4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE
1. Autokorelace - teorie Zopakujte si G-M předpoklady. 1. E(u) = 0 2. E(uu T ) = σ 2 I n 3. X je nestochastická matice 4. X je má plnou hodnost
1. Autokorelace - teorie Druhý předpoklad: týká se kovarianční matice náhodné složky 2. E(uu T ) = σ 2 I n Jsou-li mimo diagonálu kovarianční matice nenulové prvky, je v modelu autokorelace.
1. Autokorelace - teorie V případě autokorelace existuje závislost mezi hodnotami jedné proměnné. Náhodné složky nejsou sériově nezávislé. Například při autokorelaci prvního řádu: u t = ρ u t 1 + ε t, kde ρ je tzv. koeficient autokorelace prvního řádu, -1 < ρ < 1 ε t je normálně rozdělená náhodná složka Pokud: ρ > 0 pozitivní autokorelace ρ < 0 negativní autokorelace ρ = 0 sériová nezávislost
1. Autokorelace - teorie Zdroj: Prezentace Zuzana Dlouhá, http://nb.vse.cz/~figlova/4ek211_5.pdf
1. Autokorelace - teorie Příčiny: Setrvačnost ekonomických veličin Chybná specifikace modelu chyba se stane součástí náhodné složky Chyby měření (promítnou se do náhodné složky) Odhad modelu z dat, která obsahují zpožděné, zprůměrované, extrapolované atd. vysvětlující proměnné Důsledky: Odhady jsou nestranné a konzistentní, ale nejsou vydatné ani asymptoticky vydatné Odhady rozptylu modelu a směrodatných chyb jsou vychýlené (problém - potřebujeme je při testování hypotéz a konstrukci intervalů spolehlivosti)
Makroekonomická data (roční, 1959 až 1994): usa Zdroj: Zouhar, J.: http://nb.vse.cz/~zouharj/zek.html Data: gdp = agregátní hrubý domácí produkt v USA cons = agregátní spotřeba v USA Odhadněte regresi: gdp t = β 0 + β 1 cons t + β 2 t + u t Zjistěte, jestli je v modelu autokorelace.
Uložte si rezidua a podívejte se na jejich graf. Myslíte si, že je v modelu autokorelace? Proc Make residual series 120 E Graph 80 40 0-40 -80-120 1960 1965 1970 1975 1980 1985 1990
Je-li v modelu autokorelace první řádu, pak: u t = ρ u t 1 + ε t, kde ρ je tzv. koeficient autokorelace prvního řádu (při autokorelaci bude různý od nuly) ε t je normálně rozdělená náhodná složka Koeficient autokorelace sice neznáme (protože neznáme náhodné složky), ale můžeme ho zkusit odhadnout z reziduí: e t = r e t 1 + v t e t = 0,46 e t 1 + v t Z výstupu vidíme, že odhad koeficientu autokorelace je významně odlišný od nuly, v modelu asi bude pozitivní autokorelace.
DURBIN-WATSONŮV TEST Testujeme nulovou hypotézu: H 0 : neexistence autokorelace, ρ = 0 H 1 : v modelu je autokorelace, ρ 0 Testová statistika: Získáme v EViews Platí r 1 ( d 2 ) d = t=2 T (e t e t 1 ) 2 T t=1 e 2 t
Platí 0,46 1 ( 1,05 2 )
DURBIN-WATSONŮV TEST Porovnáme s DW tabulkami, potřebujeme přitom znát: n = počet pozorování = 36 k = počet vysvětlujících proměnných = 2 hladinu významnosti - tabulky jsou pro 5 % hladinu významnosti V tabulkách najdeme dolní mez: d L = 1,35 a horní mez d U = 1,59
1,05 0 1,35 1,59 2 2,41 2,65 4 Zdroj: prezentace Zuzana Dlouhá, http://nb.vse.cz/~figlova/4ek211_5.pdf
DURBIN-WATSONŮV TEST Zamítáme nulovou hypotézu o neexistenci autokorelace. V modelu se vyskytuje pozitivní autokorelace. Durbin-Watsonův test nelze použít, pokud je v modelu zpožděná vysvětlovaná proměnná nebo pro testování korelace vyššího než druhého řádu.
