VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BNĚ FAKULTA ELEKTOTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ADIOELEKTONIKY Ing. oman Šotner STUDIUM ELEKTONICKÉHO ŘÍZENÍ A EÁLNÉHO CHOVÁNÍ VAIABILNÍCH FILTAČNÍCH A OSCILAČNÍCH APLIKACÍ MODENÍCH AKTIVNÍCH PVKŮ STUDY OF ELECTONIC CONTOL AND EAL BEHAVIO IN VAIABLE FILTEING AND OSCILLATING APPLICATIONS OF MODEN ACTIVE ELEMENTS ZKÁCENÁ VEZE PHD THESIS Studijní obor: Školitel: Elektronika a dělovací technika prof. Ing. Tomáš Dotál, DrSc. Ing. Jiří Petržela, Ph.D.

2 KLÍČOVÁ SLOVA Proudový, napěťový a míšený mód, kmitočtové filtry, multifunkční truktury, elektronické řízení a rekonfigurace, variabilnot, ocilátor, kvadraturní ocilátor, OTA, MO-CCCII, ECCII-, CCTA, CGCCCTA, řiditelný proudový zelabovač, řiditelný proudový zeilovač, reálné chování, experimentální ověřování. KEYWODS Current, voltage and mixed mode, frequency filter, multifunctional tructure, electronic control and reconfiguration, variability, ocillator, quadrature ocillator, OTA, MO-CCCII, ECCII-, CCTA, CGCCCTA, controllable current attenuator, controllable current amplifier, real behavior, experimental verification. DIZETAČNÍ PÁCE JE ULOŽENA: Útav radioelektroniky Fakulta elektrotechniky a komunikačních technologií Vyoké učení technické v Brně Purkyňova 8 6 Brno oman Šotner,

3 OBSAH ÚVOD... 3 VYBANÁ ŘEŠENÍ Z OBLASTI VÍCE-FUNKČNÍCH ELEKTONICKY ŘIDITELNÝCH FILTŮ VEZE S VÝSTUPNÍ DISTIBUCÍ VYUŽÍVAJÍCÍ MO-CCCII...8. DVOUÚČELOVÝ FILT S ELEKTONICKOU ZMĚNOU PŘENOSU MEZI PZ A FČ... 3 VYBANÁ ŘEŠENÍ Z OBLASTI ELEKTONICKY ŘIDITELNÝCH OSCILÁTOŮ MINIMÁLNÍ EALIZACE OSCILÁTOU SE DVĚMA ECCII OSCILÁTO S CGCCCTA OSCILÁTOY S POUDOVÝMI ZESILOVAČI A NAPĚŤOVÝMI SLEDOVAČI Ocilátor negativním rezitorem Modifikace rozšiřující obvod o další proudový zeilovač... 4 ZÁVĚ... 5 VYBANÁ LITEATUA... 7 VYBANÉ PUBLIKACE... 8 ŽIVOTOPIS... 9 ABSTAKT... 3 ABSTACT... 3

