1710 Střední příčky trojúhelníku Předpoklady: Př 1: Narýsuj libovolný trojúhelník (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused) Najdi středy všech stran S a, S b a S c Spoj tyto body úsečkami Najdi všechny zajímavé rysy narýsovaného obrázku Vznikly čtyři menší navzájem shodné trojúhelníky Vzniklé trojúhelníky jsou zmenšeninou velkého trojúhelníku (mají poloviční velikost stran) Strany trojúhelníku SaSb jsou rovnoběžné se stranami trojúhelníku Pedagogická poznámka: Žáci, kteří nečtou pozorně najdou středy stran a automaticky začnou rýsovat těžnice Úsečku, jejíž krajní body jsou středy dvou stran trojúhelníku, nazýváme střední příčka Střední příčka je rovnoběžná s třetí stranou trojúhelníku a její délka je rovna polovině této třetí strany Př 2: Vysvětli, proč je úsečka Sa označována jako střední příčka Střední: spojuje středy stran Příčka: jde napříč trojúhelníkem Pedagogická poznámka: Pro mě překvapivě většina žáků navrhuje, že označení střední pochází z toho, že příčka prochází přes střed trojúhelníka (který většina žáků ztotožňuje s těžištěm) Stačí je nechat, aby si střed do obrázku dokreslili nebo je nechat v obrázku najít bod, kde se všechny tři příčky potkávají 1
Př 3: Na obrázku jsou dvě dvojice shodných trojúhelníků, u každé dvojice je shodnost zapsána pomocí znaku shodnosti Jeden ze zápisů je nesprávný terý? Proč? a) Z YZ b) Y Nesprávný je zápis v bodu b), vrcholy trojúhelníků nejsou uvedeny ve správném pořadí (vrchol je vrchol u nejmenšího úhlu, vrchol není vrchol u nejmenšího úhlu) Správný zápis: YZ (vrcholy u obou trojúhelníků jsou uvedeny v pořadí nejmenší, prostřední a největší úhel) Př 4: Načrtni libovolný trojúhelník, označ středy jeho stran a dokresli střední příčky Zapiš shodnost menších trojúhelníků (které vrcholy jednotlivých trojúhelníků si odpovídají) V náčrtku můžeme u každého trojúhelníku snadno rozeznat nejdelší i nejkratší stranu a proto je ihned zřejmé, která strana které straně odpovídá S S S S S S S S S c b c a b a a b c Pedagogická poznámka: Úspěch při řešení příkladu závisí na tom, jaký trojúhelník si žáci načrtnou Pokud jsou si strany příliš podobné, doporučuji načrtnout trojúhelník znovu 2
Př 5: Je dán rovnoramenný trojúhelník se základnou teré strany jsou shodné? teré střední příčky jsou shodné? S m S l S k V rovnoramenném trojúhelníku se základnou jsou shodné strany a dvojici shodných středních příček tvoří příčky SkS m a SkS l Př 6: Narýsuj libovolný trojúhelník YZ Narýsuj trojúhelník takový, aby strany trojúhelníku YZ byly střední příčky trojúhelníku Střední příčka je rovnoběžná se stranou trojúhelníku, na které leží zbývající vrchol středních příček každým bodem trojúhelníku YZ vedeme rovnoběžku s protější stranou, na těchto rovnoběžkách leží strany trojúhelníku, jejich průsečíky jsou jeho vrcholy Z Y 3
Př 7: olikrát větší jsou strany trojúhelníka než strany trojúhelníka středních příček? olikrát větší je jeho obsah trojúhelníka než obsah trojúhelníka středních příček? de jsme se s podobnou situací už setkali? Strany trojúhelníka jsou dvakrát větší než strany trojúhelníka SaSb Obsah trojúhelníka je čtyřikrát větší než obsah trojúhelníka SaSb (trojúhelník je rozdělen na čtyři shodné trojúhelníky, z nichž jeden je trojúhelník SaSb ) Podobnou situaci jsme řešili již u čtverce dyž strany čtverce rozdělíme na poloviny, získáme čtyři čtverce s poloviční délkou strany a čtvrtinovým obsahem Př 8: Narýsuj trojúhelník, k = 4cm, = 115, l = 7cm Narýsuj všechny jeho výšky Sestroj jeho obraz v osové souměrnosti podle přímky, na které leží výška v k Náčrtek: l = 8 cm k = 4 cm 115 Narýsujeme úsečku, pak úhel = 115 4
v k v l v m = v k v l v m Shrnutí: 5