Struktura a architektura počítačů (BI-SAP) 3

Podobné dokumenty
5. Sekvenční logické obvody

3. Sekvenční logické obvody

Struktura a architektura počítačů (BI-SAP) 4

Sekvenční logické obvody

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti


Návrh synchronního čítače

Y36SAP 2007 Y36SAP-4. Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač

LOGICKÉ OBVODY X36LOB

Struktura a architektura počítačů

Struktura a architektura počítačů (BI-SAP) 10

Logické obvody 10. Neúplné čítače Asynchronní čítače Hazardy v kombinačních obvodech Metastabilita Logické obvody - 10 hazardy 1

SEKVENČNÍ LOGICKÉ OBVODY

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky...

Logické obvody - sekvenční Formy popisu, konečný automat Příklady návrhu

Návrh ovládání zdroje ATX

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Logické obvody - sekvenční Formy popisu, konečný automat Příklady návrhu

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Obsah DÍL 1. Předmluva 11

Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011

Návrh asynchronního automatu

Registry a čítače část 2

4. Elektronické logické členy. Elektronické obvody pro logické členy

Cíle. Teoretický úvod

Návrh čítače jako automatu

Úloha 9. Stavové automaty: grafická a textová forma stavového diagramu, příklad: detektory posloupností bitů.

Struktura a architektura počítačů

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace

CO JE STAVOVÝ AUTOMAT

Struktura a architektura počítačů (BI-SAP) 5

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Otázka 10 - Y36SAP. Zadání. Logické obvody. Slovníček pojmů. Základní logické členy (hradla)

Technická kybernetika. Obsah. Klopné obvody: Použití klopných obvodů. Sekvenční funkční diagramy. Programovatelné logické automaty.

ASYNCHRONNÍ ČÍTAČE Použité zdroje:

2. Synchronní číslicové systémy

LOGICKÉ SYSTÉMY PRO ŘÍZENÍ

PROGRAMOVATELNÉ LOGICKÉ OBVODY

Konvolučníkódy. MI-AAK(Aritmetika a kódy)

... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu

Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011

Logické řízení. Náplň výuky

Logické funkce a obvody, zobrazení výstupů

Sekvenční logické obvody

Projekt Pospolu. Sekvenční logické obvody Klopné obvody. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych.

Číslicové obvody základní pojmy

7. Popis konečného automatu

Typy a použití klopných obvodů

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Sylabus kurzu Elektronika

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Hardwarová realizace konečných automatů

VY_32_INOVACE_CTE_2.MA_19_Registry posuvné a kruhové. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

Testování a spolehlivost. 1. Laboratoř Poruchy v číslicových obvodech

Konečné automaty (sekvenční obvody)

BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2

Struktura a architektura počítačů (BI-SAP) 11

BDIO - Digitální obvody

KOMBINAČNÍ LOGICKÉ OBVODY

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Logické systémy a jejich návrh

OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Organizace předmětu, podmínky pro získání klasifikovaného zápočtu

Testování sekvenčních obvodů Scan návrh

Logické obvody. Přednáška 6. Prof. RNDr. Peter Mikulecký, PhD.

11. Logické analyzátory. 12. Metodika měření s logickým analyzátorem

PODPORA ELEKTRONICKÝCH FOREM VÝUKY

Struktura a architektura počítačů (BI-SAP) 6

Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.

VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola a Střední odborné učiliště, Dubno

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD

Klopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač

Kombinační automaty (logické obvody)

Způsoby realizace této funkce:

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Úvod do informačních technologií

1 z :27

LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení

TECHNICKÝ POPIS MODULU GRAFIK =============================

Cíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky Sekvenční logika - debouncer, čítače, měření doby stisknutí tlačítka Student

Úvod do informačních technologií

Návod k obsluze výukové desky CPLD

mové techniky budov Osnova Základy logického Druhy signálů

2.9 Čítače Úkol měření:

Násobení. MI-AAK(Aritmetika a kódy)

Maturitní témata oboru: L/01 MECHANIK ELEKTROTECHNIK. Automatizované systémy řízení

VY_32_INOVACE_CTE_2.MA_18_Čítače asynchronní, synchronní. Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Projekt: Přístupový terminál

NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

Transkript:

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii ČVUT v Praze letní semestr 2010-11

BI-SAP 3: osnova Logické obvody sekvenční Formy popisu Příklady návrhu 2

Kombinační x sekvenční obvody Kombinační vystup je dán kombinací vstupů, nezáleží na čase Sekvenční výstup závisí na posloupnosti (sekvenci) hodnot na vstupech, realizuje se tzv. zpětnou vazbou Vše lze matematicky popsat Logická funkce f (Booleova algebra) Konečný automat FSM (Finite State Machine) 3

Kombinační funkce Kombinační funkce: out k = f(i 1, i 2, i 3, i p ), k=1,2,,m i 1 i 2 i 3 i p f out 1 out 2 out m 4

Sekvenční chování Sekvenční logický obvod?? X(t-i)... X(t-1) X(t) Y(t) = f(x(t), X(t-1),..., X(t-i)) 5

Obecný (Huffmannův) model sekvenčního obvodu X i Y j Q k Sekvenční obvod CLK 6

X Y Sekvenční logický obvod konečný automat - FSM Množina možných kombinací hodnot vstupních proměnných KA; př: 3 vstup. prom. => X obs. 2 3 =8 možných kombinací Množina možných kombinací výstupních hodnot KA Q Q 0 Množina možných kombinací hodnot vnitřních proměnných KA (množina stavů) δ λ Počáteční stav (kombinace hodnot vnitřních proměnných KA v počátečním stavu) Stavově přechodová funkce: δ : X x Q Q definuje příští stav KA Výstupní funkce: λ : a) X x Q Y typ Mealy b) Q Y typ Moore 7

Moore: state-based X Komb 1 FF Komb 2 Y Q Mealy: input-based X Komb 1 FF Komb 2 Y Q 8

Postup návrhu sekvenčního obvodu 1. Slovní popis 2. Graf přechodů 3. Tabulky přechodů a výstupů 4. Zakódování vstupů, výstupů a vnitřních stavů 5. (Zakódované tabulky přechodů a výstupů) 6. Minimalizace výrazů pro budící vstupy vybraného typu klopných obvodů (mapy) 7. Minimalizace výrazů pro výstupní funkce 8. Realizace z (předepsaného typu) hradel 9. Výpočet hodinové frekvence 9

Graf přechodů (STG) Uzly: vnitřní stavy Hrany: ohodnoceny vstupem a výstupem v daném stavu, pro automat Moora jen vstupem, výstup je přiřazen ke stavu Vnitřní stav Vstup/výstup vstupní symbol /výstupní symbol Čím více vstupů, tím větší větvení grafu Symb. název Podle zadání může být vše (i vstupy a výstupy) v symbolické formě. 10

Čítač M3 modulo 3 Typ Moore Reakce na vstup viditelná až při přechodu do dalšího stavu vstup čítače výstupy čítače vstup čítače výstupy čítače zakódovaný vnitřní stav čítače Typ Mealy Reakce na vstup viditelná ihned Obecně různé zakódovaný vnitřní stav čítače 11

Příklad 1 Navrhněte SSO se dvěma vstupy a, z a jedním výstupem b, který bude převádět sériově vstupující binární číslo A v doplňkovém kódu na číslo B opačné k A. A vstupuje nejnižším řádem napřed, z indikuje začátek čísla A. (jestliže je z=1, na vstupu je nejnižší řád A). Poznámka: automat není iniciální 12

Řešení a A= 01100110100 A =10011001011 +1 B= 10011001100 z Sériový převodník na opačné číslo v doplňkovém kódu b 13

Graf přechodů A opisuj B invertuj Mealy nebo Moore??? 14

Tabulka přechodů a výstupů az Q next 00 01 11 10 A A A B B B B A B B b 00 01 11 10 A 0 0 1 1 B 1 0 1 0 15

Kódování vnitřních stavů (vstupy a výstup už zakódované jsou) Q next 00 01 11 10 A A A B B B B A B B b 00 01 11 10 A 0 0 1 1 B 1 0 1 0 2 stavy pro rozlišení stačí 2 bity, např. A 0, B 1 Q next 00 01 11 10 0 0 0 1 1 1 1 0 1 1 16

Realizace pomocí hradel a klopných obvodů. Q next 00 01 11 10 0 0 0 1 1 1 1 0 1 1 Co je klopný obvod??? b 00 01 11 10 0 0 0 1 1 1 1 0 1 0 17

Klopné obvody - asynchronní = Klasické zapojení asynchronního R-S klopného obvodu RS Q Y 1 1 0 0!!! 1 0 0 1 0 1 1 0 0 0?? - závisí na předchozím stavu 18

Klopné obvody - asynchronní Podobné chování má obvod složený z hradel NAND: Jde o asynchronní R-S klopný obvod s inverzními vstupy, pamatuje při vstupech 11 a při kombinaci 00 závisí na předchozím stavu, 0 na S nastavuje Q do 1. 19

Klopné obvody - úrovňové Výhodnější použití 4 NAND 20

Zakázaný stav... 1 0 1 1 0 1 1 21

Zakázaný stav... 1 1 101? 1 1 110? 0 22

Klopné obvody hranové (Master Slave) 23

... použití D - klopných obvodů D Q(next) 0 0 Q(next) = D 1 1 Q Q(next) D 0 0 0 0 1 1 1 0 0 1 1 1 24

Rozdíl v chování hladinového a hranového D-KO Poznámka: Klopný, též někdy paměťový obvod, angl. často jen latch nebo FF 25

Příklad 2 Navrhněte SSO s jedním vstupem x a jedním výstupem y, který bude detekovat zda jsou v tříbitových vstupních posloupnostech binární čísla 4 nebo 5. Počáteční podmínky na vstupu je nejnižší řád prvního tříbitového čísla. Poznámka1: automat je iniciální 26

