SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
|
|
- Anežka Pospíšilová
- před 8 lety
- Počet zobrazení:
Transkript
1 Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis, kterým je každému bodu X roviny přiřazen právě jeden bod X této roviny. zapisujeme: Z: X X vzor jeho obraz (obraz vzoru) SHODNÁ ZORZENÍ Úloha: Najděte ve svém okolí shodné geometrické útvary. Jaké dva geometrické útvary považujeme za shodné? říkáme a zapisujeme: útvar U je shodný s útvarem U U U (symbol shodnosti) Shodné zobrazení neboli shodnost je každé zobrazení v rovině, které má tu vlastnost, že pro libovolné body, roviny (vzory) a jejich obrazy, platí: (shodné zobrazení zachovává velikosti úseček) Druhy shodných zobrazení: Identita (totožnost) Osová souměrnost Středová souměrnost Posunutí (translace) Otočení (rotace) 1
2 Rozlišujeme: 1) Přímou shodnost: Zobrazí každý orientovaný úhel na souhlasně orientovaný úhel identita středová souměrnost posunutí otočení Chceme-li takovéto shodné útvary přemístit tak, aby se kryly, pak se při ztotožňování útvary pohybují ve stejném směru otáčení. C C C C Trojúhelníky C a C mají vrcholy shodně orientované (v záporném směru otáčení = ve směru chodu hodinových ručiček) jsou přímo shodné. 2) Nepřímou shodnost: Zobrazí každý orientovaný úhel na opačně orientovaný osová souměrnost Chceme-li takovéto shodné útvary přemístit tak, aby se kryly, pak při ztotožňování jeden útvar překlápíme. C C C C Trojúhelníky C a C nemají vrcholy shodně orientované (trojúhelník C má vrcholy orientované v kladném smyslu = proti směru chodu hodinových ručiček; trojúhelník C má vrcholy orientované v záporném smyslu = ve směru chodu hodinových ručiček) jsou nepřímo shodné. 2
3 Procvičování: 1) Musí být shodné každé dva čtverce nebo každé dva obdélníky vepsané do jedné kružnice? 2) Je mezi útvary na obrázcích shodnost přímá nebo nepřímá? a) b) C D C C D C c) d) D = C C = D C C = = 3
4 Pracovní list 1 ) IDENTIT (TOTOŽNOST) je zobrazení v rovině, ve kterém je každému bodu X dané roviny přiřazen týž bod X = X X vzor ; X jeho obraz odům, pro které platí, že jejich obrazy splývají se vzorem tj. X = X, říkáme samodružné body. C = C = = Závěr: Identita má všechny body samodružné a všechny přímky samodružné. 4
5 Pracovní list 2 ) OSOVÁ SOUMĚRNOST S OSOU o je zobrazení v rovině, které je jednoznačně určeno osou souměrnosti o nebo uspořádanou dvojicí odpovídajících si bodů. Osová souměrnost O(o) s osou o, přiřazuje: 1) každému bodu X o bod X = X, 2) každému bodu X o bod X tak, že přímka XX o a úsečka XX je osou o půlena. a) zobrazení bodu v osové souměrnosti s osou o b) zobrazení přímky v osové souměrnosti s osou o 5
6 Pracovní list 3 c) zobrazení rovinného útvaru v osové souměrnosti s osou o Závěr: Osová souměrnost má všechny body osy souměrnosti samodružné. Samodružnými přímkami v osové souměrnosti jsou osa souměrnosti a všechny přímky k ní kolmé. 6
7 Pracovní list 4 Procvičování: 1) Uveďte příklady osových souměrností, se kterými se můžeme setkat v běžném životě. 2) Jsou dány body,, které leží v téže polorovině ohraničené přímkou p. Najděte na přímce p bod X tak, aby součet X + X byl co nejmenší. 3) Jsou dány přímky p, q. Určete osu o osové souměrnosti, ve které je přímka q obrazem přímky p. 4) Kolik os souměrnosti má kružnice? 5) Na břehu řeky se má postavit vodárenská věž, ze které by se čerpala voda do obcí a. Kde je třeba postavit věž, aby se spotřebovalo co nejméně potrubí? (Do každé obce povede potrubí samostatně.) 6) Je dán pravidelný šestiúhelník CDEF. Určete jeho obraz v osové souměrnosti s osou o. Volte přitom: a) o procházící bodem a protínající úsečku C v jejím vnitřním bodě, b) o je přímka, c) o je přímka C, d) o je přímka D. 7) Je dána uzavřená lomená čára CD, která je hranicí čtverce CD. Ve kterých osových souměrnostech má daná lomená čára: a) právě dva samodružné body, b) jedinou samodružnou stranu, c) právě dvě samodružné strany? 8) Sestrojte všechny trojúhelníky C, je-li dán jejich obvod o = 12 cm a úhly α = 60 o, β = 45 o. 7
8 Pracovní list 5 C) STŘEDOVÁ SOUMĚRNOST SE STŘEDEM S je zobrazení v rovině, které je jednoznačně určeno středem souměrnosti S nebo uspořádanou dvojicí odpovídajících si bodů. Středová souměrnost S(S) se středem S, přiřazuje: 1) středu souměrnosti S bod S = S, 2) každému bodu X S bod X tak, že úsečka XX je bodem S půlena. a) zobrazení bodu ve středové souměrnosti se středem S b) zobrazení přímky ve středové souměrnosti se středem S 8
9 Pracovní list 6 c) zobrazení rovinného útvaru ve středové souměrnosti se středem S 9
10 Závěr: Středová souměrnost má jeden samodružný bod (střed souměrnosti) a všechny přímky procházející středem souměrnosti jsou samodružné. Pracovní list 7 Procvičování: 1) Pojmenujte nebo načrtněte příklady útvarů, které jsou souměrné podle středu. 2) Jsou dány dvě stejně dlouhé rovnoběžné úsečky. Najděte střed středové souměrnosti, který zobrazuje jednu úsečku na druhou. 3) Existuje nějaký geometrický útvar, který má několik různých středů souměrnosti? 4) Jsou dány dvě soustředné kružnice k 1 (O;r 1 ), k 2 (O;r 2 ); r 1 > r 2 a bod S ležící na menší z nich. Sestrojte rovnoběžník CD se středem S, jehož vrcholy leží v daných kružnicích. 5) Společným bodem dvou kružnic k 1 a k 2 veďte přímku tak, aby na ní dané kružnice vytínaly shodné tětivy. 6) Je dán trojúhelník C. Určete jeho obraz ve středové souměrnosti se středem S, je-li: a) S = T, b) S = O, c) S = S o, kde T je těžiště, O průsečík výšek, S o střed kružnice opsané trojúhelníku C. 7) Je dán trojúhelník C a jeho vnitřní bod M. Sestrojte všechny úsečky XY se středem M a s krajními body X, Y na hranici trojúhelníku. 8) Je dána úsečka 1 ; 1 = 4,5 cm. Sestrojte všechny pravoúhlé trojúhelníky C s pravým úhlem u vrcholu C, v nichž 1 je těžnicí t a a t b = 6 cm. 9) Je dána úsečka 1 ; 1 = 5 cm. Sestrojte všechny trojúhelníky C, v nichž 1 je těžnicí t a a c = 4 cm a b = 7 cm. 10
11 Pracovní list 8 D) POSUNUTÍ (TRNSLCE) je zobrazení v rovině, které je jednoznačně určeno uspořádanou dvojicí odpovídajících si bodů, jež určuje vektor posunutí. Orientovaná úsečka je taková úsečka, jejíž krajní body mají určené pořadí. Jeden její krajní bod je tzv. počáteční bod; druhý krajní bod je koncový bod. koncový bod počáteční bod Existuje i nulová orientovaná úsečka, tj. úsečka, jejíž počáteční bod splývá s koncovým bodem a jedná se tím pádem o bod. Nenulové orientované úsečky a CD nazýváme souhlasně orientované, jsou-li přímky a CD rovnoběžné různé a koncové body, D leží v téže polorovině s hraniční přímkou C; nebo přímky a CD splývají a jedna z nich je částí druhé. D C C D Všechny souhlasně rovnoběžné úsečky mají týž směr. Délkou (velikostí) orientované úsečky rozumíme délku úsečky. Množina všech orientovaných úseček téhož směru a téže délky se nazývá vektor. C D v E F 11
12 Pracovní list 9 Je dána orientovaná úsečka. Posunutí (translace) je shodné zobrazení T(), které každému bodu X přiřadí bod X tak, že orientované úsečky a XX jsou souhlasně orientované a platí = XX Je-li vektor posunutí nulový, pak se jedná o identitu. Délka vektoru posunutí určuje délku posunutí, směr vektoru posunutí určuje směr posunutí. značení vektorů: v nulový vektor: o a) zobrazení bodu v posunutí T() b) zobrazení přímky v posunutí T() 12
13 Pracovní list 10 c) zobrazení rovinného útvaru v posunutí T() 13
14 Závěr: Jestliže vektor posunutí není nulový, pak posunutí nemá žádný samodružný bod. Samodružné přímky jsou všechny přímky rovnoběžné s vektorem posunutí. Pracovní list 11 Procvičování: 1) Chceme-li posunout např. dámou na šachovnici, musíme si rozmyslet, kterým směrem a jak daleko. U posouvání rozlišujeme jeho směr a velikost. Jaké trajektorie budou opisovat jednotlivé body figurky při posouvání z 3 na E6, nebudeme-li figurkou otáčet? 2) Místa, leží na opačných březích přímého toku řeky šířky d. Určete místo pro postavení mostu tak, aby vzdálenost z do byla co nejkratší. d 3) Jsou dány dvě shodné kružnice k a k. Určete posunutí, které zobrazuje kružnici k na kružnici k. 4) Jsou dány dvě různoběžné přímky a, b a úsečka MN. Sestrojte čtverec CD tak, aby a, b, MN a = MN. 5) Jsou dány přímky a b a bod M, který neleží na žádné z nich. Sestrojte kružnici, která se dotýká přímek a, b a prochází bodem M. 6) Je dán trojúhelník C. Určete jeho obraz v posunutí: a) T(), b) T( 1 ); 1 je střed strany C, c) T(O); O je průsečík výšek. 7) Jsou dány kružnice k 1 (S 1 ;3cm), k 2 (S 2 ;2cm), S 1 S 2 = 7 cm. Sestrojte všechny úsečky XY, pro které platí X k 1, Y k 2, XY S 1 S 2, XY = 2 1 S1 S 2. 8) Jsou dány dvě různoběžky a, b a úsečka MN. Sestrojte čtverec CD, pro který platí a, b, MN, = MN. 14
15 9) Sestrojte lichoběžník CD, jsou-li dány délky obou jeho základen a, c a obou jeho úhlopříček e, f. Pracovní list 12 E) OTOČENÍ (ROTCE) KOLEM STŘEDU S O ÚHEL α je zobrazení v rovině, které je jednoznačně určeno středem otočení S a orientovaným úhlem α 0 o ; 360 o Orientovaný úhel je úhel, u něhož je určeno, které jeho rameno je tzv. počáteční rameno a druhé rameno je pak koncovým ramenem. Např.: orientovaný úhel V znamená, že V je počátečním ramenem a V je koncovým ramenem tohoto úhlu koncové rameno V počáteční rameno dále rozlišujeme: kladný a záporný směr otočení ( + ) kladný směr otočení (proti směru chodu hodinových ručiček) V α ( ) záporný směr otočení (ve směru chodu hodinových ručiček) Je dán orientovaný úhel α a bod S. Otočení (rotace) je shodné zobrazení R(S;α), se středem otočení S a orientovaným úhlem otočení α 0 o ; 360 o, které přiřazuje: 1) bodu S bod S = S, 2) každému bodu X S bod X tak, že SX = SX a orientovaný úhel XSX má velikost α (úhly α a XSX jsou shodné a souhlasně orientované). 15
16 Pracovní list 13 a) zobrazení bodu v rotaci R(S;α) b) zobrazení přímky v rotaci R(S;α) 16
17 Pracovní list 14 c) zobrazení rovinného útvaru v rotaci R(S;α) Závěr: Otočení má jediný samodružný bod S. Pro α = 360 o jsou všechny body samodružné. Pro α 360 o a α 180 o nemá otočení žádné samodružné přímky. 17
18 Pro α = 180 o jsou samodružné všechny přímky procházející středem souměrnosti S. Pro α = 360 o jsou samodružné všechny přímky roviny. Pracovní list 15 Procvičování: 1) Jaký pohyb může vykonávat čepel zavíracího nože vzhledem ke střence? 2) Jsou dány dva různé body,. Kde leží všechny středy otočení, které zobrazují na? 3) Kolik různých otočení zobrazí daný: a) rovnostranný trojúhelník, b) čtverec, na sebe? 4) Na téže straně odbočují od silnice dvě polní cesty, které s ní svírají úhly o velikostech α = 48 o 28 a β = 65 o 28. Jakou velikost má úhel, který svírají tyto cesty mezi sebou, jsou-li úhly α, β měřeny a) se stejnou orientací, b) s opačnou orientací? 5) Určete velikost úhlu otočení malé (velké) hodinové ručičky od 6:30h do 14:15h téhož dne. 6) Určete velikost orientovaného úhlu, který svírá velká a malá hodinová ručička ve smyslu chodu v 5h, ve 3:15h. 7) Do čtverce CD vepište rovnostranný trojúhelník KLM, jestliže K. 8) Jsou dány dvě rovnoběžné přímky a, b a mimo ně bod C. Sestrojte rovnostranný trojúhelník C tak, aby jeho vrcholy, ležely po řadě na přímkách a, b. 9) Je dána kružnice k(s; r = 2,5 cm) a bod P ve vzdálenosti 4 cm od bodu S. odem P veďte přímku q, na níž kružnice k vytíná úsečku o délce 3 cm. 18
19 10) Je dána kružnice k(s; r = 3 cm) a bod ( S = 1,5 cm). Sestrojte všechny tětivy XY kružnice k o délce 5,5 cm, které procházejí bodem. Zdroje použité literatury a obrázků: Výukové materiály a úlohy a cvičení jsou autorsky vytvořeny pro učební materiál. J. Molnár: Matematika pro střední odborné školy Planimetrie, Prometheus 2011 E. Pomykalová: Matematika pro gymnázia Planimetrie, Prometheus 2007 E. Calda, O. Petránek, J. Řepová: Matematika pro střední odborné školy a studijní obory středních odborných učilišť 1. část, Prometheus
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
CZ.1.07/1.5.00/34.0527
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013
- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
Shodné zobrazení v rovině
Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
SHODNÁ ZOBRAZENÍ V ROVINĚ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SHODNÁ
6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
Syntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
Syntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
ZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
Shodná zobrazení v rovině osová a středová souměrnost Mgr. Martin Mach
Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice
Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
PLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
Základní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Opakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Přípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností.
