4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá
Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný a konstantní rozptyl = homoskedasticita porušení: heteroskedasticita náhodné složky jsou sériově nezávislé porušení: autokorelace 3. X je nestochastická matice E(X T u) = veškerá náhodnost je obsažena v náhodné složce 4. X má plnou hodnost k matice X neobsahuje žádné perfektně lineárně závislé sloupce pozorování vysvětlujících proměnných porušení: multikolinearita
3 Autokorelace obecně dle předpokladu mají být nediagonální prvky matice E(uu T ) nulové porušení předpokladu nediagonální prvky autokorelace náhodné složky u t nejsou sériově nezávislé závislost mezi hodnotami jedné proměnné náhodnou složku lze modelovat pomocí její předchozí hodnoty (ev. hodnot): u t = ρ* u t-1 + ε t n u u I ) E( T σ σ σ σ σ
Autokorelace příčiny a důsledky Příčiny setrvačnost ekonomických veličin (zejm. případ ČR) chybná specifikace modelu (specifikační chyba se stává součástí náhodné složky) chyby měření vysvětlované proměnné jsou zahrnuty do náhodné složky modelu odhad modelu z dat obsahující zpožděné, zprůměrované, vyrovnané, intra nebo extrapolované proměnné Důsledky odhady β zůstávají nevychýlené a konzistentní odhady β nejsou vydatné ani asymptoticky vydatné odhady β nemají minimální rozptyl vychýlené odhady rozptylu modelu (sigma) a směrodatných chyb bodových odhadů (s bi ) intervaly spolehlivosti nejsou směrodatné statistické testy ztrácejí na síle 4
Test autokorelace 1. řádu koeficient autokorelace testování vztahu: u t = ρ*u t-1 + ε t, t = 1,,,T ρ je z intervalu <-1,1> ρ je koeficient autokorelace ε t je normálně rozdělená náhodná složka vztah: náhodné složky jsou generovány stacionárním autoregresním stochastickým procesem prvního řádu (AR1) Vyhodnocení koeficientu ρ ρ > pozitivní autokorelace ρ < negativní autokorelace ρ = sériová nezávislost náhodných složek / autokorelace neexistuje Testovaná hypotéza H : rezidua mají zcela náhodný charakter, tj. ρ = (sériová nezávislost nezávislost náhodných složek / autokorelace neexistuje) H 1 : rezidua nemají zcela náhodný charakter, tj. ρ 5
Test autokorelace 1. řádu grafický test Graficky graf vývoje reziduí v čase e t systematický průběh negativní AK e t nesystematický průběh nepřítomnost AK e t systematický průběh pozitivní AK t t t graf vztahu reziduí a zpožděných reziduí e t e t nezávislost ρ = pozitivní autokorelace ρ = 1 e t e t -1 e t -1 e t -1 negativní autokorelace ρ = -1 6
Test autokorelace 1. řádu d-statistika nejznámější test: Durbin-Watsonova d-statistika tj. hodnota Durbin- Watson stat ve výstupu EViews hodnoty u t nejsou známy, proto se vychází z jejich odhadu tj. z reziduí e t testuje se vztah: e t = r*e t-1 + v t,kde r je odhad ρ, značíme ρˆ platí ρˆ r 1 ( d / ) d T t ( e t T t 1 e e t ) t 1 d-statistika: symetrické rozdělení <,4> se střední hodnotou závisí na: n = počet pozorování k = počet vysvětlujících proměnných α = hl. významnosti - hodnoty d tabelovány pro 5 % Testovaná hypotéza H : rezidua mají zcela náhodný charakter, tj. ρ = H 1 : rezidua nemají zcela náhodný charakter, tj. ρ 7
Test autokorelace 1. řádu d-statistika vypočtenou hodnotu d-statistiky porovnáváme s tabulkovou hodnotou d L a d U a vyhodnotíme dle obrázku index L = lower, index U = upper musí platit: k << n (tj. k ostře menší než n) viz vynechané hodnoty v tabulkách DURBIN_WATSON.pdf (nutnost zvýšit počet pozorování na zjištěnou hodnotu) zóna zóna neprůkaznosti neprůkaznosti pozitivní autokorelace autokorelace neexistuje negativní autokorelace zamítáme H nelze nezamítáme H nelze zamítáme H rozhodnout rozhodnout d L d U 4-d U 4-d L s4 8
Test autokorelace 1. řádu příklad Soubor: CV5_PR1.xls Data: y = reálná mzda, USA 1959-6 x = produktivita práce, USA 1959-6 Zadání: Odhadněte závislost reálné mzdy (y) na produktivitě práce (x). Otestujte autokorelaci: graficky EViews ls y c x series e = resid plot e vykreslím rezidua v čase scat e(-1) e vykreslím rezidua vs. zpožděná rezidua přes koeficient autokorelace EViews ls e e(-1) přes d-statistiku pro α =,5. pro α =,5 zamítám nulovou hypotézu o nepřítomnosti autokorelace v modelu (v modelu je přítomná pozitivní AK) 9
Modifikovaný test autokorelace 1. řádu Durbinovo h Durbinovo h = h-statistika při výskytu zpožděné endogenní proměnné v modelu v roli exogenní proměnné např.: y = f(y t-1, x, x 3,) + u h ( 1, 5* d) n n* 1 s b ( yt 1) h ~ N(,1) při dost velkém n lze užít tabulky t-rozdělení a pracovat s kvantily t-rozdělení (v tabulkách t-rozdělění to je poslední řádek pro n = ): α =,1 h* = kvantil 1,645 α =,5 h* = kvantil 1,96 α =,1 h* = kvantil,576 Testovaná hypotéza H : rezidua mají zcela náhodný charakter, tj. ρ = H 1 : rezidua nemají zcela náhodný charakter, tj. ρ Vyhodnocení např. pro h* = 1,96: 1,96 h 1,96 nezamítám H o neexistenci autokorelace h < 1,96 v modelu je negativní autokorelace h > 1,96 v modelu je pozitivní autokorelace 1
Test autokorelace 1. řádu příklad Soubor: CV5_PR1.xls Data: y = reálná mzda, USA 1959-6 x = produktivita práce, USA 1959-6 Zadání: Odhadněte závislost reálné mzdy (y) na reálné mzdě zpožděné o 1 období (y t-1 ) a produktivitě práce (x). Otestujte autokorelaci přes Durbinovo h (h-statistiku) pro α =,5. EViews ls y c y(-1) x n h ( 1,5* d) 1 n* s b ( yt 1),539 h =,539 > h* = 1,96 pro α =,5 zamítám nulovou hypotézu o nepřítomnosti autokorelace v modelu (v modelu je přítomná pozitivní AK) 11
Test autokorelace 1. řádu příklad Soubor: CV4_PR3.xls Data: HDP = hrubý domácí produkt (v mld. Kč) C = spotřeba (v mld. Kč) I = investice (v mld. Kč) G = vládní výdaje (v mld. Kč) Zadání: Odhadněte závislost HDP na proměnných C a I. Otestujte autokorelaci pro α =,5. EViews Durbin-Watson stat = 1,178 porovnám s d L a d U zóna neprůkaznosti (nelze rozhodnout) 1