Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu



Podobné dokumenty
Národní informační středisko pro podporu kvality

SW podpora při řešení projektů s aplikací statistických metod

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

Vyhodnocování způsobilosti a výkonnosti výrobního procesu

Různé metody manažerství kvality. Práce č.12: Výpočet PPM a způsobilost procesů

Národní informační středisko pro podporu kvality

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Vlastnosti odhadů ukazatelů způsobilosti

Národní informační středisko pro podporu jakosti

Regulační diagramy (RD)

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU

Národní informační středisko pro podporu jakosti

= = 2368

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Normální (Gaussovo) rozdělení

Národní informační středisko pro podporu kvality

Jednofaktorová analýza rozptylu

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

STATISTICKÉ ODHADY Odhady populačních charakteristik

Rozdíl rizik zbytečného signálu v regulačním diagramu (I,MR) a (xbar,r)

4ST201 STATISTIKA CVIČENÍ Č. 7

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek

Analýza způsobilosti. procesu. StatSoft

MSA-Analýza systému měření

You created this PDF from an application that is not licensed to print to novapdf printer (

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

Přehled metod regulace procesů při různých typech chování procesu

1. Přednáška. Ing. Miroslav Šulai, MBA

VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Statistické řízení jakosti. Deming: Klíč k jakosti je v pochopení variability procesu.

Testování statistických hypotéz

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

SPC v případě autokorelovaných dat. Jiří Michálek, Jan Král OSSM,

Pravděpodobnost a matematická statistika

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Zápočtová práce STATISTIKA I

Inovace bakalářského studijního oboru Aplikovaná chemie

Návrh a vyhodnocení experimentu

Stručný úvod do testování statistických hypotéz

Q-diagramy. Jiří Michálek ÚTIA AVČR

Charakteristika datového souboru

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

Testy statistických hypotéz

Testování hypotéz. 4. přednáška

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Sigma Metric: yes or no?

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Národníinformačnístředisko pro podporu jakosti

Cvičení ze statistiky - 9. Filip Děchtěrenko

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Lineární regrese. Komentované řešení pomocí MS Excel

Korelace. Komentované řešení pomocí MS Excel

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

, Brno Hanuš Vavrčík Základy statistiky ve vědě

Akademie věd České republiky Ústav teorie informace a automatizace RESEARCH REPORT. Hustoty rozdělení pravděpodobnosti pro odhady ukazatele C pk

Jednofaktorová analýza rozptylu

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

Regresní analýza 1. Regresní analýza

Pearsonův korelační koeficient

Cvičení ze statistiky - 8. Filip Děchtěrenko

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Analýza způsobilosti procesů. Studijní opory

Odhad parametrů N(µ, σ 2 )

y = 0, ,19716x.

8/2.1 POŽADAVKY NA PROCESY MĚŘENÍ A MĚŘICÍ VYBAVENÍ

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice

Normální (Gaussovo) rozdělení

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k )

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM

Intervalové Odhady Parametrů

populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.

UNIVERZITA PARDUBICE

Jednostranné intervaly spolehlivosti

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce

Národní informační středisko pro podporu kvality

UNIVERZITA PARDUBICE CHEMICKO-TECHNOLOGICKÁ FAKULTA KATEDRA ANALYTICKÉ CHEMIE

Biostatistika Cvičení 7

Transkript:

Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu, resp. chování sledovaného znaku jakosti, pomocí několika čísel bezrozměrného charakteru. Zadáním těchto čísel se vlastně vyjadřuje požadavek na stav procesu, aby očekávaný počet neshodných výrobků odpovídal požadovanému počtu a aby proces byl ve stabilizovaném stavu, tzn. pro praxi v téměř stavu neměnícím se v průběhu času. Nejdříve, asi před 0-5 lety; byly zavedeny do praxe ukazatele způsobilosti C p, C pk, jejichž použití vyžaduje po sledovaném znaku jakosti, aby mohl být popsán normálním rozdělením N(µ,σ ), kde µ, je parametr polohy a σ je rozptyl sledovaného znaku. Pro úplnost, zde je jejich vzorec USL LSL USL µ µ LSL C p =, C pk =,. 6 σ 3 σ 3 σ Jejich zadáním se zcela jednoznačně určuje, jaká má být úroveň tzv. inherentní variability znaku jakosti a dvojrozměrná poloha; tj. střední hodnota sledovaného znaku jakosti, neboť z obou ukazatelů vyplývá pouze míra necentrování procesu od průměru specifikačních mezí, nikoliv to, zdali střední hodnota má být napravo či nalevo od tohoto průměru. Lze tedy zadání dvojice C p, C pk chápat tak, že střední hodnota jakostního znaku se muže pohybovat těmito dvěma krajními polohami, aniž by se hodnota C pk, zmenšovala, protože vždy musí být C p C pk, přičemž rovnost nastává jedině tehdy, když proces je přesně centrován na prostředek specifikačního rozmezí. První problém, se kterým se lze v praxi setkat, je již stanovení hodnot pro C p a C pk od konstruktérů či odběratelů produktů z procesu. Mnohdy bohužel tyto hodnoty jsou velice přísné, takže výrobce není schopen se stávající technologií tyto požadavky splnit, protože to mnohdy jednoduše vůbec nejde. Tento problém se často vyskytuje na,př. u plastových výrobků, kde se objevuje druhý

problém, a to jak přesně získat hodnoty sledovaného znaku jakosti. Stanovení požadavků na C p a C pk je jedna strana mince, ale otázka, zdali je vůbec schopen výrobní proces toto splnit, je strana druhá. Aby bylo možno obě strany porovnat. musíme z procesu odebrat nějaké produkty, ty přeměřit a získaná data použít pro zjištění způsobilosti našeho procesu. A to jo třetí problém, protože jsme nuceni zpracovat pouze dílčí informaci obsaženou v odebraných produktech, i kdyby produktů byly tisícovky. Aby nástroje matematické statistiky byly využity adekvátně, je nutno respektovat Splnění některých předpokladů. Je to především normalita získaných dat, kterou je možno ověřit pomocí testů dobré shody a stabilita procesu, což znamená poloha procesu µ (tj. střední hodnota sledovaného znaku) se v čase nemění a rovněž tak i úroveň variability σ lze považovat za stálou v čase. Takovému stavu říkáme, že proces je statisticky zvládnut, což je stav, kterého je možno dosáhnout hlavně aplikací regulačních diagramů. Tento stav je nutný proto, abychom mohli spolehlivě odhadnout parametr polohy procesu µ, nejčastěji pomocí aritmetického průměru či výběrového mediánu, a rovněž tak úroveň variability σ, obvykle pomocí výběrového rozpětí R či výběrové směrodatné odchylky s. Dalším problémem je organizace sběru dat; tj. jak často, zdali jednotlivě či ve skupinách a kolik dat budeme potřebovat pro hodnocení způsobilosti procesu. Některé postupy lze najít v literatuře, např. VDA 4.. kde se hodnotí způsobilost strojního zařízení. pak předběžná způsobilost v simulování hromadné výroby a pak dlouhodobá při hromadné výrobě, která může zahrnout i několik dní. Měla by být učiněna dohoda mezi výrobcem a odběratelem, který požaduje hodnocení způsobilosti procesu, jak se přesně bude postupovat při sběru dat, protože počet a organizace sběru dat silně ovlivňuje hodnocení způsobilosti procesu, pokud je prováděno správným způsobem. Poučenému odběrateli zdaleka nemůže stačit fakt, že odhad Ĉ p je větší nežli požadovaná, hodnota C p, což je požadavek téměř všude od zákazníků vyžadovaný, protože matematická statistika garantuje, že pokud proces skutečně splňuje požadavek, např. C p =, 33, že přibližně 50 % odhadů tohoto ukazatele je sice nad hodnotou,33, ale rovněž druhých 50 % odhadů se musí vyskytovat pod touto hodnotou. Tím, že zákazník

