ) P B ( v ), B ( v ),..., B ( v ) k l k k m k l l n l T 41 Rekonstrukce ploch Petra Surynková, 2011
43 Aproximace ploch Bézierovými pláty (4) výsledná aproximující plocha 42 Rekonstrukce ploch Petra Surynková, 2011
44 Aproximace ploch Bézierovými pláty (5) Vstupní množina body v prostoru, známe pouze souřadnice Obecné body netvoří v půdoryse pravidelnou mřížku Rekonstrukce ploch 4-1 Petra Surynková, 2011
45 Aproximace ploch Bézierovými pláty (6) Vstupní množina body v prostoru, známe pouze souřadnice Obecné body netvoří v půdoryse pravidelnou mřížku bodům přiřadíme parametry podle přeškálování určujeme body s minimální a maximální x-ovou a y-ovou souřadnicí kvůli nepravidelnosti vstupní množiny je nutné body přeuspořádat do matic opět stupeň plochy volíme mn x min y max x max hledáme řídící body nejmenších čtverců P ij ve smyslu metody Rekonstrukce ploch Petra Surynková, 2011 y min
46 Aproximace ploch Bézierovými pláty (7) výsledná aproximující plocha 45 Rekonstrukce ploch Petra Surynková, 2011
47 Programová demonstrace Ukázka aproximace Bézierovými pláty v prostředí Matlab 46 Rekonstrukce ploch Petra Surynková, 2011
48 Další vylepšování tvaru (1) Pojem postupného vylepšování tvaru vysvětlíme na křivkách ukázka evoluce uzavřených a otevřených B-spline křivek Cílem je vhodně aproximovat zadanou množinu bodů v rovině daným typem křivky zvolená metoda je evoluce Podstata evoluce postupný vývoj křivky od jistého počátečního tvaru a polohy křivka je tomuto procesu podrobena do té doby, dokud nesplňuje nějaké předem dané kritérium zde, dokud neprochází body vstupní množiny 47 Rekonstrukce ploch Petra Surynková, 2011
49 Další vylepšování tvaru (2) dána množina bodů p jj 1.. N v rovině cílem je proložit tyto body křivkou výslednou křivku hledáme tak, aby byla splněna podmínka N j1 min x j c p j x j 2 min, kde x j značí body na křivce p j 48 Rekonstrukce ploch Petra Surynková, 2011
50 Další vylepšování tvaru (3) mějme parametricky popsanou křivku m c( u) B ( u) V i0 u i a, b c ( u) : c( s, u) označme s v reprezentaci křivky se objevují dva rozdílné parametry i u Vi B i parametr křivky řídící body křivky bázové funkce vektor parametrů s ( s 1, s2,..., s n ) s n N j1 min p c ( u ) min u j j s j 2 s j jsou x-ové a y-ové souřadnice řídících bodů 49 Rekonstrukce ploch Petra Surynková, 2011
51 Další vylepšování tvaru (4) hledáme vektor parametrů křivku nechť vektor parametrů závisí na dalším parametru t evoluční parametr parametr t můžeme chápat jako čas s( t) s ( t), s ( t),..., s ( t) 1 2 s ( s 1, s2,..., s n ), který definuje tyto parametry jsou v čase modifikovány tak, že se počáteční křivka mění a pohybuje stále blíž k daným bodům n n n 102 s (( tt ) s ( t ), s ( t ),..., s( t( t) ) 50 Rekonstrukce ploch Petra Surynková, 2011
52 Programová demonstrace Ukázka evoluce uzavřených a otevřených B-spline křivek v prostředí Matlab 51 Rekonstrukce ploch Petra Surynková, 2011
53 Další vylepšování tvaru (5) Princip postupného vývoje tvaru bude analogický pro plochy jde o mnohem komplikovanější problém to je také důvod, proč počáteční polohu a tvar plochy nevolíme zcela libovolně, ale vycházíme z prvotní aproximace Aproximace je sama o sobě velmi spolehlivou metodou protože vycházíme z aproximace metodou nejmenších čtverců, nelze již plochu v tomto směru vylepšovat plocha v lokálním minimu volíme jiné funkční závislosti vylepšujeme tvar plochy tak, aby lépe aproximovala danou množinu bodů 52 Rekonstrukce ploch Petra Surynková, 2011
54 Další vylepšování tvaru (6) K daným bodům množiny se plochou přibližujeme minimalizací chybové funkce chybová funkce např. vyjadřuje součet vzdáleností bodů vstupní množiny od nejbližších bodů na ploše lze použít i jiné funkce např. radiální bázové funkce spojité, diferencovatelné Minimalizace chybové funkce výpočet parciálních derivací aktualizace řídících bodů plochy P _ akt P _ poc 1 x x parc _ der _ x 53 Rekonstrukce ploch Petra Surynková, 2011
55 Další vylepšování tvaru (7) Jiný přístup po aproximaci Bézierovou plochou přecházíme k racionální parametrizaci Další tvar plochy vylepšujeme změnou vah řídících bodů minimalizujeme opět chybovou funkci, ale tentokrát aktualizujeme váhy řídících bodů řídící body zůstávají na místě nemění se stupeň plochy modifikuje se tvar plochy Použití jak pro funkci vzdáleností tak pro radiální funkce 54 Rekonstrukce ploch Petra Surynková, 2011
56 Programová demonstrace Ukázka postupného vylepšování tvaru Bézierovy plochy v prostředí Matlab 55 Rekonstrukce ploch Petra Surynková, 2011
57 Závěr a budoucí práce V budoucí práci se zaměříme na použití dalších typů ploch k rekonstrukci povrchů B-spline a NURBS plochy Bézierovy plochy nevýhodné při změně řídícího bodu, změna celé plochy, proto použití racionálních Bézierových ploch jejich implementace, použití k aproximaci Další vylepšování tvaru plochy použití jiných chybových funkcí další radiální bázové funkce interaktivní přístup možnost vybrat, ke kterým bodům se přiblížíme 56 Rekonstrukce ploch Petra Surynková, 2011
58 Závěr a budoucí práce Další vylepšování tvaru plochy přidání vah k bodům mračna tj. vybírání důležitých bodů po aproximaci přejít k racionální parametrizaci a k plátování racionální parametrizace - hotové zvýšení stupně plochy ne vždy výhodné, může vzniknout nežádoucí vlnění Další zpracování dat z 3D skenerů Vizualizace výsledků v programu Rhinoceros 57 Rekonstrukce ploch Petra Surynková, 2011
