http: //meloun.upce.cz,

Podobné dokumenty
6. Lineární regresní modely

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )

Semestrální práce. 2. semestr

Tvorba nelineárních regresních

Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba lineárních regresních modelů. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.

Kalibrace a limity její přesnosti

Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )

UNIVERZITA PARDUBICE

Kalibrace a limity její přesnosti

6. Lineární regresní modely

Příloha č. 1 Grafy a protokoly výstupy z adstatu

Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti

Inovace bakalářského studijního oboru Aplikovaná chemie

UNIVERZITA PARDUBICE

Úloha 1: Lineární kalibrace

KALIBRACE A LIMITY JEJÍ PŘESNOSTI. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

KALIBRACE A LIMITY JEJÍ PŘESNOSTI 2015

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie

Tvorba nelineárních regresních modelů v analýze dat

Kalibrace a limity její přesnosti

PRAVDĚPODOBNOST A STATISTIKA

TVORBA LINEÁRNÍCH REGRESNÍCH MODELŮ PŘI ANALÝZE DAT. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Semestrální práce. 3.3 Tvorba nelineárních regresních modelů v analýze dat

Tvorba modelu sorpce a desorpce 85 Sr na krystalických horninách za dynamických podmínek metodou nelineární regrese

Tvorba lineárních regresních modelů

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Tvorba nelineárních regresních modelů v analýze dat

Univerzita Pardubice SEMESTRÁLNÍ PRÁCE. Tvorba nelineárních regresních modelů v analýze dat. 2015/2016 RNDr. Mgr. Leona Svobodová, Ph.D.

Univerzita Pardubice

Tvorba lineárních regresních modelů při analýze dat

Tvorba nelineárních regresních modelů v analýze dat

Semestrální práce. 2. semestr

Licenční studium Galileo: Statistické zpracování dat. Tvorba lineárních regresních modelů při analýze dat. Semestrální práce

Tvorba lineárních regresních modelů při analýze dat

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ

Tabulka č. 1 95%ní intervaly Úsek Směrnice model L1 L2 L1 L2 Leco1-0, , , ,15618 OES -0, , , ,21271

12. licenční studium Statistické zpracování dat při managementu jakosti. Lenka Hromádková

UNIVERZITA PARDUBICE

UNIVERZITA PARDUBICE

Statistická analýza jednorozměrných dat

Semestrální práce. 2. semestr

6. Lineární regresní modely

PRAVDĚPODOBNOST A STATISTIKA

2.2 Kalibrace a limity její p esnosti

6. Lineární regresní modely

Statistická analýza jednorozměrných dat

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat

Thermodynamické disociační konstanty antidepresiva Vortioxetinu

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Hledání chemického modelu regresní analýzou VIS spekter

Statistická analýza jednorozměrných dat

Fakulta chemicko technologická Katedra analytické chemie

Semestrální práce str. 1. Semestrální práce. 2.1 Tvorba lineárních regresních modelů při analýze dat. 2.3 Kalibrace a limity její přesnosti

LINEÁRNÍ REGRESE. Lineární regresní model

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015

Spektrofotometrické stanovení termodynamických disociačních konstant vybraných cytostatik

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie

Licenční studium Galileo: Statistické zpracování dat. Kalibrace a limity její přesnosti. Semestrální práce

Testování hypotéz o parametrech regresního modelu

Statistická analýza jednorozměrných dat

FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE. Semestrální práce z CHEMOMETRE. TOMÁŠ SYROVÝ 4.ročník

III. Semestrální práce

Počet světlo-absorbujících částic v rovnovážné směsi faktorovou analýzou spekter

Testování hypotéz o parametrech regresního modelu

Úlohy. Kompendium 2012, Úloha B8.01a, str. 785, Model y = P1 * exp( P2/(B801x + P3)

POLYNOMICKÁ REGRESE. Jedná se o regresní model, který je lineární v parametrech, ale popisuje nelineární závislost mezi proměnnými.

Statistická analýza jednorozměrných dat

ANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie

Spektrofotometrické stanovení pk léčiv

4EK211 Základy ekonometrie

Univerzita Pardubice Fakulta chemicko-technologická. Licenční studium Statistické zpracování dat

AVDAT Geometrie metody nejmenších čtverců

UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek

Regresní analýza. Eva Jarošová

Regresní a korelační analýza

Kompendium 2012, Úloha B8.01, str. 785, Model A

S E M E S T R Á L N Í

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Plánování experimentu

SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování

Regresní a korelační analýza

Protonační rovnováhy léčiv faktorovou analýzou a nelineární regresí absorbanční responzní plochy

Regresní a korelační analýza

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

6. Lineární regresní modely

Regresní a korelační analýza

Korelační a regresní analýza

Regresní analýza 1. Regresní analýza

Posouzení linearity kalibrační závislosti

Viktor Kanický Kurs ICP Přírodovědecká fakulta Masarykovy univerzity

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI. Předmě t KALIBRACE A LIMITY JEJÍ PŘ ESNOSTI

Regresní a korelační analýza

Transkript:

Porovnání rozlišovací schopnosti regresní analýzy spekter a spolehlivosti Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565, 532 10 Pardubice, http: //meloun.upce.cz, milan.meloun@upce.cz, 1

Cíl regresní analýzy Cílem regresní analýzy je nalezení vhodného modelu studované závislosti tak, že se snažíme nahradit každou měřenou (experimentální) hodnotu závisle proměnné y exp hodnotou vypočtenou (predikovanou) y vyp čili hodnotou ležící na spojité funkci (modelu) nezávisle proměnné x.

FORMULACE REGRESNÍHO MODELU 11 12 1 1 21 22 2 2 1 2 1 2 1 2 1 2 1 2 j m j m i i ij im n n nj nm i n j m i n y x x x x x x x x x x x x x y x y x x y X ε β y závisle nezávisle proměnná regresní náhodná proměnná parametry chyba y = X +

Symetrický hyperparaboloid Úsek Nejlepší odhady parametrů úseku a směrnice Směrnice Účelová funkce U dosáhne minima pro nejlepší odhady parametrů úseku a směrnice 4

Input dat Grafická analýza reziduí

Grafické závěry o nalezených odhadech parametrů z navrženého protonačního (= nelineárního regresního) modelu

10 Physostigmine salicylate

Predikce disociačních konstant kvantově chemickými programy 11

12

13

REGRESNÍ DIAGNOSTIKA Vyšetřuje regresní triplet, což představuje Kritiku dat (zkoumá kvalitu dat pro navržený model) Kritiku modelu (zkoumá kvalitu modelu pro daná data) Kritiku metody odhadu (prověřuje splnění všech předpokladů požadovaných metodou MNČ)

Mírou věrohodnosti nalezených odhadů regresního modelu je vždy míra těsnosti proložení experimentálních bodů vypočtenou regresní křivkou čili statistická analýza reziduí před a po odstranění outlierů.

Míru těsnosti proložení je vhodné posuzovat dle velikosti reziduí a jejich rozdělení, a to především dle střední hodnoty reziduí a symetrie rozdělení (vyjádřené koeficientem šikmosti a špičatosti).

Symetrii a tvar rozdělení vystihuje koeficient šikmosti špičatosti ) před a po odstranění outlierů. g 2 g 1 a g 1

Williamsův graf vlivných bodů e Ji e Si n m 1 n m e Si odlehlé body e Si e i 1 H ii v pořádku i-tý diagonální prvek projekční matice H

KRITÉRIA PRO HLEDÁNÍ A ROZLIŠENÍ NEJLEPŠÍHO REGRESNÍHO MODELU Střední kvadratická chyba predikce (MEP) MEP 1 n n i1 1 e 2 i H ii 2 e 2 i H ii čtverec reziduí modelu i-tý diagonální prvek projekční matice H Akaikovo informační kritérium (AIC) RSC AIC n ln 2m RSC reziduální součet čtverců n m počet parametrů Pravidlo: Čím je AIC (nebo MEP) menší, tím je model vhodnější.

22 POSTUP VÝSTAVBY REGRESNÍHO MODELU

1. Kvalita nalezených odhadů parametrů a) Podle intervalů spolehlivosti (čím menší interval spolehlivosti, tím lépe) 2 j bj Cmm m s F1 ; m; nm b) Podle rozptylů parametrů, kde pro kvalitní odhad musí platit 2 D( b j ) b j

2. Kvalita dosažené těsnosti proložení a) Podle reziduálního rozptylu s(y). b) Podle regresního rabatu D (= koeficient determinace v %: čím více se blíží 100 %, tím lepší je proložení). 3. Vhodnost navrženého modelu Akaikovo informační kritérium AIC (čím je menší nebo zápornější, tím vhodnější je navržený model). Střední kvadratická chyba predikce MEP (čím je MEP menší, tím je predikční schopnost navrženého modelu lepší).

4. Predikční schopnost modelu Střední kvadratická chyba predikce MEP (čím je MEP menší, tím je predikční schopnost navrženého modelu lepší). 5. Kvalita experimentálních dat a) Na základě analýzy rozličných druhů reziduí. b) Na základě Indikace vlivných bodů (Jackknife rezidua, standardizovaná rezidua, normovaná rezidua, predikovaná rezidua, rekurzivní rezidua, Cookova vzdálenost, diagonální prvky projekční matice a věrohodnostní vzdálenosti).

6. Testy regresního tripletu (Data + Model + Metoda): o 6.1 Fisher-Snedecorův test celkové regrese, o 6.2 Scottovo kritérium multikolinearity, o 6.3 Cook-Weisbergův test heteroskedasticity, o 6.4 Jarque-Berrův test normality reziduí, o 6.5 Waldův test autokorelace, o 6.6 Znaménkový test reziduí. 26

Extrapolací na nulovou iontovou sílu se vyčíslí thermodynamická disociační konstanta, efektivní průměr iontu a vysolovací konstanta dle Debye-Hückelova zákona. 27

Výsledky z experimentálních operací jsou vždy přibližné pro omezenou přesnost přístrojů. Mírou "experimentálního šumu" v experimentu je poměru SNR čili signálu k šumu: poměr maximálního signálu vůči maximální hodnotě šumu. Alternativou k SNR je poměr SER čili signál k chybě: SER = Δ/s inst (A) čili poměr max. rozdílu absorbancí pro j-tou vlnovou délku i-tého spektra Δ ij = A ij A i podělený šumem, kde A i, představuje absorbanci kyselé formy léčiva. Poměr SER = Δ/s inst (A) v závislosti na vlnové délce pro spektra vyšetří, zda jsou rezidua podobné velikosti jako šum, čímž se prokáže těsnost proložení nejlepším vypočteným spektrem. 28

Vlevo: Graf malých změn absorbance testuje poměr SER = (A ij - A i )/s inst (A) v závislosti na vlnové délce λ pro prvky spektra při změně ph léčiva, kde A i je limitující spektrum kyselé formy léčiva. SER se porovná s mezní hodnotou SER, zda změny absorbance A ij - A i při změně ph jsou měřitelné a dostatečně větší než instrumentální šum s inst (A). Vpravo: Těsnost proložení spektry posoudí graf reziduí vůči instrumentální směrodatné odchylce absorbance e/s inst (A) v závislosti na vlnové délce λ a pro všechna spektra. Graf ukazuje kolikrát je reziduum větší než šum. 29

30 Propagace chyb při měření spekter V experimentálních spektrech se náhodné a systematické chyby propagují v absorbanci, v nastavení vlnové délky a i v koncentraci léčiva a nelze je proto odlišit: 1) Systematické chyby v měření ph jsou známé. 2) Barevné nečistoty v léčivu mohou mít acidobazický charakter. 3) Při kyselém ph lze některé částice oddělit z roztoku. 4) Při vyšších koncentracích léčiva se mohou tvořit oligomery a micely, které způsobí systematické chyby. Všechny statistické testy v software jsou založeny na předpokladu, že systematické chyby v datech nejsou.

Správnost a přesnost odhadu pk v závislosti na velikosti šumu ve spektrech 31

Porovnání reziduí s náhodnými chybami na velikosti šumu ve spektru 32

Závěr: 1) Systematická chyba je u všech čtyřech odhadů disociačních konstant velmi malá, jedině pro pk a4 je vyšší. 2) V intervalu s inst (A) od 0,1 do 1,0 mau jsou všechny čtyři disociační konstanty dostatečně přesné. 3) Přesnost s(pk) na hladině šumu s inst (A) lze vyjádřit lineárním modelem s(pk) = β 0 + β 1 s inst (A), a úsek β 0 = 0 byl vesměs statisticky nevýznamný. 4) Instrumentální chyba s inst (A) mírně ovlivňuje Cattellův indexový graf vlastních čísel s k (A) = f(k), užívaný k odhadu počtu světlo-absorbujících částic rovnovážné směsi. 5) Program SQUAD(84) vyniká proti SPECFITu bohatší statistickou analýzou reziduí, která slouží k prokázání věrohodnosti nalezených odhadů disociačních konstant. 33

http://meloun.upce.cz

a pak kliknout na Výuka

a pak kliknout na Chemometrie I

Děkuji za pozornost! http://meloun.upce.cz