požaduje, aby Ĉ p C p, nemá vůbec zajištěno; že způsobilost výrobního procesu je na hodnotě ukazatele C p, kterou on stanovil. Vypočtená hodnota odhadu Ĉ p či Ĉ pk sama o sobě nic neříká, pokud ji nebudeme konfrontovat se stanovenými hodnotami. např. pomocí testování statistických hypotéz. Závěr takového testu silně závisí na stanoveném riziku (tzv. hladině významnosti) a hlavně na počtu dat, s nimiž pracujeme. Pokud jako nulovou hypotézu stanovíme, že proces má být způsobilý např. s C p =,33, stále ještě nezamítnutí této hypotézy proti např. alternativní hypotéze C p =, 50, zdaleka nevylučuje skutečnost, že způsobilost procesu není,33, ale jen zhruba,5. Pokud mulovou hypotézu zamítneme, jsme na tom s věrohodností závěru obvykle lépe. ale opět úroveň této věrohodnosti závisí na počtu dat. Hodnotit způsobilost procesu např. z pěti údajů, je naprostý hazard jak pro výrobce, tak i pro odběratele. Představme si, že chceme, aby výrobní proces byl nejhůře na úrovni způsobilostí C p =,33, což je velice častý požadavek v automobilovém průmyslu. Pro úplnost to znamená, že při stabilitě střední hodnoty µ na prostředku tolerančního rozpětí se požaduje, aby očekávaná neshodnost výrobků byla na úrovni 60 ppm. Postavme otázku testování způsobilosti takto: nulová hypotéza bude, že C p <,33 a alternativní hypotéza, že C p >,33. Nulovou hypotézou tedy je, že náš proces není způsobilý, alternativou je jeho způsobilost nejhůře na úrovni C p =,33. Abychom hypotézu o nezpůsobilosti zamítli a, měli velikou záruku, že náš proces je způsobilý, musí hodnota odhadu Ĉ p ukazatele C P počítaná např. z 0 podskupin o pěti kusech ve skupině při riziku 5 % překročit hodnotu,54. U ukazatele C pk je situace o to komplikovanější, že vstupuje do odhadu Ĉ pk navíc odhad parametru polohy µ. Co se vyžaduje od procesu, aby ukazatel C pk, byl správně chápan? Aplikace tohoto ukazatele vyžaduje nejen, aby úroveň variability byla stálá; ale aby i parametr polohy se v čase neměnil. Jinak totiž nesprávně odhadneme polohu procesu např. pomoci aritmetického průměru ze všech dat. Představme si takovou situaci, kdy během odebírání dat se poloha procesu změnila takovým způsobem (třeba nastavením stroje či použitím jiného materiálu na vstupu procesu), že přibližně polovina dat má parametr polohy

USL + LSL µ = + δ, σ > 0, druhá polovina USL + LSL µ = δ, σ > 0, kde přitom δ a δ se prakticky neliší. Když spočítáme celkový aritmetický průměr z dat, ten se nebude významně lišit od středu tolerančního rozmezí USL + LSL, což se projeví v hodnosti odhadu Ĉ pk tím, že ta,to hodnota se nebude významně lišit od hodnoty odhadu Ĉ p a člověk, který si neprohlédne průběh dat se může domnívat, že proces je velice dobře centrovaný. Opět vlastní hodnota odhadu Ĉ pk nám nic neříká, pokud není porovnávána se zadanou hodnotou C pk pomocí testování hypotéz; což má smysl pouze tehdy, když proces je stabilní i v parametru polohy. O tom se lze přesvědčit pomocí statistického nástroje MANOVA. Jedná se vlastně o otázku, zdali všechna data potřebná pro odhad Ĉ pk pocházejí z jediné populace se střední hodnotou µ. Když připustíme, že náš proces může v parametru polohy "dýchat", což znamená, že parametr µ není v průběhu výroby fixní, ale může se pohybovat v jistém rozmezí uvnitř tolerančního pásma, např. USL LSL USL LSL µ δ, + δ, kde δ > 0. V metodice Six Sigma se uvažuje, že δ =,5σ, kde σ je směrodatná odchylka zkoumaného znaku jakosti. Protože parametr µ není pevný, uvažovat použití ukazatele C pk v této situaci je nesprávné, protože odhad celkového aritmetického průměru z dat vůbec nic neříká o chování parametru µ. Samozřejmě ihned se naskýtá problém, jak v této situaci hodnotit způsobilost procesu? Odpověď' není zdaleka jednoznačná, protože především závisí na tom, jak se parametr µ chová ve vymezeném intervalu. Pokud bude jeho chování náhodné, které lze popsat nějakým rozdělením pravděpodobnosti, pak by správně pro hodnocení způsobilosti

