Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu Deformace a posuny v tělese Hookeův zákon Deformace od změny teploty Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova 2
Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita 3
Doporučená literatura Benda: Stavební statika I., VŠB-TU Ostrava 2005 Šmířák: Pružnost a plasticita I., VUT Brno 1999 Šmířák, Hlavinková: Pružnost a plasticita I, Příklady, VUT Brno 2000 4
Prerekvizity Vstupní požadavky: Matematika, Fyzika, Stavební statika Požadavky pro udělení zápočtu (18-35 bodů) minimálně 70 % aktivní účast na cvičení zpracování příkladů s individuálním zadáním a jejich uznání prokázání znalostí procvičované látky formou písemek Požadavky na složení zkoušky : zápočet úspěšná písemná zkouška ústní zkouška prokazující znalosti probírané látky Maximální bodové ohodnocení u zkoušky: (písemná část / ústní část): 65 (35 / 30) Výsledná známka / odpovídající počet bodů: 3 / 51 65 2 / 66 85 1 / 86 100 Úvod do studia předmětu Pružnost a plasticita na Stavební fakultě VŠB-TU Ostrava 5
Teorie pružnosti a plasticity Teorie Pružnosti a plasticity je součástí mechaniky pevné fáze deformovatelných těles. Předmětem zkoumání jsou především: Napětí (intenzita vnitřních sil) Deformace (přetvoření) Stabilita Pružnost a pevnost ve stavebním inženýrství 6
Vnitřní síly Na těleso (konstrukci) působí vnější síly: primární zatížení F i (i=1, 2,, n) sekundární reakce vazeb (odezva) a F 1 F 2 b R ax R az R bz Vnitřní síly: působí na sebe v libovolném řezu konstrukce dle principu akce a reakce. Vztahy mezi vnitřními silami a napětími v průřezu 7
Namáhání přímého nosníku vnitřní síly φ F 2 F 1 V prostoru: N V y V z T=M x M V rovině xz: N V z M y M z +y +z F 3 h +x y V y o=m N +y M y V z M z T=M x +x +z Vztahy mezi vnitřními silami a napětími v průřezu 8
Vnitřní síly, napětí Vnitřní síly nevypovídají nic o míře namáhání tělesa nebo prvku konstrukce. Nutno uvažovat také s vlivem tvaru a velikosti průřezové plochy, které do výpočtu vstupují ve formě průřezových charakteristik. Významnější veličinou je napětí jeden z klíčových pojmů teorie pružnosti a plasticity. Vztahy mezi vnitřními silami a napětími v průřezu 9
Vnitřní síly a napětí Napětí je míra intenzity vnitřních sil vnitřní síly napětí 10
Vnitřní síly, napětí V r F r N r V r A... Normála výslednice F r... Složka výslednice F r M N r A, rovnoběžná s rovinou řezu (tangenciální)... Element průřezové plochy A(průřezová charakteristika) σ = lim A 0 r N r A Napětí normálové smykové τ = lim A 0 r V r A Vztahy mezi vnitřními silami a napětími v průřezu 11
Napětí Napětí: vektor, charakterizovaný svými složkami. Měrná jednotka: Pascal... [Pa] Rozměr napětí: Pa = N 2 m MN m 6 MPa = 10 Pa = = 2 N mm 2 Vztahy mezi vnitřními silami a napětími v průřezu 12
Vztahy mezi vnitřními silami a napětími v průřezu prutu dn = σ x. da N = σ A obdobně V V y z M M = τ da A A xy = τ da x y xz A x d ( τ. y. z) da = V. y V. z = τ z = N. z = σ x A y A (. z) da xz xy Průřez prutu Těžiště průřezu Střednice prutu Působiště výslednice vnitřních sil +y z V y V z (str.8 učebnice) τ σ x xy τ xz +x N +z M z = N. y = σ x A (. y) da y Vztahy mezi vnitřními silami a napětími v průřezu 13
Stav napjatosti tělesa Znaménková konvence, indexy u napětí 14