Graf přechodů 1/0 0/0 2 A 1/0 0/0 1/1 0/0 2 B 1/0 0/0 2 C D 27

Další postup 2. Z grafu tabulky pro přechodovou a výstupní funkci 3. Kódování a zakódované tabulky 4. mapy, 5. minimalizace 6. budící funkce pro vstupy klopných obvodů a pro výstupy 7. realizace 8. časování výpočet maximální hodinové frekvence 28

2. Tabulka přechodů a výstupů 3. Zakódování vnitřních stavů, např.: 4. X 0 1 0 1 b a A B B 0 0 A 0 0 B D C 0 0 B 0 1 C A A 0 0 C 1 1 D A A 0 1 D 1 0 1 0 0 0 1 1 0 0 D a = ab + bx a b b a 0 1 0 0 0 1 0 0 X D b = ab X Zakódovaná tabulka přechodů a výstupů 0 1 0 1 00 01 01 0 0 01 10 11 0 0 11 00 00 0 0 10 00 00 0 1 0 0 0 0 0 0 0 1 Y = abx a b 29

Schema podle funkcí: D a = ab + bx D b = ab Y = abx X a b a b b a Y CLK 30

časování výpočet maximální Záleží na: Technologii Typu hradel Počtu vstupů hodinové frekvence Větvení Klopných obvodech (v podstatě nyní jen D- KO) Délce spojů (vodičů) Návrhové systémy 31

Na dalších snímcích: Tabulka 1: knihovna základních hradel Tabulka 2: standardní logická hradla s více vstupy Popis tabulky (technologie CMOS): Název hradla grafický symbol funkce Cena (počet transistorů) Zpoždění normalizované (ns) 32

33

34

Časování klopného obvodu Clk D Q Setup Hold D Don t Care Don t Care Q Unknown Clock-to-Q Předstih (Setup Time): vstup musí být stabilní (ustálený) PŘED aktivní hodinovou hranou Přesah (Hold Time): vstup musí zůstat stabilní (ustálený) PO aktivní hodinové hraně Zpoždění klopného obvodu (Clock-to-Q time): doba mezi přechodem aktuálních dat z D na Q odvozená od aktivní hrany hodin 35

Maximální hodinová frekvence Clk...... Combination Logic...... Všechny klopné obvody jsou řízeny stejnou hodinovou frekvencí Kombinační logické bloky: Vstupy jsou aktualizovány při každém taktu Všechny výstupy kombinační části musí být stabilní (nastaveny na správnou hodnotu) před dalším taktem 36

Kritická cesta Wx-y Wf-y Wx-f Wf-f CLK 37

Hodinová frekvence=1/maxwi-j Wx-f : ze vstupu X na vstup KO, zpoždění na hradlech + nestabilita vstupů + předstih Wf-y : výstup KO výstup Y, zpoždění na hradlech + zpoždění KO + požadavek na stabilitu výstupu Wx-y : ze vstupu X na výstup Y, zpoždění na hradlech + nestabilita vstupů + požadavek na stabilitu výstupu Wf-f : mezi dvěma KO, zpoždění na hradlech + předstih + zpoždění KO (Clock-to-Q) 38

Schema z příkladu 2 X a b a b b a Y CLK 39

X a 1 1 b 1,4 1,4 1+3 a 1,4 b a 1,4 1,8 1 1 1+3 b Y Wx-f = 2,8 + 1 Wf-y = 3 + 3,8 Wx-y = 2,8 Wf-f = 1 + 3 + 3,8 f max = 1/7,8ns = 128 MHz CLK Clock-to-Q =3 Setup = 1 40

Mealy Moore Uzly grafu, do něhož vstupují hrany ohodnocené stejným výstupním symbolem ponecháme Každý uzel, který nemá uvedenou vlastnost nahradíme tolika uzly, kolika výstupními symboly jsou ohodnoceny hrany do něho vstupující Připojíme vstupní a výstupní hrany, uzly ohodnotíme příslušnými výstupními symboly 41

Příklad: Mealy Moore 1/0 0/0 2 2 A B 1/0 0/0 1/0 0/0 1/1 0/0 2 0,1 A 0 /0 A 1 /1 0,1 2 2 B/0 2 1 0 0,1 1 C D C/0 D/0 Poznámka: indikace správné posloupnosti bude opožděná 0 42

Moore Mealy Nejlépe z tabulky přechodů a výstupů jde jen o přiřazení výstupu podle následného stavu (výstup má reagovat na vstup dříve): 43

Moore A: X/Q X1 X2 o Q1 Q3 Q1 Y3 Q2 Q1 Q2 Y1 Q3 Q2 Q3 Y2 Mealy A : Q\X X1 X2 X1 X2 Q1 Q3 Q1 Y2 Y3 Q2 Q1 Q2 Y3 Y1 Q3 Q2 Q3 Y1 Y2 44