takového procesu východiskem mělo být rozdělení pravděpodobnosti, které je dáno konvolucí normálního rozdělení N(0,σ ), které charakterizuje zdroj inherentní variability, s rozdělením pravděpodobnosti; které popisuje chování parametru µ. Takováto situace nastává např. při opotřebování nástroje během výrobní operace, kdy se do procesu dostává lineární trend v chování parametru polohy, což koresponduje s rovnoměrným rozdělením na intervalu vymezeném pro pohyb parametru polohy. Dalším případem je taková situace, kdy lze data rozdělit, tj. stratifikovat, do jednotlivých kategorií, které jsou odlišeny různými hodnotami parametru polohy. Tento případ na,stává např. tehdy, když data z jednotlivé kategorie odpovídají novému seřízení stroje či jednotlivým šaržím, kdy nelze přesně dodržet parametr polohy na jednom místě a je nutno počítat s jeho změnou v rámci nějakého intervalu kolem prostředku tolerančního rozmezí. Získaná data potom jsou výsledkem směsi normálních rozdělení nejčastěji se stejnou úrovní inherentní variability, ale s různými středními hodnotami. Pokud dovedeme jednotlivé kategorie dat ve směsi identifikovat podle nějakých příznaků (např. operátor, směna, šarže, seřízení stroje apod.), pak lze hodnotit způsobilost výrobního procesu pomocí ukazatele P pk následovně. Pro každou kategorii dat, tj. pro každou složku směsi spočítáme odpovídající aritmetické průměry a odhad směrodatné odchylky. Pomocí nich spočítáme odhady USL xi Pˆ pku =, i =,, K, k 3 si a odhady xi LSL Pˆ pkl =, i =,, K, k. 3 si Pak má smysl odhadnout ukazatel P pk pro celou směs jako Pˆ pk ( minpˆ pkl, minpˆ pku) = min, i k i k kde k je počet kategorií ve směsi. Takto zavedený odhad má zcela racionální smysl, neboť je založen na složkách směsi, které mají střední hodnoty nejdále od prostředku tolerančního rozmezí. Zatím ale zcela chybí teoretické pozadí, které by dalo odpověď' např. na velikost konfidenčního intervalu či možnost prověřit hodnotu odhadu s požadovanou hodnotou ukazatele C pk.

Tento stručný rozbor situace jasně dokazuje, že pokud proces není statisticky zvládnut a sledovaná data nelze popsat normálním rozdělením, pak odhady ukazatelů C p a C pk ; nemusí vůbec nic vypovídat o způsobilosti procesu. Pokud sebraná data nelze vysvětlit normálním rozdělením, může být sledovaný znak jakosti popsatelný jiným typem rozdělení (např. logaritmicko-normální, Weibull, překlopené normální), a to čistě třeba z fyzikálních důvodů (např. rovinnost, ovalita apod.) a nebo se jedná o zcela neidentifikovatelnou směs z normálních rozdělení. Pak samozřejmě formální výpočet odhadů C p a C pk je sice možný, ale nic to neříká, o odhadu neshodných kusů ve výrobním procesu. Jak potom postupovat? Bud' dovedeme najít vhodný tvar rozdělení pravděpodobnosti jako model pro popis sledovaného znaku jakosti, ale toto rozdělení musí být vlastní tvaru procesu v tom smyslu, že každá skupina naměřených hodnot je vysvětlitelná tímto typem rozdělení a definice odpovídajících ukazatelů C p a C pk je založena na kvantilovém rozpětí. Tento přístup má svoji velkou slabost právě v odhadu odpovídajících kvantilů, což vyžaduje relativně velký počet, dat pro získání věrohodných závěrů. Druhá možnost je založena na myšlence původní data pomocí vhodné transformace, samozřejmě jedno-jednoznačné převést na nová data. která lze popsat již normálním rozdělením. Vybranou transformací se získají i nové specifikace pro nová data a pro hodnocení způsobilostí se použijí klasické tvary ukazatelů C p a C pk založené na specifických vlastnostech normálního rozdělení. V praxi se v tomto případě nejčastěji používá bud' Box-Coxova transformace či třída Johnsonových transformací, která nová data převádí přímo na rozdělení N(0, ).V následujícím jsou uvedeny dva příklady, které ukazují, že nerespektování předpokladu normality bud' nadhodnotí úroveň způsobilosti procesu či naopak podhodnotí. Na obr. je provedeno hodnocení způsobilosti procesu bez respektování předpokladu o normalitě dat. Takto získaná hodnota odhadu nemůže nic vypovídat o skutečné situaci ve výrobním procesu. Jeden z možných správných postupů je ukázán na obr., kde je použita vhodná Johnsonova transformace na původní data, která jsou převedena na data, které již požadavek na normalitu dat splňují. Porovnáním obou hodnot odhadů ukazatelů je vidět, že vlastně stav procesu je lepší nežli ukazuje obr..

Poznámka: Proces je hodnocen pomocí ukazatelů výkonnosti, které jsou zadefinovány níže, protože se jedná o individuální hodnoty a použitý software Minitab po Johnsonově transformaci ukazatele způsobilosti nepočítá. Process Capability of Warping (using 95,0% confidence) Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev(Within),68898 StDev (Ov erall),79048 Observ ed Perf ormance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 LSL 0,0,5 Exp. Within Perf ormance PPM < LSL 4755,60 PPM > USL 60,35 PPM Total 495,95 3,0 4,5 6,0 Exp. Ov erall Performance PPM < LSL 58,8 PPM > USL 344,38 PPM Total 565,56 7,5 USL 9,0 Within Overall Potential (Within) Capability Cp 0,89 Lower CL 0,76 Upper CL,0 CPL 0,58 CPU,0 Cpk 0,58 Lower CL 0,47 Upper CL 0,68 Ov erall Capability Pp 0,84 Lower CL 0,7 Upper CL 0,95 PPL 0,54 PPU,3 Ppk 0,54 Lower CL 0,44 Upper CL 0,64 Cpm * Lower CL * Obr. Nesprávný odhad ukazatele způsobilosti Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev,78597 Shape 0,88908 Shape 0,987049 Location -0,3606 Scale 9,4436 After Transformation LSL* -3,336 Target* * USL* 4,89 Sample Mean* 0,096 StDev* 0,994947 Observed Performance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 Process Capability of Warping Johnson Transformation with SB Distribution Type 0,883 + 0,987 * Log( ( X + 0,33 ) / ( 9,3 - X ) ) (using 95,0% confidence) LSL* transformed data USL* Overall Capability Pp,6 Lower CL,09 Upper CL,44 PPL, PPU,4 Ppk, Lower CL 0,95 Upper CL,8 Exp. Overall Performance PPM < LSL 46,36 PPM > USL,73 PPM Total 48,09-3 - - 0 3 4 Obr. Hodnocení procesu po transformaci dat

Ne pouze problémy přináší praxe, ale i teorie. Na začátku 90. let se objevují z popudu amerického automobilového průmyslu další dva ukazatele, a to ukazatele výkonnosti P p a P pk. Lze ale říci, že jejich zavedení situaci spíše zkomplikovalo nežli zjednodušilo v tom smyslu, že tyto ukazatelé dodají další užitečnou informaci o průběhu výrobního procesu. Jejich vzorce se od vzorců pro C p a C pk liší pouze v tom, že ve jmenovateli se místo směrodatné odchylky σ inherentní variability objevuje tzv. totální směrodatná odchylka σ TOT. Je doporučováno, aby tyto ukazatele. resp. jejich odhady, byly používány u procesů, které nejsou statisticky zvládnuty. Pokud je proces zvládnut a data normálně rozdělena, tak odhady Ĉ p, a Pˆ p by se neměly příliš lišit, protože rozdíl v odhadech ( ) x xi k n σˆ TOT = i j kn i= j= a R s σ ˆ =, resp. σˆ = d C 4 by za této stabilizované situace měl být malý. Pokud ale proces není stabilní. úloha ukazatelů P p a P pk není jasná, protože nemohou predikovat výkonnost procesu. Problém je v tom, že definice těchto ukazatelů nic nevyžaduje, jakým způsobem vzniká totální variabilita. Tudíž nelze odvodit statistické vlastnosti odhadů těchto ukazatelů a nelze je např. testovat, protože statistika potřebuje model, na jehož základě zkonstruuje přijatelný test. To znamená, že např., pokud nějaký software obsahuje konfidenční intervaly pro tyto ukazatele a není řečeno, z čeho se při jejich výpočtu vycházelo, pak jsou naprosto k ničemu. V monografii [] je silně argumentováno proti používání těchto ukazatelů a je řečeno. že jejich zavedení je krokem zpět v hodnocení způsobilosti výrobního procesu. Bohužel ve. vydání příručky pro dodavatele do amerického automobilového průmyslu z roku 005, viz [], se přímo doporučuje použití všech 4 ukazatelů pro charakterizování výrobního procesů na základě normy ANSI Standard Z z roku 996. Na jednoduchém příkladu si dokažme, že skutečně zavedení ukazatele P p "stojí na vodě".

Představme si výrobní proces, kde parametr polohy µ sledovaného znaku jakosti silně závisí na vstupu (např. seřízení stroje, různé dávky vstupního materiálu, různí dodavatelé apod.). Uvažujme, že sledujeme výkonnost procesu po takovou dobu, že výsledná data lze popsat jako směs dvou normálních rozdělení N(µ i, σ ), i =,, tedy hustota směsi je h(x) = αf (x) + (-α)f (x), kde f i ( ) je hustota normálního rozdělení N(µ i, σ ). Předpokládejme, že parametr rozptylu σ je pro jednoduchost konstantní v čase, ale parametry polohy µ a µ a rovněž i parametr směsi α se mohou měnit v čase. Takový proces je zřejmě nestabilní v čase. Jeho střední hodnota a rozptyl jsou E { X} = αµ + ( α) µ, { } = σ + α µ + ( α) µ ( E{ X} ), D X pokud složky směsi budeme považovat za nezávislé, což je v praxi přijatelné. Z tohoto procesu odebereme náhodný výběr x, x,..., x N a budeme sledovat co dělá odhad totální směrodatné odchylky σˆ TOT = N N j= (xi x) Pokud výběr bude složen z podílu [αn] ze složky N(µ, σ ) a zbytek z druhé složky N(µ, σ ) a poměr obou složek bude pro každé N zachována, pak lze ukázat, že σˆ D{ X}. TOT N Na základě toho by ukazatel výkonnosti procesu P p měl mít hodnotu P p USL LSL = 6 D{ X}. Je ale vidět, že jeho hodnota silně závisí α, µ, µ a správně bychom odhadovali jeho hodnotu jedině tehdy, když tyto parametry by byly konstantní v čase a náhodný výběr by respektoval poměr zastoupení složek směsi. Z tohoto jednoduchého příkladu ihned plyne, že vlastně obecně nevíme, co odhad ukazatele P p říká, protože ve statistické analýze se nemůžeme opřít o nějaký konkrétní model, /.

pokud proces nevykazuje stabilitu v čase. Kdy lze tedy ukazatele výkonnosti použít? Mají smysl jedině tehdy, když získaná data bez ohledu na podskupiny lze popsat nějakým rozdělením pravděpodobnosti, např. normálním. Tento předpoklad je důležitý proto, aby bylo možno stanovit např. konfidenční interval pro hodnotu ukazatele nebo provést statistický test nějaké hypotézy o hodnotě ukazatele. Pouze vlastní hodnota odhadu ukazatele výkonnosti bez vhodného statistického modelu neříká de facto nic. Literatura: [] Kotz. S., Lovelace C. R.: Process Capability Indices in Theory and Practice. Arnold, London (998). [] AIAG - Chrysler, Ford, General Motors. (QS-9000 - Statistical Process Control (. vydání, 005). Adresa autora: RNDr. Jiří Michálek, CSc., Ústav teorie informace a automatizace AV ČR Praha, Oddělení stochastické informatiky, Pod vodárenskou věží 4, 8 08 Praha 8. e-mail: michalek@utia.cas.cz Tato práce byla vytvořena za podpory projektu MŠMT M06047 - CQR