DYNAMIKA ROTAČNÍ POHYB



Podobné dokumenty
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

11. Dynamika Úvod do dynamiky

MECHANIKA TUHÉHO TĚLESA

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Dynamika. Dynamis = řecké slovo síla

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství M/01 Vytvořeno listopad 2012

Test jednotky, veličiny, práce, energie, tuhé těleso

1 Tuhé těleso a jeho pohyb

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

ELEKTRICKÉ STROJE - POHONY

TŘENÍ A PASIVNÍ ODPORY

F - Mechanika tuhého tělesa

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Mechanika tuhého tělesa

Příklad 5.3. v 1. u 1 u 2. v 2

Úvod. 1 Převody jednotek

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

Digitální učební materiál

Ing. Oldřich Šámal. Technická mechanika. kinematika

Fyzika - Kvinta, 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Fyzikální učebna vybavená audiovizuální technikou, fyzikální pomůcky

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Hydromechanické procesy Hydrostatika

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Digitální učební materiál

Dynamika soustav hmotných bodů

BIOMECHANIKA KINEMATIKA

6. MECHANIKA TUHÉHO TĚLESA

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Dynamika vázaných soustav těles

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

Měření momentu setrvačnosti

Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla

Rychlost, zrychlení, tíhové zrychlení

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

Dynamika hmotného bodu

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

7. Gravitační pole a pohyb těles v něm

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Mechanika - síla. Zápisy do sešitu

Kinematika pístní skupiny

Literatura: a ČSN EN s těmito normami související.

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

Práce, energie a další mechanické veličiny


1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Základy fyziky + opakovaná výuka Fyziky I

4. Statika základní pojmy a základy rovnováhy sil

BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

5. Mechanika tuhého tělesa

Testovací příklady MEC2

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

Příklady z hydrostatiky

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

Příklady z teoretické mechaniky pro domácí počítání

Rotační pohyb kinematika a dynamika

Veličiny charakterizující geometrii ploch

1 Rozdělení mechaniky a její náplň

Moment síly Statická rovnováha

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

V roce 1687 vydal Newton knihu Philosophiae Naturalis Principia Mathematica, ve které zformuloval tři Newtonovy pohybové zákony.

Momenty setrvačnosti a deviační momenty

Koncept tryskového odstředivého hydromotoru

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

2. Dynamika hmotného bodu

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

1. Pro rovnoměrný přímočarý pohyb platí: A) t=s/v B) v=st C) s=v/t D) t=v/s 2. Při pohybu rovnoměrném přímočarém je velikost rychlosti:

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

Kinematika hmotného bodu

4. Práce, výkon, energie a vrhy

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

Proč funguje Clemův motor

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy

Transkript:

DYNAMIKA ROTAČNÍ POHYB

Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu) působí na hmotný bod odstředivá síla, která je reakcí k síle dostředivé - aby se bod pohyboval po kružnici musí dostředivá síla hmotnému bodu udílet stálé dostředivé neboli normálové zrychlení do středu pohybu; - jak bylo vysvětleno v části Kinematika, při rovnoměrném rotačním pohybu bodu mění obvodová rychlost pohybu neustále svůj směr a postupně otáčí ke středu otáčení;

Dynamika rotačního pohybu hmotného bodu kolem pevné osy -z toho plyne, že rotující hmotný bod je neustále urychlován do středu kružnice a proto při rotačním pohybu bodu mu musí být udělováno směrem ke středu zrychlení nazývané dostředivé nebo normálové zrychlení a n, protože působí ve směru normály pohybu; -v Kinematice byl odvozen vztah v závislosti : v je obvodová rychlost hmotného bodu ω je úhlová rychlost hmotného bodu; - obvodová rychlost je vπ.d.n 2π.R.n, kde n[s -1 ] jsou otáčky hmotného bodu,d [m] je průměr dráhy pohybu a R [m] je poloměr dráhy

