Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku. V bodě A, kde kulička vstoupí do roury, svírá vektor rychlosti s osou x úhel α a leží v rovině xy. Určete velikost úhlu α, aby v bodě B působila kulička na stěnu roury silou o stejné velikosti a opačného sěru než je tíhová síla působící na kuličku. B z R A v 0y v 0x y α v 0 x Řešení: Pohyb kuličky je ožné rozdělit na do dvou sěrů: sěr rovnoběžný s osou x a sěr k něu kolý, tj. rovnoběžný s rovinou yz. V rovnoběžné sěru kulička koná rovnoěrný pohyb s rychlostí v 0x = v 0 cos α. V kolé sěru se kulička v důsledku tíhového zrychlení pohybuje nerovnoěrný pohybe po kružnici. Maxiální rychlost v 0y = sin α á kulička v nejnižší bodě (bod A), iniální rychlost v y á kulička v nejvyšší bodě (bod B). Poznaeneje, že obě rychlosti v y0 a v y ají sěr tečný k plášti roury, tj. v bodech A a B jsou rovnoběžné se sěre y. V bodě B na kuličku působí výsledná síla F = a d, která jí uděluje dostředivé zrychlení a d, tj. nutí ji pohybovat se po zakřivehé trajektorii. Tato síla se skládá z tíhové síly g a síly F V, kterou na kuličku působí stěna roury. F = a d = g + F V Podle třetího Newtonova zákona působí kulička na stěnu roury silou F R, která je stejně velká jako síla, kterou působí stěna roury na ní, ale s opačný sěre F R = F V. Platí tedy F = a d = g F R Z této rovnice je videt, že á-li být podle zadání F R = g, usí být dostředivé zrychlení a d = g.
Protože roura á kruhový průřez o poloěru R je dostředivé zrychkení a d = v y R, kde v y je rychlost kuličky v bodě B. Tu dostanee aplikací zákona zachování energie. Při cestě z bodu A do bodu B usela kulička vystoupit do výšky R a nárůst její potenciální energie je kopenzován úbytke kinetické energie. Platí tedy Dosadíe v 0y = sin α a v y = a d R = gr a dostáváe vypočítáe sin α Dostáváe tedy hledaný vztah pro úhel α Číselně je úhel α roven 50.. Příklad v 0y = v y + gr v 0 sin α = gr + gr sin α = α = arcsin 6gR v 0 Zadání: Světový rekord v hodu oštěpe je 98.48, diske 74.08 a koulí 3.. Hotnost oštěpu je 800 g, disku kg a koule 7.6 kg. Jaká byla práce vykonaná sportovce při světové rekordu v hodu oštěpe, diske a koulí? Předpokládejte, že atlet hodil svoje nářadí pod úhle 45 aby dolétlo nejdále. Odpor vzduchu zanedbjete. Řešení: Práce W, kterou atlet vykonal je rovna celkové echanické energii vrženého předětu. Ta á nejjednodušší tvar v počáteční a koncové bodě vrhu, kdy je potenciální energie nulová: 6gR v 0 W = E k + E p = v 0, je tedy nutné vyjádřit neznáý kvadrát počáteční rychlosti v 0 ze znalosti délky vrhu L. Pohybové rovnice pro šiký vrh ají následující tvar: ẍ = 0 ÿ = g. Obecné řešení těchto rovnic po dosazení hodnoty úhlu, pod který byl předět vržen, α = 45 a nulových počátečních poloh x 0 a y 0 je: x(t) = x 0 + v 0 t cos α = v 0t y(t) = y 0 + v 0 t sin α gt = v 0t gt
V bodě kdy se vržený předět dotkne Zeě je hodnota y nulová: 0 = v 0t gt. Poslední rovnice á dva kořeny t 0 = 0 a t L odpovídající vrhu předětu resp. jeho dopadu. t L = v0 g Délka vrhu je poto rovna hodnotě funkce x(t) v čase t L : L = x(t L ) = v 0t L = v 0 g. Dosadíe-li do zákona zachování energie, dostanee konečný výsledek. Číselně je vykonaná práce 386.6 J pro hod oštěpe, 77.0 J pro hod diske a 83.6 J pro vrh koulí. W = v 0 = gl Stejného výsledku je ožné dosáhnout také skrze úvahu o výšce výstupu H. V nejvyšší bodě je celková energie rovna součtu potenciální energie ve výšce H a kinetické energie odpovídající rovnoěrnéu pohybu ve sěru osy x. W = gh + v 0x = gh + 4 v 0 V axiální výšce je rychlost v y nulová a lze si vyjádřit dobu výstupu t H : 0 = t H = v 0 gt v 0 g. Výšku výstupu dostanee, dosadíe-li do trajektorie y(t) za čas dobu t H : H = y(t H ) = v 0t H gt H = v 0 g v 0 4g = v 0 4g. Dohroady po dosazení do vztahu pro práci dostáváe stejný výsledek jako v předchozí případě, což pouze potrvrzuje, že běhe pohybu vrženého předětu se celková echanická energie zachovává. Příklad 3 W = g v 0 4g + 4 v 0 = v 0 = gl Zadání: Střela o hotnosti 0 g vystřelená vodorovně se zavrtá do ěkkého předětu o hotnosti kg zavěšené na na závěsu délky. Po zásahu vystoupá tento předět do výšky 50 c. Jaká byla rychlost střely? 3
. M. M+ d v w Řešení: Pohyb těles v této úloze je potřeba rozdělit na dvě části: () na nepružnou srážku, kdy se obě tělesa spojí, a () na pohyb výsledného tělesa (viz obrázek). Při nepružné srážce není zachována energie resp. část energie se při nárazu střely do předětu spotřebuje na deforační energii a teplo. Zákon zachování hybnosti je ovše stále v platnosti, proto ůžee psát: v = (M + )w w = M + v Po nepružné srážce, kdy se část kinetické energie střely spotřebovala, koná těleso (předět + střela) pohyb, při něž se zachovává jak hybnost, tak i energie. Kinetická energie tělesa po srážce je dána celkovou hotností M + a rychlostí w. Ve výšce d, do které těleso vystoupá, je veškerá kinetická energie přeěněna na energii potenciální. Zákon zachování energie lze tedy napsat jako: (M + )w = (M + )gd. Nyní už jen dosaďe za rychlost w z předchozího vztahu dopočíteje velikost rychlosti střely v, která pro zadané hodnoty vychází 36.4 /s. Příklad 4 ( ) v = gd M + v = gd M + Zadání: Posilovací pružina se skládá ze čtyř stejných pružin. Držadlo posilovací pružiny (viz. obrázek) váží 00 g a ve svislé poloze způsobí prodloužení pružin o 5. Tluení posilovací pružiny je takové, že tvoří oscilátor s činitele jakosti. S jakou periodou usíe posilovací pružinu natahovat aby její výchylka byla axiální? Jaká bude axiální výchylka pokud budee působit s touto periodou vynucovací silou o velikosti 0 N? Řešení: Z rovnováhy tíhové síly F G a síly pružnosti F p lze vyjádřit celkovou tuhost všech 4 4
d pružin k: F G = F p g = k d k = g d. Vlastní úhlová frekvenci posilovací pružiny ω 0 je dána znáý vztahe: k g ω 0 = = d, tluení pružiny souvisí s vlastní úhlovou frekvencí skrze činitel jakosti Q jako: Q = ω 0 δ δ = ω 0 Q = Q g d. Aplituda nucených kitů A(Ω) je pro vynucující sílu F = F 0 sin(ωt + α) dána ve tvaru (viz přednáška popř. jiná literatura popř. řešení nehoogenní obyčejné diferenciální rovnice s konstantníi koeficienty): A(Ω) = F [ 0 (ω 0 Ω ) + 4δ Ω ] Rezonance, tj. axiu funkce A(Ω) odpovídá frekvenci Ω rez, při níž je derivace da dω nulová. da dω = F [ 0 (ω 0 Ω ) ] 3 ( + 4δ Ω 4Ω ( ω0 Ω ) ) + 8δΩ 5.
da dω = 0 ω 0 + Ω rez + δ = 0 Ω rez = ω0 δ = ω0 T rez = π = π Ω rez d g ( ) Q Q Pro činitel jakost Q = je perioda rezonančních kitů T rez rovna 0. s a je -krát větší než perioda vlastních kitů T 0. Spočtěe nyní aplitudu kitů A ax pro rezonanční frekvenci Ω rez : A(Ω rez ) = F 0 ( 4δ 4 + 4δ ω0 8δ 4) A(Ω rez ) = F 0 ( ω δ 0 δ ) A(Ω rez ) = F 0 A(Ω rez ) = F 0 Q ω 0 d g 4Q Q 4Q. Po dosazení znáých hodnot F 0,, d, g a Q dostáváe velikost rezonanční aplitudy rovnou 5.9 c. 6