Věta o vzájemnosti smykových napětí - důležité 15
Poměrné deformace a posuny Vlivem zatížení nebo změny teploty se tělesa deformují, což lze popsat pomocí: poměrných deformací složek posunutí. Vztahy mezi deformacemi a posuny popisují geometrické rovnice Deformace a posuny v tělese 16
Průhyb 17 0,000 0,048 0,092 0,125 0,147 0,154 0,00 0,60 1,20 1,80 2,40 3,00 0,147 0,125 0,092 0,048 0,000 3,60 4,20 4,80 5,40 6,00 Deformace (přetvoření) Geometrické změny rozměrů a tvaru těles Deformace ohýbaných prutů průhyb a úhel pootočení a 0,0 0,3 Délka nosníku Průhyb Pružnost a pevnost ve stavebním inženýrství l q = konst. b
Deformace (přetvoření) Nadměrné přetvoření střechy vlivem extrémního zatížení sněhem, hala Divišov, foto: Doc.Ing.Radim Čajka, CSc. Pružnost a pevnost ve stavebním inženýrství 18
Posuny (přemístění) konkrétních bodů zkoumaného tělesa 19
Poměrné deformace Poměrné deformace: - délkové ε (poměrné prodloužení nebo zkrácení) - úhlové γ (zkosení) 3 prostý tah ε x = dx dx kroucení dz γ xz = γ zx = 3 dz dx dx Teorie malých deformací: << 1 ε γ << 1 Zjednodušení: tan γ γ Deformace a posuny v tělese 20
Poměrné deformace Délkové: podélné příčné ε x = dx dx ε y = dy dy ε z = dz dz Úhlové: γ xy = 1 dx γ yz = 2 dy γ xz = 3 dz prostý tah N N +y +z +x kroucení 3 dz T +x dx dx Deformace a posuny v tělese 21
Základní typy namáhání 1. Osové namáhání 2. Ohyb 3. Smyk 4. Kroucení Normálová síla N 0 Vzniká napětí σ N a N N b + R ax tah F a N N b - R ax tlak F Základní pojmy, výchozí předpoklady 22
Základní typy namáhání 1. Osové namáhání 2. Ohyb 3. Smyk 4. Kroucení Ohybový moment M y, M z 0 Vzniká napětí σ M R az R az a a M M tlak tah tah tlak F F M M b R bz b R bz + - Základní pojmy, výchozí předpoklady 23
Základní typy namáhání 1. Osové namáhání 2. Ohyb 3. Smyk 4. Kroucení Posouvající síla V y, V z 0 F V + V V - V a b R az R bz Základní pojmy, výchozí předpoklady 24
Základní typy namáhání 1. Osové namáhání 2. Ohyb 3. Smyk 4. Kroucení Např. prostorově lomený nosník 2 3 F 3 F 2 +y 1 n v = 6 F 1 Vnitřní síly na prutu 2 od vnějšího zatížení: F 1 : N, M z F 2 : V y, M z F 3 : V z, T, M y Kroutící (torzní) moment T 0 +z +x Vzniká smykové napětí τ Základní pojmy, výchozí předpoklady 25
Základní typy namáhání Název Vnitřní síla Napětí Osové namáhání (tah, prostý tlak) N σ x Ohyb M y, M z σ x Smyk V y, V z τ xy, τ xz Kroucení T τ xy, τ xz Základní pojmy, výchozí předpoklady σ = napětí normálové τ = napětí smykové 26
Stabilita Stabilita - schopnost zachovat nebo obnovit původní rovnovážný stav soustavy bez samovolného narůstání deformací Pružnost a pevnost ve stavebním inženýrství 27
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky: Těleso pokládáme za kontinuum, mající celý objem bez mezer, nezabýváme se mikrostrukturou materiálu. Díky tomu lze brát napětí i deformaci jako spojitou funkci. 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 28
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie: Homogenní (stejnorodá) látka má fyzikální vlastnosti ve všech místech shodné. Nerespektují se náhodné vady a nerovnoměrnosti beton, ocel a dřevo. Při kombinaci dvou a více materiálů (např. beton a ocel) se předpoklad homogenní látky opouští. Izotropní materiál má vlastnosti nezávislé na směru. ANO - beton, ocel, NE - dřevo! 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 29