4

5 ÚVOD I přeto, že v dnešní době je digitální zpracování ignálu potaveno do popředí, najdou e tále ituace, kde lze výhodami analogové zpracování upřednotnit, protože e buďto ušetří na ložitoti ytému, rozměrech, či rozhoduje ekonomický pohled (cena). Proto může být pro zpracování ignálů ve vyšších kmitočtových pámech (video) a výše výhodnější analogová ceta. Především však nachází uplatnění vývoj komplexnějších analogově-digitálních ytémů na čipu, kde lze uváděné analogové ytémy a aktivní bloky použít díky výhodnější a nadnější realizaci. V oučané době je trend a zaměření mnoha odborných publikací navrhovat elektronické obvody založené na principu činnoti v tzv. proudovém módu [] (CM - current mode), kde aplikace díky menšímu uplatnění parazitních problémů reálného obvodu dokáže pracovat do značně vyšších kmitočtových páem, než klaické obvody napěťovými operačními zeilovači (OZ). V proudovém módu by všechny uzly obvodu měly být nízko-impedanční, avšak většinou to není dodrženo (především v případě filtrů a ocilátorů). V praxi je možná lepší hovořit píše o míšeném módu, protože navenek je drtivá většina takto nazývaných obvodů ice buzena proudem a pokytuje jako výtupní ignál proud, ale ve většině případů obahuje i vyoko-impedanční uzly, kde e pracuje napětím. Ihned vyvtane otázka ohledně převodu napětí na proud a naopak, protože běžněji e v řetězci zpracování pracuje e ignály v podobě napětí. Nicméně i toto lze obejít, pokud e použije vhodně míšený mód, kde vtupní i výtupní ignál ytému může být napětí, i když jou v ytému obaženy aktivní bloky a prvky pracující především proudy. Dne ice exitují i rychlé napěťové operační zeilovače tranzitními kmitočty jednotek GHz, ale naráží e na problémy hlavně e tabilitou při jednotkovém zeílení. Zejména je zde požadavek, který použití klaických přítupů operačními zeilovači neřeší, a to je elektronické natavování a řízení parametrů aplikace. Nutné je provádět to mnohdy i ložitější změnou paivních prvků (rezitorů či kondenzátorů), kde je předpokládáno i ouběžné řízení několika hodnot. Oproti tomu některé běžné i novější modifikace netandardních aktivních prvků (AP) a bloků mají možnot přímého elektronického řízení parametru (ziku, trmoti, vtupního odporu proudových vtupů), což je pro elektronicky řiditelné aplikace výhodné přímo či nepřímo. Nepřímé řízení zprotředkuje např. náhrada rezitoru elektronicky řiditelným ekvivalentem. Někdy e zdá, že je poléháno na technologicky nepřenou vlatnot (např. vtupní odpor proudového vtupu je zatížen docela vyokou výrobní tolerancí), ale možnot elektronického dotavení může tuto nevýhodu kompenzovat. Aplikační féra moderních aktivních prvků a z nich tvořených funkčních bloků je velmi rozáhlý obor, který e neutále vyvíjí, zejména měrem k nižším napájecím napětím z důvodu potřeby (zejména moderní CMOS implementace), a tím amozřejmě kleá i dynamika a kleá odtup ignálu od šumu. Nejčatější aplikace jou aktivní kmitočtové filtry, harmonické ocilátory, měšovače, modulátory, atd. Využití lze nalézt např. v komunikačních ytémech (antialiaingové filtry, napětím

6 řízené ocilátory, atd.), při zpracování ignálů ze enzorů, v regulačních a měřících ytémech a v komplexních ytémech pro např. automobilový průmyl. Polední dobou začíná být kladen také důraz na možnot elektronického řízení, což je dne žádanou a důležitou oučátí aplikace. Vždy počívá v externím záahu do parametrů obvodu. Samozřejmě je velice rozšířeno a dlouhodobě oblíbeno navrhovat aplikace, které diponují zemněnými, či plovoucími rezitory, jimiž lze taktéž eparátně řídit parametry aplikace, avšak problematika náhrady elektronicky natavitelným ekvivalentem může komplikovat ituaci. U klaického přítupu operačními zeilovači je nutná změna většinou plovoucího paivního prvku, což je pro implementaci elektronického řízení velmi nešťatné. Exitují ice i různé typy rychlých D/A převodníků, které lze použít k vytvoření řiditelných integrátorů či kontrukci přímo natavitelného rezitoru [], ale budou nepojitě natavitelné a to, podobně jako při použití digitálních potenciometrů, může někde vadit. Otázkou je, zda je to z ekonomického hledika a ohledu na nárůt potřeby vůbec výhodné. Jednoduché zařízení nízkou potřebou může ztratit význam takovým rozšířením. Podobně lze odpovědět na otázku realizace filtru či ocilátoru digitálním ignálovým proceorem nebo přímou čílicovou yntézou, kde budou mít aplikace v některých měrech lepší vlatnoti, než při analogové realizaci. Většina távajících koncepcí elektronicky řiditelných aplikací ve filtrech a ocilátorech využívá právě pouze změny trmoti (g m ), vtupního (intrinzického) odporu ( X ) proudových vtupů (portů) AP protřednictvím řídících (biaovacích) proudů. Velmi vzácně e začíná objevovat řízení pomocí proudového zeílení (přenou, zde označovaného B G ), či kombinace více uvedených metod. Vyhledávanou vlatnotí aplikace je také rekonfigurovatelnot a variabilnot obvodu. Týká e především aplikační oblati kmitočtových filtrů a míní e tím možnoti docílení několika typů přenoových funkcí a nezávilého natavení charakteritického kmitočtu (kmitočtu pólu f C ), činitele jakoti (Q), základního přenou v proputném pámu (K ), šířky páma (BW) pámové proputi, kmitočtu nul přenou (f Z ), atd. Většinou je pro tyto požadavky vhodné zvolit méně tandardní přítupy návrhu, než metody užívané pro klaické AC filtry operačními zeilovači. Výhodně e zde využívá integrátorového přítupu založeného na myčkových trukturách pecifických dopředných a zpětných vazeb. Tyto truktury umožňují realizovat přenoy typu horní proput (HP), pámová proput (PP), dolní proput (DP), pámová zádrž (PZ), fázovací článek (FČ) či další méně typické přenoy, jako je např. dolní proput nulu přenou apod. Exitují přítupy k návrhu truktur, které dokážou zajitit dotupnot dikutovaných přenoů oučaně či potupně dle překonfigurování zapojení (změny připojovacího uzlu). Více-myčkové integrátorové truktury a jejich možnoti jou avšak pro některé typy přenoových funkcí (např. PZ a FČ) velice ložité, protože v některých případech a požadavkem elektronického řízení vyžadují mnoho AP. Mnoho autorů navrhlo nečetné množtví obvodů, které ihned z výledků vykazují problémy např. parazitními nulovými body v neproputných pámech na nízkých kmitočtech, což je záadní problém filtrů více-myčkových truktur v CM. Kolegové

7 e až na výjimky ani nenaží původce identifikovat, natož pak tanovit hodnotu problémového parametru, která bude pro vyhovující potlačení dotatečná. V oblati ocilátorů je trendem navrhovat obvodové realizace možnotí elektronické změny ocilačního kmitočtu (f ). K tomu je velmi vhodné tudovat i možnoti elektronického dotavování ocilační podmínky (CO). Mnoho zapojení ocilátorů je navrhováno možnotmi nezávilého natavení ocilační podmínky a ocilačního kmitočtu, ale je to realizováno pouze změnou zemněných či plovoucích rezitorů. Velmi rozšířena a dlouho známá je aplikace trankonduktorů, kde je elektronické řízení možno doáhnout změnou trmoti či proudových prvků možnotí řízení vtupního odporu v obvodech ocilátorů. Nicméně ocilátory nezávilou možnotí elektronického řízení obou dikutovaných parametrů jou tále aktuálním a vyhledávaným tématem, protože exituje škála nových či modifikovaných AP, které přináší zjednodušení realizací, lepší možnoti elektronického přeladění, aj. V této oblati je podobně jako v oblati filtrů několik méně řešených otázek. Jedná e opět o opomíjené zohlednění reálných vlatnotí AP z pohledu jejich vtupně-výtupních vlatnotí, málo dikutované vztahy mezi generovanými amplitudami u ocilátorů kvadraturních typů, vliv změny parametru natavujícího f na plnění ocilačních podmínek a amplitudu generovaných ignálů a abenci obvodů automatického řízení amplitudy při širokopámovém přeladění (drtivá většina oučaných publikací tyto problémy neřeší). Závěrem lze říci, že vývoj aplikací e v oučanoti rozchází do několika měrů. První měr počívá v použití minima AP (na některé aplikace potačuje pouze jediný) a co nejmenšího počtu externích oučátek. Požadavky na AP jou však někdy vyoké, protože družuje třeba i několik základních celků. Druhá možná ceta e ubírá měrem využívání libovolného počtu AP, kdy může být ice ložitot vyoká, ale zíkají e možnoti variabilnoti a rekonfigurovatelnoti aplikace. Lze např. natavovat mnoho amotatných parametrů a zíkat rozmanité možnoti řízení. Další variantou je použít ve trukturách co nejjednodušší AP, např. pouze napěťové a proudové ledovače doplněné paivními prvky, kterých však může být i značný počet. Většinou je tento přítup závilý na elektronickém řízení pouze nepřímou cetou (náhradě rezitorů elektronicky natavitelným ekvivalentem), ale v polední době e taktéž objevuje naha implementovat do proudových ledovačů možnot řízení vtupního odporu proudové vorky ( X ), což pro elektronické řízení přináší jité výhody. Cíle diertace jem i tanovil ve dvou oblatech. Jedna oblat je kratší a zabývá e rekonfigurovatelnými aktivními filtračními obvody. Protože je známo několik metod řízení a yntézy, které jou potenciálně vhodné k návrhu multifunkčních truktur, chtěl jem zde tyto metody vyzkoušet a vzájemně porovnat. Hlavní motivací však byl zájem o reálné chování obvodu v praxi, tanovení a zdokumentování konkrétních příčin problémů a odhadnutí hodnot parametrů AP, které zajití pro konkrétní pecifika ještě upokojivou funkci. Zde to bude jeden z hlavních cílů, který je zaměřen na zjištění dopadu reálných parametrů AP na funkci obvodu. Některé typy přenoových funkcí (např. PZ a FČ) jou při realizaci