Řešení geometrické úlohy spočívá v nalezení geometrického útvaru (útvarů) daných vlastností. Metody řešení konstrukčních úloh: množinou bodů zobrazením výpočtem kombinací předchozích způsobů Konstrukční
Základy geometrie - planimetrie
Základy geometrie - planimetrie Základní pojmy - bod (A, B, X, Y...), přímka ( p, q, a... ), rovina ( α, β, π... ) - nedefinují se Polopřímka: bod dělí přímku na dvě polopřímky opačně orientované značíme
February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.
Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
Obrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
Geometrické zobrazení v učivu základní školy
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Pavla Jakubcová III. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání Společenské vědy se zaměřením na vzdělávání
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
Syntetická geometrie I
Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr
Syntetická geometrie I
Kružnice Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr
DIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011
MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován
Geometrická zobrazení
Geometrická zobrazení Franta Konopecký Geometrická zobrazení jsou nádherná kapitola matematiky, do které když proniknete, tak už neuniknete. Pro lepší představu v tomto příspěvku najdete stručný přehled,
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
Témata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
1. Planimetrie - geometrické útvary v rovině
1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma
Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, Kladná a záporná čísla, Dělitelnost, Osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04
PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek
2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
ANOTACE vytvořených/inovovaných materiálů. 01: Stažení, instalace, nastavení programu, tvorba základních entit (IV/2_M1_01)
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 IV/2 Inovace a
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
Obrázek 34: Vznik středové kolineace
6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Geometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
3 Geometrie ve škole. krychle a její obrázek, koule a její stín, průměty trojrozměrného útvaru do roviny
3 Geometrie ve škole Geometrie by měla být od samého začátku orientována na poznávání prostoru, v němž žák žije, a na rozvíjení představivosti. Základem zde mohou být zkušenosti s dělením prostoru, s vyplňováním
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Kružnice, úhly příslušné k oblouku kružnice
KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k
MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci
MATEMATIKA Úloha o čtverci a přímkách ŠÁRKA GERGELITSOVÁ TOMÁŠ HOLAN Matematicko-fyzikální fakulta UK, Praha Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci (například podobnosti)
GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární
VEKTOR Úvod Vektor je abstraktní pojem sloužící k vyjádření jistého směru a velikosti. S vektorovými veličinami se setkáváme například ve fyzice. Jde o veličiny, u nichž je rozhodující nejen velikost,
TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik
TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající
16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013
16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání
( ) Příklady na středovou souměrnost. Předpoklady: , bod A ; 2cm. Př. 1: Je dána kružnice k ( S ;3cm)
3.5.5 Příklady na středovou souměrnost Předpoklady: 3504 Př. : Je dána kružnice k ( S ;3cm), bod ; cm S = a přímka p; p = 4cm, která nemá s kružnicí k žádný společný bod. Najdi všechny úsečky KL; K k,
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem
Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Digitální učební materiál
Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
9. Planimetrie 1 bod
9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,
ZÁKLADY PLANIMETRIE. 1.1 Přímka. Základy planimetrie, Jaroslav Reichl, 2013
ZÁKLADY PLANIMETRIE Planimetrie je část matematiky, která se zabývá studiem geometrických útvarů v rovině. Těmito útvary v rovině jsou: 1. body - značí se velkými písmeny latinské abecedy (A, B, C, D,
Dvěma různými body prochází právě jedna přímka.
Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po