Dynamika rotačního pohybu hmotného bodu kolem pevné osy - úhlová rychlost hmotného bodu je ω2π.n (s -1 ) - po dosazení za v a ω dostaneme vztah a n 2 [ m ] v R ω s R 2 2 F m m R ω [ N ] - síla odstředivá C n je dle třetího Newtonova zákona reakcí dostředivé síly; a 2

Dynamika rotačního pohybu hmotného bodu kolem pevné osy m F c F d a n - u rotačního pohybu hmotného bodu kolem stálé osy musíme rozlišit případ rotace stálými otáčkami kolem svislé a vodorovné osy;

Rotační pohyb hmotného bodu kolem svislé osy - rotace ve vodorovné rovině - působení odstředivé síly - ve svislém směru působí stálá tíhová síla - například průjezd vozidla zatáčkou

Příklad : Průjezd vozidla zatáčkou Vypočtěte, jak velkou rychlostí může projet automobil o hmotnosti 1000 kg vodorovnou neklopenou zatáčkou o poloměru 25 m, jestliže rozchod kol je 1400 mm, těžiště vozidla je 800 mm nad vozovkou a součinitel smykového tření je 0,2.

Rotační pohyb hmotného bodu kolem vodorovné osy - při rotaci hmotného bodu ve svislé rovině kolem pevné osy stálou úhlovou rychlostí působí odstředivá síla vždy ze středu otáčení ve směru normály ; - neustále se měnící se směr odstředivé síly způsobuje, že výsledná síla působící na hmotný bod (je dána vektorovým součtem odstředivé a gravitační síly, viz obr) s úhlem natočení a mění svůj směr i velikost; - pak výsledná síla je 2 2 F F + G + 2 F G cosα V C - například rotace tělesa kolem pevné vodorovné osy, centrifuga nebo přejezd vozidla přes terénní nerovnosti C

Rotační pohyb hmotného bodu kolem vodorovné osy - aby se bod udržel na kruhové dráze (např. lano stále napnuto, voda nevyteče z nádoby): horní poloha : F C G m.r. ω 2 m.g

Zadání příkladu : Nádoba s vodou se otáčí ve svislé rovině v kruhu o poloměru 800 mm. Určete nejmenší počet otáček, aby voda z nádoby nevytékala.

Zadání příkladu : Na vodorovné desce leží ve vzdálenosti R 300 mm od středu otáčení těleso o hmotnosti m 20 kg. Určete max. otáčky, nemá-li těleso z desky sklouznout (f 0,1).

Rotující deska

Zadání příkladu : Jeřábový vozík s břemenem o hmotnosti m 300 kg zavěšeným na laně o délce l 5 m se náhle zastaví při dopravní rychlosti v 2 m/s. Určete vzdálenost x, do jaké se vychýlí břemeno následkem setrvačnosti.

v 5 m m z x

Příklad : Průjezd moto zatáčkou Vypočtěte, s jakým sklonem může projet motocyklista vodorovnou neklopenou zatáčkou o poloměru 20 m. Hmotnost motocyklu s řidičem je 200 kg, těžiště motocyklu je b 800 mm nad vozovkou a součinitel smykového tření je 0,2.

Dynamika - rotační pohyb tělesa představme si pohyb plného dokonale tuhého rotujícího válce kolem pevné osy způsobený kroutícím momentem; celý válec rozdělíme na části stejné hmotnosti m;

Dynamika rotační pohyb tělesa pokud je osa rotace v těžišti, můžeme zanedbat tíhu hmotných elementů, protože se dynamický účinek tíhy vyruší; při uložení válce v jeho těžišti, se odstředivé síly F C a dostředivé síly F d všech elementárních částí tělesa vyruší, nebo-li jsou v rovnováze;

Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová síla F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment:

Dynamika - rotační pohyb tělesa -tečná nebo-li obvodová sila F t je způsobena momentem M a způsobuje zvyšování obvodové rychlosti elementu a tím také otáček válce; -pak M F t.r, po dosazení za sílu z druhého pohybového zákona dostaneme M m.a t.r a pokud dosadíme za tečné zrychlení vztah a t r.ε, získáme výraz pro elementární kroutící moment M m.r.ε.r m.r 2.ε.; -nyní sečteme všechny dílčí kroutící momenty všech částí válce a získáme celkový zrychlující moment: M n i 1 M i n i 1 m i r 2 i ε ε n i 1 m i r 2 i

Dynamika - rotační pohyb tělesa -kde vztah I o n i 1 m i r i 2 je moment setrvačnosti hmoty tělesa k ose rotace a má jednotky [kg.m 2 ] -zrychlující moment: M I o. ε vztah je analogický druhému pohybovému zákonu o zrychlující síle u přímočarého pohybu F m. a;

Dynamika - rotační pohyb tělesa -pohybová rovnice rotačního pohybu má tvar M n K I0 ε M Pi 0 i 1, kde M K [N.m] je hnací moment, I 0 [kg.m 2 ] je moment setrvačnosti tělesa, ε [s -2 ] je úhlové zrychlení tělesa, M Pi [Nm] je moment odporů při pohybu překonávaných. (například moment čepového tření, vnější zatěžující momenty lan, řemenů, pásů, řetězů, ozubených kol

Dynamika - rotační pohyb tělesa I 0 [kg.m 2 ] - moment setrvačnosti tělesa, - je fyzikálně veličina obdobná kvadratickému momentu plochy (viz Mechanika PP) a pro výpočet momentu setrvačnosti platí obdobné principy jako pro stanovení kvadratického momentu plochy; -momenty setrvačnosti dílčích hmot (těles) I 01, I 02, I 03, až I 0n lze algebraicky sčítat nebo odčítat ; -moment setrvačnosti hmoty, jejíž těžiště neleží na ose rotace o se počítá pomocí Steinerovy věty, která zní: moment setrvačnosti hmoty tělesa k ose neprocházející jeho těžištěm (osa o ) se rovná momentu setrvačnosti hmoty tělesa k ose procházející těžištěm tohoto tělesa (osa o T ) rovnoběžné s osou o, zvětšenému o součin hmotnosti tělesa a druhé mocniny vzdálenosti obou os;

Dynamika - rotační pohyb tělesa I + T I m a 0 0 2 m T o T a o

Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

Dynamika - rotační pohyb tělesa - moment setrvačnosti válce k jeho ose z materiálu o hustotě ρ [kg.m -3 ] je: I O π 4 D B 32 ρ D [m] je průměr válce, B [m] je výška válce, -moment ; setrvačnosti hranolu o rozměrech a x b x c k jeho ose rovnoběžné s rozměrem c a procházející těžištěm: ( 2 2 ) a b c a b I + O 12 ρ

Dynamika - rotační pohyb tělesa -moment setrvačnosti kužele k jeho ose z materiálu o hustotě ρ [kg.m -3 ] I O π 4 D H 160 ρ D [m] je průměr kužele H [m] je výška kužele ;

Příklad : moment setrvačnosti tělesa Vypočtěte moment setrvačnosti součásti dle obr. z oceli o hustotě 7850 kg.m -3 k ose o T, jestliže D 1 320 mm, D 2 80 mm, D3 40 mm, h 1 40 mm a h 2 30

Příklad : moment setrvačnosti kliky Vypočtěte moment setrvačnosti kliky dle obrázku z materiálu o hustotě 7850 kg.m -3 k ose rotace, jestliže D 200mm, d 1 60mm, d 2 30mm, a 50mm, b 40mm a výstřednost e 75mm. Dále vypočtěte velikost kroutícího momentu, jestliže se roztáčí rovnoměrně zrychleně působením stálého kroutícího momentu z klidu a za 30 s setrvačník dosáhne otáček 300 min -1.