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1) Princip rekonstrukce ploch technické
Plochy zadané okrajovými křivkami
Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci
Rekonstrukce křivek a ploch metodou postupné evoluce
Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve
Základní vlastnosti ploch
plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie
Plochy počítačové grafiky II. Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS
II Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS Konstrukce a zadání plochy hraniční křivky sítí bodů Kinematicky vytvořené křivky
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
Počítačová grafika RHINOCEROS
Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá
POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214
PROGRAM PŘEDNÁŠEK Po 9:00-10:30, KN:A-214 1P 16. 2. Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P 23. 2. Spojitost
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
Základní vlastnosti křivek
křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky
5. Plochy v počítačové grafice. (Bézier, Coons)
5. PLOCHY V POČÍAČOVÉ GRAFICE Cíl Po prostudování této kapitoly budete umět popsat plochy používané v počítačové grafice řešit příklady z praxe, kdy jsou použity plochy Výklad Interpolační plochy - plochy,
Digitální rekonstrukce povrchů z mračna bodů
Digitální rekonstrukce povrchů z mračna bodů Petra Surynková, Šárka Voráčová Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 75 Praha 8, Czech Republic email: petra.surynkova@mff.cuni.cz,
Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Matematický ústav UK Matematicko-fyzikální fakulta
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické
Elementární křivky a plochy
Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
Matematický ústav UK Matematicko-fyzikální fakulta
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 2. října 2018 Zbyněk Šír (MÚ UK) - Geometrické modelování 2. října 2018 1 / 15 Obsah dnešní přednášky Co je to geometrické
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Další plochy technické praxe
Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
15. listopadu Matematický ústav UK Matematicko-fyzikální fakulta. Hermitovská interpolace
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Hermitovská interpolace 15. listopadu 2017 Zbyněk Šír (MÚ UK) - Geometrické modelování 15. listopadu 2017 1 / 23 Hermiteovská
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace
Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
Maturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Matematická analýza III.
3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické
Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
9 Prostorová grafika a modelování těles
9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.
Offsety KMA/ITG Informační technologie ve vyučování geometrie Offsety ITG 1 / 33
Offsety KMA/ITG Informační technologie ve vyučování geometrie Offsety ITG 1 / 33 Motivace Motivace 3-osé obrábění motivaci k zavedení offsetů je možné hledat v obrábění. 3-osé obrábění je obrábění frézou,
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE
3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou
Předpokládané znalosti žáka 1. stupeň:
Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci
Geometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
Aproximace funkcí. Numerické metody 6. května FJFI ČVUT v Praze
Aproximace funkcí Numerické metody 6. května 2018 FJFI ČVUT v Praze 1 Úvod Dělení Interpolace 1D Více dimenzí Minimalizace Důvody 1 Dělení Dělení - Získané data zadané data 2 Dělení - Získané data Obecně
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren
Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna
Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí
VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Čebyševovy aproximace
Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu
Typy geometrie v. Rhinu. Body
Typy geometrie v 16 Rhinu Rhino rozeznává pět základních typů geometrie: body (points), křivky (curves), plochy (surfaces) a spojené plochy (polysurfaces). Navíc jsou plochy nebo spojené plochy, které
Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
Základní topologické pojmy:
Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
HVrchlík DVrchlík. Anuloid Hrana 3D síť
TVORBA PLOCH Plochy mají oproti 3D drátovým modelům velkou výhodu, pro snadnější vizualizaci modelů můžeme skrýt zadní plochy a vytvořit stínované obrázky. Plochy dále umožňují vytvoření neobvyklých tvarů.
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
Maturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie
SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Triangulace. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
11 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Význam triangulace trojúhelník je základní grafický
Algoritmizace prostorových úloh
Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních
Geometrie pro počítačovou grafiku - PGR020
Geometrie pro počítačovou grafiku - PGR020 Zbyněk Šír Matematický ústav UK Zbyněk Šír (MÚ UK) - Geometrie pro počítačovou grafiku - PGR020 1 / 18 O čem předmět bude Chceme podat teoretický základ nezbytný
Obsah. Metodický list Metodický list Metodický list Metodický list
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce