Triangulace. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Rozměr: px
Začít zobrazení ze stránky:

Download "Triangulace. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta."

Transkript

1 11 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz

2 Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Počítačová geometrie

3 Počítačová geometrie Definice T nad množinou bodů P { p1, p2,..., pn} v rovině představuje takové planární rozdělení, které vytvoří soubor trojúhelníků T { t, t,..., t } s vrcholy z množiny P, přičemž platí libovolné dva trojúhelníky mají společnou nejvýše hranu nebo vrchol t, t T, i j i j m 1 2 sjednocení trojúhelníků je souvislá množina ve 2D (obecně nemusí být konvexní a může obsahovat díry) uvnitř žádného trojúhelníku neleží žádný další bod z P m

4 Počítačová geometrie ukázky vzájemných poloh trojúhelníků, které tato definice vylučuje

5 Počítačová geometrie Pro triangulaci T nad množinou bodů P { p, p,..., p } v rovině platí 1 2 n m 2n n 2n 2 KO n 3n n 3n 3 D H KO D m - počet trojúhelníků n H n KO n D - počet hran - počet vrcholů konvexní obálky - počet děr vztahy lze odvodit z Eulerovy formule

6 Nejčastější aplikace triangulací kartografie tvorba digitálního modelu terénu aproximace ploch zpracování obrazu segmentace, rozpoznávání vzoru tvorba prostorových modelů z dat laserového skenování počítačová grafika vizualizace prostorových dat ve scénách kartografická generalizace modelování přírodních jevů eroze interpolační techniky biometrie detekce otisků prstů předzpracování pro jiné algoritmy Počítačová geometrie

7 Počítačová geometrie Nejčastější aplikace triangulací rekonstrukce terénu z dat leteckého laserového skenování

8 Počítačová geometrie Nejčastější aplikace triangulací

9 Počítačová geometrie Nejčastější aplikace triangulací výšková mapa

10 Počítačová geometrie Nejčastější aplikace triangulací výšková mapa rtom/

11 Počítačová geometrie Nejčastější aplikace triangulací triangulace povrchu

12 Počítačová geometrie Nejčastější aplikace triangulací triangulace povrchu

13 Kritéria kvality triangulace jednoduchost algoritmu, snadná implementace převod do vyšších dimenzí optimální tvar trojúhelníkové sítě malá citlivost na singulární případy, kdy triangulace není jednoznačná nebo ji nelze sestrojit triangulace by měla produkovat pravidelné trojúhelníky vhodných tvarů (blížící se rovnostranným) některé požadavky v kontrastu triangulační algoritmy patří mezi jedny z nejvíce teoreticky rozpracované postupy Počítačová geometrie

14 Volba triangulace co je nutné zohlednit tvar trojúhelníků triangulace by měla produkovat pravidelné trojúhelníky (důležité při tvorbě digitálního modelu terénu) povinné hrany možnost vkládat povinné hrany a modifikovat tvar triangulace triangulace nekonvexní oblasti nebo oblasti obsahující díry v mapách se triangulace neprovádí např. pro vodní plochy, budovy, Počítačová geometrie

15 Dělení triangulací podle geometrické konstrukce Delaunay triangulace Greedy triangulace MWT Minimum Weight Triangulation triangulace s povinnými hranami Constrained Triangulation datově závislé triangulace podle použitých kritérií lokálně optimální triangulace globálně optimální triangulace multikriteriálně optimalizované triangulace vlastnosti triangulace se posuzují ve vztahu k těmto kritériím Počítačová geometrie

16 Lokálně optimální triangulace každý čtyřúhelník tvořený dvojicí trojúhelníků se společnou stranou je triangularizován optimálně vzhledem k zadanému kritériu pro danou množinu bodů v rovině existuje více lokálně optimálních triangulací, každá z nich optimalizuje jiné kritérium Globálně optimální triangulace všechny trojúhelníky triangulace jsou optimální vzhledem k zadanému kritériu neexistuje jiná triangulace, která by dosáhla alespoň u jednoho trojúhelníku lepší hodnoty posuzovaného kritéria je současně lokálně optimální Multikriteriálně optimalizované triangulace kombinace několika lokálních či globálních kritérií doposud nejsou známy efektivní algoritmy, dlouhé výpočetní časy Počítačová geometrie

17 Počítačová geometrie Př. 4 body v rovině (všechny leží na konvexní obálce) a jejich možné triangulace existují pouze dvě různé triangulace vzhledem k posuzovanému kritériu je jedna z triangulací optimální

18 Lokální kritéria jsou založeny na geometrických zákonitostech nejčastěji užívaná kritéria minimální/maximální úhel v trojúhelníku minimální/maximální výška v trojúhelníku minimální/maximální poloměr vepsané kružnice minimální/maximální poloměr opsané kružnice minimální/maximální plocha trojúhelníku úhel mezi normálami sousedních trojúhelníků nejčastěji užíváno první kritérium Počítačová geometrie

19 Počítačová geometrie Lokální kritéria hodnota nejmenšího úhlu trojúhelníky by neměly mít malé úhly, tzv. max-min úhlové kritérium je optimální jsou možné triangulace triangulace je vzhledem k tomuto kritériu na rozdíl od optimální, je-li nejmenší úhel generovaný triangulací triangulací ( T) T * ( T*) ( Ti), Ti T * T * T i T i větší než nejmenší úhel generovaný hodnota maximálního úhlu trojúhelníky by neměly mít tupé úhly, tzv. min-max úhlové kritérium je optimální jsou možné triangulace triangulace je vzhledem k tomuto kritériu na rozdíl od optimální, je-li největší úhel generovaný triangulací triangulací ( T) T * ( T*) ( Ti), Ti T * T * T i T i menší než největší úhel generovaný

20 Globální kritéria optimalizují geometrické parametry všech trojúhelníků v triangulaci nejčastěji užívaná kritéria součet délek hran povinné hrany Počítačová geometrie

21 Globální kritéria Součet délek hran součet délek hran minimální triangulace minimalizující součet délek hran MWT (Minimal Weight Triangulation) Povinné hrany předem definované hrany uvnitř triangulace Constrained Triangulation taková triangulace není lokálně optimální při tvorbě digitálního modelu terénu lze do takové triangulace zadat charakteristické terénní tvary a vylepšit tak modelování terénu Počítačová geometrie

22 Greedy triangulace hladová triangulace triangulace složená z nejkratších možných neprotínajících se hran vlastnosti GT jednoznačné za předpokladu, že neexistují stejně dlouhé hrany necitlivá na úhlová kritéria vytváří trojúhelníky s nejkratšími stranami, trojúhelníky tak nemusí splňovat žádnou speciální geometrickou podmínku síť trojúhelníků není z tvarového hlediska optimalizována do triangulace tak mohou být přidány tvarově nevhodné trojúhelníky jednoduchá implementace výsledná triangulace se blíží MWT Počítačová geometrie

23 Počítačová geometrie Greedy triangulace algoritmus vytvoří všechny potenciální hrany setřídí vzestupně hrany podle délky seznam hran nn ( 1)/ 2 do výsledné triangulace se postupně přidávají hrany začíná se nejkratší dokud seznam hran není prázdný nebo dokud počet hran v triangulaci je menší než 3n 6 hrana ze seznamu se do triangulace přidá, pokud neprotíná žádnou hranu, která už v triangulaci je

24 Počítačová geometrie n 6 6(6 1)/ 2 15 hran všechny potenciální hrany 1. přidávaná hrana - nejkratší

25 Počítačová geometrie postupně přidáváme hrany do triangulace

26 Počítačová geometrie postupně přidáváme hrany do triangulace

27 Počítačová geometrie postupně přidáváme hrany do triangulace

28 Počítačová geometrie postupně přidáváme hrany do triangulace

29 Počítačová geometrie postupně přidáváme hrany do triangulace nelze přidat, protíná hrany v triangulaci nelze přidat, protíná hrany v triangulaci

30 Počítačová geometrie postupně přidáváme hrany do triangulace nelze přidat, protíná hrany v triangulaci poslední přidaná hrana, další by protínaly hrany v triangulaci

31 Počítačová geometrie Delaunay triangulace nejčastěji používaná triangulace existuje i ve 3D Delaunay tetrahedronizace vlastnosti DT uvnitř kružnice opsané libovolnému trojúhelníku i neleží žádný jiný bod z množiny P { p, p,..., p } 1 2 maximalizuje minimální úhel, avšak neminimalizuje maximální úhel je lokálně optimální i globálně optimální vůči kritériu minimálního úhlu je jednoznačná, pokud žádné čtyři body neleží na kružnici hranice je konvexní obálka n T výsledné trojúhelníky se v porovnání se všemi známými triangulacemi nejvíce blíží rovnostranným trojúhelníkům t

32 Počítačová geometrie Delaunay triangulace opsaná kružnice libovolnému trojúhelníku neobsahuje žádný jiný bod

33 Delaunay triangulace algoritmy metoda lokálního zlepšování prohazováním hran algoritmus radiálního zametání inkrementální vkládání metoda rozděl a panuj (nepřímá konstrukce pomocí Voronoi diagramu) Počítačová geometrie

34 Delaunay triangulace Metoda lokálního zlepšování metoda je použitelná pouze ve 2D, obtížně převeditelné do vyšší dimenze vychází se z libovolné triangulace provádí se tzv. legalizace modifikují se hrany sdílené dvojicí trojúhelníků tvořících konvexní čtyřúhelník tak, aby bylo splněno úhlové kritérium maximalizace minimálního úhlu = prohození diagonál = odstranění nelegálních hran výsledkem je stav, kdy jsou oba trojúhelníky legální, tj. lokálně optimální vzhledem ke kritériu vnitřního úhlu Počítačová geometrie

35 Delaunay triangulace Metoda lokálního zlepšování uvnitř opsané kružnice neleží žádný jiný vrchol Počítačová geometrie

36 Počítačová geometrie Delaunay triangulace Platí Nechť hrana inciduje s trojúhelníkem tvořeným vrcholy a trojúhelníkem tvořeným vrcholy. Kružnice prochází body. Hrana je nelegální právě tehdy, když bod p l pi, p t j p, p, p 1 t p, p, p 2 leží uvnitř kružnice. i j l p, p, p p, p i j k i j i j k Pokud body pi, p j, pk p, p p, p tvoří konvexní čtyřúhelník a neleží na opsané kružnici, pak jedna z hran nebo je nelegální. i j k l

37 Delaunay triangulace Algoritmus radiálního zametání spojení bodu vstupní množiny s bodem uvnitř doplnění obrysových hran Počítačová geometrie

38 Delaunay triangulace Algoritmus radiálního zametání konvexní obálka lokální optimalizace Počítačová geometrie

39 Počítačová geometrie Delaunay triangulace Inkrementální vkládání často používaná metoda, lze použít i ve 3D klasický případ rekurzivní úlohy fáze legalizace princip algoritmu zjednodušeně konstrukce obalujícího trojúhelníku (simplexu) body obsahuje všechny body vstupní množiny (může být i konvexní obálka, ale přidává čas navíc a komplikuje algoritmus) hledání počátečního simplexu může být komplikovaná úloha žádný z bodů vstupní množiny neleží vně obalujícího simplexu p, p, p DT konstruujeme nad sjednocením množin vstupní množiny a vrcholů simplexu vrcholy simplexu musí být dostatečně daleko od bodů vstupní množiny, aby neovlivňovaly trojúhelníky vznikající nad body vstupní množiny

40 Počítačová geometrie Delaunay triangulace Inkrementální vkládání p, p, p souřadnice vrcholů simplexu se odvozují od min-max boxu v teoretických popisech leží tyto body v nekonečnu v praxi mohou být zvoleny například takto p ( s Kd, s ), p ( s, s Kd), p ( s Kd, s Kd) 3 x y 2 x y 1 x y S d K x y [ s, s ] je střed min-max boxu je nejdelší hrana min-max boxu je konstanta velmi těžké odhadnout, pokud je tato konstanta příliš malá, může být hranice triangulace po odebrání vrcholů simplexu nekonvexní, pokud je příliš velká, trpí numerická stabilita experimenty ukazují, že tato hodnota bývá volena mezi 10 a 20

41 Delaunay triangulace Inkrementální vkládání konstrukce obklopujícího trojúhelníku p 2 p 3 p 1 Počítačová geometrie

42 Delaunay triangulace opakujeme, dokud v triangulaci nejsou všechny body Inkrementální vkládání přidání bodu do triangulace nalezení trojúhelníku, se kterým přidávaný bod inciduje legalizace nově vytvořené triangulace odstranění obklopujícího trojúhelníku oříznutí na konvexní obálku Počítačová geometrie

43 Delaunay triangulace Inkrementální vkládání přidání bodu do triangulace a nalezení trojúhelníku, se kterým přidávaný bod inciduje nalezení trojúhelníku, se kterým přidávaný bod inciduje, je kritická pasáž algoritmu, výpočetně nejnáročnější krok vyhledání musí být rychlé, nelze prohledávat všechny trojúhelníky, množství procházených trojúhelníku nutno minimalizovat dvě nejčastěji používané metody vyhledávání incidujícího trojúhelníku metoda procházky procházením okolních trojúhelníku se postupně blížíme k hledanému trojúhelníku DAG Tree (konstrukce ternárního stromu) Počítačová geometrie

44 Počítačová geometrie Delaunay triangulace

45 Počítačová geometrie Delaunay triangulace

46 Počítačová geometrie Delaunay triangulace

47 Delaunay triangulace Inkrementální vkládání přidání bodu do triangulace a nalezení trojúhelníku, se kterým přidávaný bod inciduje existují tři polohy bod leží ve vrcholu je zanedbán, již vytvořenou triangulaci neovlivní bod leží na straně oba incidující trojúhelníky, v jejichž společné hraně přidávaný bod leží, jsou rozděleny dvojicí úseček jdoucích z přidávaného bodu do protilehlých vrcholů vzniknou čtyři trojúhelníky se společným vrcholem bod leží uvnitř trojúhelníku bod je spojen s jeho vrcholy vzniknou tři trojúhelníky dále legalizace někdy ovlivní již vytvořené trojúhelníky nutné překontrolovat, nutné rozlišit případy Počítačová geometrie

48 Delaunay triangulace Inkrementální vkládání ukázka vkládání bodů p 1 obklopující trojúhelník postupné vkládání bodů Počítačová geometrie

49 Delaunay triangulace Inkrementální vkládání p 2 p 2 p 1 p 1 p 3 postupné vkládání bodů Počítačová geometrie

50 Delaunay triangulace Inkrementální vkládání p 2 p 2 p 1 p 3 p 1 p 3 legalizace po přidání bodu klasický případ rekurzivní úlohy Počítačová geometrie

51 Delaunay triangulace Inkrementální vkládání p 2 p 2 p 1 p 3 p 1 p 3 legalizace po přidání bodu klasický případ rekurzivní úlohy Počítačová geometrie

52 Delaunay triangulace Inkrementální vkládání legalizace nově vytvořené triangulace testuje se pomocí opsané kružnice všechny vnější hrany nově vzniklých trojúhelníků - zda vrchol sousedního trojúhelníku neleží uvnitř kružnice pokud neleží, testování v tomto směru nepokračuje, pokud leží, triangulace musí být opravena = prohazování hran v síti se objeví nové trojúhelníky a ověřování platnosti hran musí pokračovat opět se ověřují všechny vnější hrany (může dojít ke změně celé triangulace) Počítačová geometrie

53 Delaunay triangulace Inkrementální vkládání odstranění simplexových hran Počítačová geometrie

54 Delaunay triangulace Inkrementální vkládání výsledná DT Počítačová geometrie

55 Delaunay triangulace ve 3D - tetrahedronizace definuje se analogicky koule opsaná libovolnému tetrahedronu neobsahuje ve svém vnitřku žádný další bod ze vstupní množiny bodů vlastnosti minimalizuje maximální poloměr zadaná množina bodů jsou vrcholy krychle a její střed Počítačová geometrie

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta

Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta 12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních

Více

Rovinné triangulace a jejich využití.