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost: Pružnost je schopnost látky vracet se po odstranění příčin změn (např. zatížení) do původního stavu. Pokud platí přímá úměrnost mezi napětím a deformací Hookův zákon, jedná se o tzv. fyzikální linearitu 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 30
Výchozí předpoklady klasické lineární pružnosti Plasticita: Schopnost látky deformovat se bez porušení nevratným, tvárným způsobem. Zatížení a odlehčení se neřídí shodnými zákonitostmi po odstranění zatížení zůstávají trvalé deformace. Plastických vlastností oceli se využívá při navrhování ocelových a železobetonových konstrukcí. σ ideálně pružno-plastický materiál ε Základní pojmy, výchozí předpoklady 31
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace: Změny tvaru konstrukce jsou vzhledem k rozměrům konstrukce malé. Možnost řady zjednodušení při matematickém řešení úloh pružnosti, které obvykle vedou k lineárním závislostem. 5. Statické zatěžování 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 32
Výchozí předpoklady klasické lineární pružnosti Teorie malých deformací F δ << l H b Teorie konečných (velkých) deformací H F b δ l Teorie I.řádu l Teorie II.řádu geometrická nelinearita δ l a a M ay =H.l M ay Základní pojmy, výchozí předpoklady Sestavení podmínek rovnováhy na deformované konstrukci. M ay M ay =H.l+F.δ 33
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování: Předpoklad postupného narůstání vnějších účinků (např. zatížení) a v důsledku toho i napětí a deformací, lze zanedbat dynamické účinky. 6. Počáteční nenapjatost (str. 4 učebnice) Základní pojmy, výchozí předpoklady 34
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost: Ve výchozím stavu jsou všechna napětí rovna nule. Vnitřní pnutí, vyvolaná např. výrobou (válcování ocelových nosníků, svařování), nejsou zahrnuta. (str. 4 učebnice) Základní pojmy, výchozí předpoklady 35
Výchozí předpoklady klasické lineární pružnosti 1. Spojitost látky 2. Homogenita a izotropie 3. Lineární pružnost 4. Malé deformace 5. Statické zatěžování 6. Počáteční nenapjatost Tyto předpoklady umožňují uplatnění principu superpozice (skládání účinků), který je založen na linearitě všech matematických závislostí. (str. 4 učebnice) Základní pojmy, výchozí předpoklady 36
Princip superpozice a úměrnosti Základní zákony statiky Issac Newton (1642-1727) 1) Princip akce a reakce: Každá akce vyvolává reakci stejně velikou, ale opačného smyslu. Tlačí-li těleso tíhy G na podložku (základ), musí tato působit na těleso stejně velikou, ale opačného smyslu. 2) Princip superpozice (skládání) účinků: Rozdělíme-li obecnou soustavu sil působící na těleso do dílčích silových soustav (dále jen SS) 1, 2,... n, od každé stanovíme účinky R 1, R 2,... R n, pak výsledný účinek obdržíme vektorovým součtem účinků od jednotlivých dílčích SS. 3) Princip úměrnosti: Působí-li na těleso SS F 1, F 2,..., F n vyvolávající výsledný účinek R, potom SS k.f 1, k.f 2,..., k.f n vyvolává výsledný účinek k.r pro k = konst. Základní pojmy, výchozí předpoklady 37