Impulsové věty první impulsová věta řeší přímočarý pohyb tělesa - je odvozena z druhého Newtonova pohybového zákona - zákona zrychlující síly, tj. Fm.a; vztah Fm.a vynásobíme přírůstkem času t a pak dostaneme: kde účinku síly; m F t v I H F m m, se nazývá impuls síly a je mírou časového, se nazývá změna hybnosti hmoty; první impulsová věta zní: Impuls síly se rovná změně hybnosti hmoty t a t v

Impulsové věty uvádíme-li těleso do pohybu z klidu, pak impuls síly se rovná hybnosti hmoty z nulové počáteční rychlosti a dostaneme vztah F t m v U druhé impulsové věty vyjdeme ze zrychlujícího momentu M k I O a opět vynásobíme časem ε t M k t I O ε t I O ω

Impulsové věty druhá impulsová věta zní: Impuls momentu se rovná změně momentu hybnosti M k t L se nazývá impuls momentu; I 0 ω b se nazývá změna momentu hybnosti;. pro pohyb z klidu dostaneme vztah M k t I O ω

Příklad : impulsová věta Jak dlouho musí působit na ocelový kotouč o hustotě 7850 kg.m -3, průměru 500mm a tloušťce 50 mm kroutící moment 50 N.m, aby kotouč získal z klidu otáčky 1500 min-1.

Mechanická práce mechanickou práci konáme, překonáváme-li odpory silou působící po určité dráze. Velikost mechanické práce je rovna součinu síly působící na hmotný bod a dráhy hmotného bodu ve směru síly; pak W F s [ J ], kde F[N] je hnací síla ve směru dráhy pohybu tělesa a s[m] je dráha pohybu tělesa;. jednotkou mechanické práce je joule [J]; pokud stálá síla působí v nesouhlasném směru k dráze, musíme počítat se složkou síly ve směru dráhy; pro určení velikosti mechanické práce síly proměnné velikosti využíváme grafu F-s, kde plocha grafu je úměrná velikosti práce

Mechanická práce.

Mechanická práce při rotačním pohybu síla F mění neustále svůj směr a tudíž stále působí ve směru dráhy, síla F na dráze odpovídající úhlu natočení ϕ s W R ϕ F R ϕ dosadíme-li za [ N m J ] W M k ϕ vykoná práci. F R M k dostaneme vztah pro práci při rotačním pohybu kde M k [Nm] je kroutící moment, ϕ[rad] je úhlová dráha pohybu tělesa.

Mechanická práce -ke stejnému vztahu dospějeme při odvození práce obvodové síly F za jednu otáčku, kdy dráha je rovna obvodu kružnice o 2 π -pak práce při jedné otáčce R W W 1 F o F 2 π. -celková práce při rotačním pohybu je dána jako práce při jedné otáčce vynásobené počtem otáček, pak. R W i F 2π R i F R 2π 1, kde i počet otáček; dosadíme-li za 2π i ϕ dostaneme i W M ϕ k [ J ]

Příklad : práce při rotačním pohybu Ocelový kotouč o hustotě 7850 kg.m -3 tvaru kotouče o průměru 200 mm a tloušťce 20 mm se roztáčí z klidu a za 20 s získá otáčky 120 min -1. Vypočtěte velikost kroutícího momentu potřebného k rozběhu tělesa a množství vynaložené práce.

Výkon Výkon je mechanická práce vykonaná za jednotku času. P W t W [J] vykonaná mechanická práce t [s] čas konání mechanické práce jednotkou mechanické výkonu watt, který má rozměr.. W J s kg m při přímočarém pohybu můžeme vztah pro výpočet výkonu upravit tak, že za dosadíme za práci a dostaneme P W t F s t F v F[N] - hnací síla ve směru pohybu tělesa, v [m.s -1 ] - rychlost pohybu tělesa (v s/t) 2 s 3

Energie rotačního pohybu 2 po dosazení za m r I n i 1 i i O, což je moment setrvačnosti tělesa, dostaneme vztah pro kinetickou energii rotujícího tělesa ve tvaru I O ω 2 E [ 2 2 J kg m s ] R 2. - rozdíl kinetických energii počáteční a konečné je roven práci zrychlujících sil vynaložené na zvýšení otáček tělesa nebo práci vykonané při snížení jeho otáček (princip práce setrvačníku);. - pak práce daná změnou energie se vypočte ze vztahu I O W E R2 E R1 2 2 ( 2 ω ω 2 ) 1 [ J]

Obecný rovinný pohyb obecný rovinný pohyb je vlastně rotačním pohybem kolem okamžité osy otáčení úhlovou rychlostí ω, respektive kolem pólu otáčení P, kdy osa otáčení (pól) neustále mění svou polohu. valení válce ( jednodušší obecný rovinný pohyb) po vodorovné podložce si lze představit jako současně probíhající pohyb přímočarý. posuvný rychlostí v T a rotační pohyb kolem osy válce procházející jeho těžištěm T úhlovou rychlostí otáčení ω R

Obecný rovinný pohyb celková pohybová energie valivého pohybu je dána jako součet kinetické energie posuvného pohybu tělesa E KP a kinetické energie rotačního pohybu kolem okamžité osy otáčení E R E K 2 m v T I 0 ω + 2 2 2 R. m [kg] - hmotnost tělesa, v T [m.s -1 ] - rychlost posuvného pohybu tělesa; I 0 [kg.m 2 ] - moment setrvačnosti tělesa, ω R [s -1 ] - úhlová rychlost rotačního pohybu tělesa k ose tělesa..

Příklad - obecný rovinný pohyb Jakou pohybovou energii má ocelový válec o hustotě 7850 kg.m -3, průměru 100 mm a délce 500 mm, který se valí po vodorovné rovině stálou rychlostí 5 m.s -1...

Vyvažování Zajištění klidného chodu zařízení je velmi důležité : - stroj bez vibrací a hluku působí z fyziologického hlediska lépe na obsluhu - klidný chod dlouhodobý bezporuchový provoz klesají náklady na opravy, zkracují se prostoje - nevyváženost otáčejících se částí vzniká nerovnoměrným rozložením hmoty součásti. vzhledem o ose rotace - neváženost odstředivé síly chvění Vyvažování rotujících hmot. a) dynamické náročné metody na specielních vyvažovacích strojích na principu pružných rámů (viz VŠ)

Vyvažování rotujících hmot b) statické jednoduché, ale jen na hrubo pomocným vývažkem při konstrukci účinek odstředivé síly otáčející se hmoty nevyvážené části tělesa F C vyrušíme odstředivou silou jiné rotující hmoty F V,tak zvaného. vývažku;. podmínkou takovéhoto způsobu vyvážení je, že síly F C a F V musí být v rovnováze n Fi 0 F F 0 F F i 1 C V C V

.. Vyvažování rotujících hmot úhlová rychlost rotačního pohybu tělesa i vývažku musí být stejná 2 ω R m F C 2 ω V V V R m F V V V V V C R m R m R m R m F F 2 2 ω ω

1) volíme poloměr dráhy rotačního pohybu vývažku a počítáme hmotnost vývažku.. Vyvažování rotujících hmot Možnosti výpočtu : V V V V m m R R R m R m V V V V R R m m R m R m 2) zvolíme hmotnost vývažku a vypočítáme poloměr dráhy rotačního pohybu

Příklad - vyvažování rotujících hmot Navrhněte rozměry vývažku tvaru válce (o průměru D V a výšce H V ) u součásti dle obrázku, jestliže nevyvážená hmota má také tvar válce o průměru D1 40mm a výšce H1 50mm. Součást je z materiálu o hustotě 7850kg.m -3 a má otáčky 600min -1. Těžiště nevyvážené hmoty se pohybuje o. kružnici o poloměru R 120mm, poloměr dráhy vývažku je R V 150mm a průměr vývažku je D V 50mm..