Rovinné triangulace a jejich využití. Rovinné triangulace a jejich využití. Greedy Triangulation. Delaunay Triangulation. Constrained Delaunay Triangulation. Data Dependent Triangulation. DMT. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované

Více

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.

Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. 6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování

Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso

Více

INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA

INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Vektorová data Michal Kačmařík, Daniela

Více

Geometrické vyhledávání

Geometrické vyhledávání mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či

Více

Výpočetní geometrie Computational Geometry

Výpočetní geometrie Computational Geometry Datové struktury a algoritmy Část 11 Výpočetní geometrie Computational Geometry Petr Felkel 20.12.2005 Úvod Výpočetní geometrie (CG) Příklady úloh Algoritmické techniky paradigmata řazení - jako předzpracování

Více

4. Digitální model terénu.

4. Digitální model terénu. 4. Digitální model terénu. 154GEY2 Geodézie 2 4.1 Úvod - Digitální model terénu. 4.2 Tvorba digitálního modelu terénu. 4.3 Druhy DMT podle typu ploch. 4.4 Polyedrický model terénu (TIN model). 4.5 Rastrový

Více

Konvexní obálka množiny bodů.

Konvexní obálka množiny bodů. Konvexní obálka množiny bodů. Graham Scan. Jarvis Scan. Quick Hull. Inkrementální metoda. Divide and Conquer. Rotating Calipers. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.

Více

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.

9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D. 9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech

Více

Rovinné triangulace a jejich využití.

Rovinné triangulace a jejich využití. Rovinné triangulace a jejich využití. Greedy Triangulation. Delaunay Triangulation. Constrained Delaunay Triangulation. Data Dependent Triangulation. DMT. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

Semestrální práce z předmětu KMA/MM. Voroneho diagramy

Semestrální práce z předmětu KMA/MM. Voroneho diagramy Semestrální práce z předmětu KMA/MM Voroneho diagramy Jméno a příjmení: Lenka Skalová Osobní číslo: A08N0185P Studijní obor: Finanční informatika a statistika Datum: 22. 1. 2010 Obsah Obsah... 2 1 Historie...

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

Diplomová práce Metody triangulace v paralelním prostředí

Diplomová práce Metody triangulace v paralelním prostředí Západočeská Univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Diplomová práce Metody triangulace v paralelním prostředí Plzeň, 2013 Michal Šmolík Zada ní 2 S t r á n

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

Rekonstrukce křivek a ploch metodou postupné evoluce

Rekonstrukce křivek a ploch metodou postupné evoluce Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Generování sítě konečných prvků

Generování sítě konečných prvků Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností

Více

Algoritmy výpočetní geometrie

Algoritmy výpočetní geometrie Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty

Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Kontaktní prvky Mezi jednotlivými rozhraními resp. na nosníkových prvcích lze definovat kontakty Základní myšlenka Modelování posunu po smykové ploše, diskontinuitě či na rozhraní konstrukce a okolního

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

Konvexní obal a množina

Konvexní obal a množina Definice M Množina se nazývá konvení, jestliže úsečka spojující libovolné dva její bod je částí této množin, tj. ab, M, t 0, : ta+ ( tb ) M konvení množina a b a b nekonvení množina Definice Konvení obal

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa

Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Drsná matematika III 9. přednáška Rovinné grafy: Stromy, konvexní mnohoúhelníky v prostoru a Platónská tělesa Jan Slovák Masarykova univerzita Fakulta informatiky 14. 11. 21 Obsah přednášky 1 Literatura

Více

Geometrické vyhledání.