Složené typy namáhání Základní typy namáhání: a) prosté (osové, ohyb, kroucení, smyk) b) složené Kombinace základních případů namáhání: prostorový (obecný) ohyb excentrický tah a tlak (kombinace ohybu s tahem nebo tlakem) kroucení s tahem nebo tlakem a s ohybem Díky principu superpozice, který platí v lineárně pružném oboru, pak lze řešit složené případy namáhání rozkladem na základní stavy a výsledné účinky složit superponovat. Základní pojmy, výchozí předpoklady 38
Saint - Venantův princip lokálního účinku F neovlivněná část Jean Claude Saint-Venant (1797-1886) q F F oblast poruchy oblast blízkého okolí Usnadňuje řešení napjatosti těles. Rovnovážná soustava ovlivní stav napjatosti jen v blízkém okolí Ve vzdálenějších bodech má zanedbatelné účinky Používá se: a) ke zjednodušení povrchového zatížení jeho náhradou - staticky ekvivalentním, pro výpočet výhodnějším zatížením (spojité zatížení na malé ploše lze nahradit osamělým břemenem) (str.9 učebnice) Vztahy mezi vnitřními silami a napětími v průřezu 39
Saint - Venantův princip lokálního účinku b) skutečné rozměry prutu můžeme idealizovat do střednice. (síla působí na střednici prutu nikoliv na horní nebo spodní líc) F oblast blízkého okolí, nutno provést korekci R az R bz R az F R bz Po provedení výpočtu, zejména jsou-li vyčíslena i napětí v průřezech, je nutno provést korekce napětí s ohledem na provedené idealizace. Vztahy mezi vnitřními silami a napětími v průřezu 40
Pracovní diagram Vztah napětí - deformace vyjadřuje pracovní diagram. Závisí na fyzikálních a mechanických vlastnostech materiálů. σ x σ x = N A TAH l ε x = l ε x Fyzikální vztahy mezi napětími a deformacemi 41
Lineárně pružný materiál, Hookeův zákon E σ x = tanα = σ x = ε x ε x σ TAH α E H.zákon vyjadřuje lineární závislost mezi napětím a poměrnou deformací (prodloužením) Hookeův zákon σ = x N A = N A l l E ε x = l l σ ε x... poměrné prodloužení [-] σ x... normálové napětí [Pa] E... modul pružnosti v tahu a tlaku (Youngův) [Pa] Hookeův zákon odvozený vztah l = x = ε N. l E. A ε x x E Fyzikální vztahy mezi napětími a deformacemi 42
Lineárně pružný materiál, Hookeův zákon Hookeův zákon: vyjadřuje lineární závislost mezi napětím a poměrnou deformací (prodloužením) σ TAH α Závislost mezi napětím a deformacemi popisují fyzikální rovnice Jedná se o matematické vyjádření Hookeova zákona σ x = ε x E ε x Fyzikální vztahy mezi napětími a deformacemi 43
Lineárně pružný materiál, Hookeův zákon σ x σ x dy dx V příčném směru: σ x ε y = ε z = υ. ε x = υ. E po deformaci dx dy υ (dříve µ )... Poissonův součinitel příčné deformace [-] υ 0,5 σ σ x y σ z 1 Při současném působení σ x, σ y a σ z ε = υ. υ. =.[ σ υ. ( σ + σ )] Obdobně v osách y a z. Fyzikální rovnice x E E E E x y z Fyzikální vztahy mezi napětími a deformacemi 44
Lineárně pružný materiál, Hookeův zákon ve smyku G τ xy = τ yx τ xy = tanα = τ xy = γ γ xy xy G G... modul pružnosti ve smyku [Pa] τ xy... smykové napětí [Pa] γ xy... zkosení [-] Hookeův zákon ve smyku τ xy = γ xy G Obdobně v rovinách xz, zy. α Fyzikální rovnice - 2.část γ xy Fyzikální vztahy mezi napětími a deformacemi 45
Fyzikální konstanty U izotropní látky není E, G a υ vzájemně nezávislé. E G = 2. ( 1+υ) 0 υ 0,5 E 3 G E 2 Orientační hodnoty fyzikálních konstant některých látek: E G υ Ocel 210 000 MPa 81 000 MPa 0,3 Sklo 70 000 MPa 28 000 MPa 0,25 Žula 12 000 až 50 000 MPa - 0,2 Dřevo jehličnaté E = 10 000 MPa E = 300 MPa 600 MPa - Fyzikální vztahy mezi napětími a deformacemi 46