BREUSCH GODFREY TEST: Chceme testovat autokorelaci prvního řádu Formulujeme hypotézy: H 0 : neexistence autokorelace H 1 : v modelu je autokorelace Odhadneme model a uložíme rezidua: e t Odhadneme pomocnou regresi, kde vysvětlovaná proměnná je e t, vysvětlující proměnné jsou všechny vysvětlující proměnné z původního modelu a e t-1. Zjistíme R 2 z této regrese. Testová statistika: LM = N R 2 má přibližně chí-kvadrát rozdělení s 1 stupněm volnosti
BREUSCH GODFREY TEST: View Residual Test Serial Correlation LM test V našem případě děláme regresi e t = β 0 + β 1 cons t + β 2 t + β 3 e t 1 + v t LM = N R 2 = 36 0,233748 = 8,41
Nyní odhadněte regresi: gdp t = β 0 + β 1 cons t + β 2 gdp t 1 + u t Zjistěte, jestli je v modelu autokorelace. V modelu je zpožděná endogenní proměnná, nemůžeme použít DW statistiku.
BREUSCH GODFREY TEST View Residual Test Serial Correlation LM test
2. Autokorelace - příklad 2 Makroekonomická data (čtvrtletní, 1980 až 2004): Makro.wf1 Zdroj: Zouhar, J.: http://nb.vse.cz/~zouharj/zek.html Odhadněte regresi: output t = β 0 + β 1 inc t + β 2 cons t + u t Zjistěte, jestli je v modelu autokorelace (graf, DW test, BG test).
1. Autokorelace - příklad 2 Asi jste zjistili, že je modelu autokorelace. Odstraníme ji dvěma možnými způsoby. COCHRANE-ORCUTT 1. Máme model: output t = β 0 + β 1 inc t + β 2 cons t + u t Víme, že: u t = ρ u t 1 + ε t, kde ε t je náhodná složka vyhovující G-M předpokladům 2. Vyjádříme si model v čase t - 1: output t 1 = β 0 + β 1 inc t 1 + β 2 cons t 1 + u t 1 3. Rovnici z bodu 2. vynásobíme ρ: ρ output t 1 = ρ β 0 + ρ β 1 inc t 1 + ρ β 2 cons t 1 + ρ u t 1 4. Rovnici z bodu 3. odečteme od rovnice z bodu 1 a dostaneme: (output t ρ output t 1 ) = β 0 (1 ρ) + β 1 (inc t ρ inc t 1 ) + + β 2 cons t ρ cons t 1 + (u t ρ u t 1 ) 5. To můžeme odhadnout MNČ, protože (u t ρ u t 1 ) = ε t, která vyhovuje G-M předpokladům
1. Autokorelace - příklad 2 COCHRANE-ORCUTT Je to iterativní procedura. Není bohužel v Eviews automaticky implementovaná (je např. v Gretlu), ale můžeme postupovat například takto: Z reziduí odhadneme ρ: e t = 0,75 e t 1 + v t Odhadneme model: (output - 0.75*output(-1)) (1-0.75) (inc - 0.75*inc(-1)) (cons - 0.75*cons(-1))
1. Autokorelace - příklad 2 NELINEÁRNÍ NEJMENŠÍ ČTVERCE output t = β 0 + β 1 inc t + β 2 cons t + ρ(output t 1 β 0 β 1 inc t 1 β 2 cons t 1 ) + v t V Eviews: output c inc cons AR(1)
Na doma: Co byste měli umět 1. Co je to autokorelace? Který G-M předpoklad je v tom případě porušen? 2. Co je důsledkem autokorelace? 3. Jak se pozná, je-li v modelu autokorelace? 4. Co je to Durbin-Watson test a BG test, jak se provedou? 5. Jak odstranit z modelu autokorelaci?