Geometrické vyhledání. Geometrické vyhledání. Ray algoritmus. Winding algoritmus. Lichoběžníkové (trapezoidální) mapy Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

TGH09 - Barvení grafů

TGH09 - Barvení grafů TGH09 - Barvení grafů Jan Březina Technical University of Liberec 15. dubna 2013 Problém: Najít obarvení států na mapě tak, aby žádné sousední státy neměli stejnou barvu. Motivační problém Problém: Najít

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.

Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Algoritmy používané ve výpočetní geometrii

Algoritmy používané ve výpočetní geometrii Algoritmy používané ve výpočetní geometrii Hrubá síla. Inkrementální metoda. Zametací přímka. Heuristiky. Rozděl a panuj. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Výpočetní geometrie. Pavel Strachota. 9. listopadu FJFI ČVUT v Praze

Výpočetní geometrie. Pavel Strachota. 9. listopadu FJFI ČVUT v Praze Výpočetní geometrie Pavel Strachota FJFI ČVUT v Praze 9. listopadu 2012 Obsah 1 Úvod 2 Jednoduché algoritmy výpočetní geometrie 3 Další problémy výpočetní geometrie Obsah 1 Úvod 2 Jednoduché algoritmy

Více

Matematická morfologie

Matematická morfologie / 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická

Více

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině. ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě

Více

VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy

VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského

Více

3.1.2 Polorovina, úhel

3.1.2 Polorovina, úhel 3.1.2 Polorovina, úhel Předpoklady: 3101 Přímka dělí rovinu na dvě navzájem opačné poloroviny a je jejich společnou hranicí (hraniční přímkou). p Hraniční přímka patří do obou polorovin. ody, které neleží

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. - Mnohostěny mají stěny, hrany

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

Základní škola Náchod Plhov: ŠVP Klíče k životu

Základní škola Náchod Plhov: ŠVP Klíče k životu VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA MATEMATIKA 5. ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Opakování a aktivizace

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Úvod do výpočetní geometrie. Základní vztahy.

Úvod do výpočetní geometrie. Základní vztahy. Úvod do výpočetní geometrie. Základní vztahy. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

Počítačová geometrie. + algoritmy DG

Počítačová geometrie. + algoritmy DG Pojem výpočetní geometrie (počítačové) analýza a návrh efektivních algoritmů pro určování vlastností a vztahů geometrických objektů řešení geometrických problémů navrženými geometrickými algoritmy hlavním

Více

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku. Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Trojúhelník. Jan Kábrt

Trojúhelník. Jan Kábrt Trojúhelník Jan Kábrt Co se učívá ve školách Výšky, jejich průsečík ortocentrum O Těžnice, jejich průsečík těžiště T Osy stran, střed kružnice opsané S o Osy úhlů, střed kružnice vepsané S v Někdy ještě

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky DIPLOMOVÁ PRÁCE

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky DIPLOMOVÁ PRÁCE Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky DIPLOMOVÁ PRÁCE Plzeň, 2007 Michal Zemek Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra

Více

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 5. prosince 2005 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením (náznak řešení) Mapa světa - příklad Obsah Mapa

Více

PRINCIPY POČÍTAČOVÉ GRAFIKY

PRINCIPY POČÍTAČOVÉ GRAFIKY Název tématického celku: PRINCIPY POČÍTAČOVÉ GRAFIKY metodický list č. 1 Cíl: Barvy v počítačové grafice Základním cílem tohoto tematického celku je seznámení se základními reprezentacemi barev a barevnými

Více

Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost

Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019

Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019 Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

Singularity rotačních obalových ploch

Singularity rotačních obalových ploch Singularity rotačních obalových ploch Ivana Linkeová ČVUT v Praze, Fakulta strojní, Ústav technické matematiky Karlovo nám. 13, 121 35 Praha 2 Nové Město Ivana.Linkeova@fs.cvut.cz Abstrakt. V příspěvku

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Geometrické algoritmy pro počítačovou grafiku

Geometrické algoritmy pro počítačovou grafiku České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyzikální elektroniky Informatická fyzika Geometrické algoritmy pro počítačovou grafiku Semestrální práce Autor práce:

Více

SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ

SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více