Pracovní diagram oceli - vztah napětí-deformace Plasticita: schopnost materiálu deformovat se trvale bez porušení. Tažnost: plastické protažení přetržené tyče (vzdálenost /OT/), ocel 15%. 47
Pracovní diagram V první fázi v oblasti platnosti Hookova zákona je normálové napětí přímo úměrné relativnímu prodloužení. Matematicky vyjádřeno: σ x = E.ε x Koeficient přímé úměrnosti E se nazývá modul pružnosti v tahu (jednotkou je Pascal, skutečné hodnoty jsou však dost velké, takže je vyjadřujeme v MPa). Lineární část grafu odpovídá elastické deformaci tělesa. Jestliže deformační síly přestanou působit, těleso se vrátí do původního tvaru. Po překročení meze kluzu nastává plastická (trvalá) deformace. 48
Ideálně pružno-plastický materiál úsek Y-Y Y-A Hookeův zákon Plastický stav volný nárůst deformací f y σ x ε e Y ε p A,C TAH A-B B-C Odlehčení Opětovné zvýšení napětí α = arctan E B 0 ε x TLAK Y - f y ε p plastická (trvalá) deformace ε e pružná deformace Lineární závislost mezi napětím a deformacemi tzv. Hookeův zákon Fyzikální vztahy mezi napětími a deformacemi 49
Deformace od změny teploty dy dy T ( o C) dx dx ε = ε = ε =. T γ γ = γ = 0 x, T y, T z, T αt xy = yz zx α t součinitel tepelné roztažnosti [ o C -1 ] Ocel α t =12.10-6 o C -1 Dřevo α t =3.10-6 o C -1 Beton α t =10.10-6 o C -1 Zdivo α t =5.10-6 o C -1 Deformace od změny teploty 50
Historické osobnosti Robert Hooke (1635-1703) Anglický fyzik, přírodovědec a architekt, který jako první vyslovil v roce 1676 zákon o úměrnosti mezi napětím a přetvořením. Thomas Young (1773-1829) Anglický učenec, v roce 1807 definoval matematicky Hookeův zákon (modul pružnosti E). Simeon Denis Poisson (1781-1840) Francouzský matematik, zabývající se chováním materiálu a matematickou teorií pružnosti. Fyzikální vztahy mezi napětími a deformacemi 51
Pracovní diagram V první fázi v oblasti platnosti Hookova zákona je normálové napětí přímo úměrné relativnímu prodloužení. Matematicky vyjádřeno: σ x = E.ε x Koeficient přímé úměrnosti E se nazývá modul pružnosti v tahu (jednotkou je Pascal, skutečné hodnoty jsou však dost velké, takže je vyjadřujeme v MPa). Lineární část grafu odpovídá elastické deformaci tělesa. Jestliže deformační síly přestanou působit, těleso se vrátí do původního tvaru. Po překročení meze kluzu nastává plastická (trvalá) deformace. Poruchy způsobené v krystalové mřížce působícími silami jsou již tak velké, že dochází k posunování celých vrstev materiálu, jeho délka se velmi prodlužuje, aniž by bylo nutno působit obrovskými silami. Poté již dochází k přetržení materiálu. 52
Omezené využití plastických vlastností materiálu pracovní diagram každého materiálu závisí na rychlosti zatěžování a teplotě porušení ztráta pevnosti je mnohotvárný jev, někdy vznikají tvárné-plastické deformace, jindy je povahy křehkého lomu (při nízkých teplotách, koncentrací napětí), který vzniká náhle při proměnném napětí opakujícím se v mnoha cyklech se uplatní tzv. únava materiálu při napětích podstatně nižších než je f y Fyzikální vztahy mezi napětími a deformacemi 53
Bodové ohodnocení k zápočtu Písemky testy: 3x test T1 (Hookeův zákon, výpočet napětí osové namáhání, kroucení, ohyb, průběhy napětí) 6-12bodů test T2 (Návrh a posudek osově namáhaných a ohýbaných prutů podle obou mezních stavů) 6-12bodů test T3 (Hlavní napětí a extrémní smykové napětí, početní i grafické řešení) 6-11bodů Příklady s individuálním zadáním: 2x Úvod do studia předmětu Pružnost a plasticita na Stavební fakultě VŠB-TU Ostrava 54
Deformace (přetvoření) ohýbaný prut Geometrické změny rozměrů a tvaru těles Deformace ohýbaných prutů průhyb (svislý posun střednice prutu) úhel pootočení (úhel, který svírá tečna a osa x) a F b l Průhyb 0,0 0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40 1,60 1,80 2,00 0,2 0,00 0,00 0,00 0,01 0,02 0,02 0,03 0,04 0,05 0,06 0,08 Průhyb Délka nosníku Pružnost a pevnost ve stavebním inženýrství 55
Tento obrázek nyní nelze zobrazit. Tento obrázek nyní nelze zobrazit. Tento obrázek nyní nelze zobrazit. Deformace (přetvoření) osově namáhaný prut l l Deformace - protažení nebo zkrácení prutu, změny také v příčném směru F x y z b b h h Deformace (přetvoření) prut namáhaný kroucením ϕ x Deformace - úhel zkroucení x r y z l T = M x 56
Základní typy namáhání 1. Osové namáhání - tah N N Základní pojmy, výchozí předpoklady Tahová zkouška oceli 57
Základní typy namáhání 1. Osové namáhání - tah N N Základní pojmy, výchozí předpoklady Tahová zkouška oceli 58
Základní typy namáhání 1. Osové namáhání - tah Přetržený vzorek oceli po tahové zkoušce Základní pojmy, výchozí předpoklady 59
Základní typy namáhání 1. Osové namáhání - tlak N N Tlaková zkouška betonu krychelná pevnost v tlaku Základní pojmy, výchozí předpoklady 60
Základní typy namáhání 1. Osové namáhání - tlak N N Tlaková zkouška betonu krychelná pevnost v tlaku Základní pojmy, výchozí předpoklady 61
Základní typy namáhání 1. Osové namáhání - tlak N N Tlaková zkouška betonu krychelná pevnost v tlaku Základní pojmy, výchozí předpoklady 62
2. Ohyb Základní typy namáhání Princip ohybové zkoušky Základní pojmy, výchozí předpoklady 63
2. Ohyb Základní typy namáhání Ohybová zkouška Základní pojmy, výchozí předpoklady 64
2. Ohyb Základní typy namáhání Ohybová zkouška Základní pojmy, výchozí předpoklady 65
2. Ohyb Základní typy namáhání Ověření odolnosti vláknobetonů a drátkobetonů při působení vysokých teplot foto: Zuzana Ševčíková, studentka oboru Stavební hmoty a diagnostika staveb Základní pojmy, výchozí předpoklady 66
2. Ohyb Základní typy namáhání Ověření odolnosti vláknobetonů a drátkobetonů při působení vysokých teplot foto: Zuzana Ševčíková, studentka oboru Stavební hmoty a diagnostika staveb Základní pojmy, výchozí předpoklady 67
3. Smyk Základní typy namáhání Šroubový spoj stropních nosníků a sloupu, foto: Ing.Karel Kubečka, Ph.D. Základní pojmy, výchozí předpoklady 68
3. Smyk Základní typy namáhání Povodňové poruchy mostů v roce 2002, Jižní Čechy, foto: Prof.Ing.Vladimír Tomica, CSc. Základní pojmy, výchozí předpoklady 69
3. Smyk Základní typy namáhání Detail šroubového spoje Základní pojmy, výchozí předpoklady 70
Základní typy namáhání 4. Kroucení Kroutící (torzní) moment T 0 Vzniká smykové napětí τ Základní pojmy, výchozí předpoklady Ukázka prvku namáhaného kroucením dřevěný rumpál 71
Stabilita Destrukce ocelové konstrukce zastřešení stadionu, foto: Doc.Ing.Radim Čajka, CSc. Pružnost a pevnost ve stavebním inženýrství 72