8 multifunkčními trukturami velice ložité, protože v některých případech a požadavkem elektronického řízení vyžadují mnoho AP. Záadní je ale nutnot zaměnit vtup či výtup obvodu-filtru (i více-funkčního) pro změnu typu přenou. Proto je jeden z cílů této čáti práce zaměřen na nalezení takové realizace minimálním počtem AP, která by plňovala typy přenoů FČ a PZ, a zároveň by bylo možno mezi nimi plynule přecházet bez fyzické rekonfigurace obvodu (přepojení vtupu nebo výtupu či přidání dalších AP), jak je to např. možné u vícemyčkových integrátorových truktur ditribucí, pokud e změní znaménko protředního koeficientu čitatele bikvadratické přenoové funkce. Druhá a větší čát práce je věnována elektronicky řiditelným ocilátorům. Mým cílem v této oblati je návrh několika typů ocilátorů možnotmi elektronického řízení minimálně ocilačního kmitočtu, avšak především možnotí řízení i ocilační podmínky. Cílem je pokud možno využívat AP a přítupy k řízení, které nejou pro tuto oblat tolik zažité, což je především možnot ovládání proudového zeílení napětím, která je možná u některých typů proudových náobiček. Tato vlatnot je užitečná, protože lze díky tomu velmi unadnit možnou implementaci automatického řízení a tabilizace amplitudy. Jedním z cílů je také zaměřit pozornot na hledání nových aplikací v oblati ocilátorů pro aktuálně vyvíjený prvek DACA [3], [4] na Útavu telekomunikací. Návrh všech obvodů bude ituován do páma tovek khz až jednotek či deítek MHz, aby byla využita jedna z výhod přítupů proudového a míšeného módu a netandardních AP, přičemž většinu obvodů tetuji i experimentálně (měřením). Obvody lze amozřejmě navrhovat na kmitočty páma audia podobně, jak to řeší většina kolegů, ale tam pak aplikace rychlých AP potrádá myl a vytačí tandardní přítupy založené na použití operačních zeilovačů a případně digitálních potenciometrů. Globálně i kladu požadavky na co nejjednodušší možnou obvodovou realizaci při doažení všech žádaných pecifických vlatnotí. Ne vždy je to plnitelné a mnohdy e jedná o kompromi mezi ložitotí, všetrannotí a možnotmi řízení. Cíle lze jednotit do několika náledujících bodů: I. Oblat více-funkčních elektronicky řiditelných rekonfigurovatelných filtrů ) Zjednodušit popi navrhovaných ytémů za pomocí konverzních kontant mezi napětími a proudy pomocí úpravy vhodně etrojených grafů ignálových toků Maonova typu [5], [6], [7], [8] (bez vlatních myček) a jejich náledné potupné obvodové realizace, ) Použít tuto metodu pro návrh a analýzu uvedených truktur a zhodnocení parametrů vhodných pro elektronické řízení, 3) Vyzkoušet a porovnat běžné i méně užívané metody přímého elektronického řízení a jejich kombinace na několika tandardních trukturách filtrů,

9 4) Prozkoumat a tanovit nejpodtatnější dopady reálných parametrů AP na funkci obvodu, 5) Pokuit e najít zcela unikátní jednoduchou realizaci, která by umožnila docílit možnoti elektronické změny přenoové funkce z typu PZ na FČ bez nutnoti přepojení budící či výtupní brány a bez nutnoti užít známý a obvodově ložitější více-myčkový integrátorový přítup, 6) Navržené obvody ověřit experimentálně imulacemi na počítači a vybrané z nich i laboratorně. II. Oblat elektronicky řiditelných ocilátorů ) Navrhnout co nejjednodušší realizace možnotí elektronického řízení ocilačního kmitočtu, ) Pokuit e docílit nezávilého elektronického řízení obou parametrů, 3) Využívat méně rozšířených metod elektronického řízení, především protřednictvím proudového zeílení natavovaného napětím, 4) Začlenit do návrhu napěťové ledovače z principu funkce obvodu, ne pouze jako přídavné nutné impedanční oddělení, 5) Prozkoumat a tanovit nejpodtatnější dopady reálných parametrů AP na funkci obvodu, 6) Stanovit přené návrhové vztahy zohledňující reálné vlatnoti AP, 7) Objanit relace mezi generovanými amplitudami u kvadraturních variant, 8) Zkoumat vliv parametru natavujícího ocilační kmitočet na plnění ocilačních podmínek a amplitudu generovaných ignálů, 9) Navrhnout jednoduchou koncepci automatického řízení amplitudy kmitů pro širokopámové přeladění a ověřit její činnot na vybraných variantách ocilátorů, ) Navržené obvody ověřit experimentálně imulacemi a vybrané i měřením.

10 VYBANÁ ŘEŠENÍ Z OBLASTI VÍCE-FUNKČNÍCH ELEKTONICKY ŘIDITELNÝCH FILTŮ V této čáti jou uvedena některá navržená a tudovaná řešení elektronicky řiditelných variabilních více-funkčních filtrů, ale bez detailního popiu a tudia vlivu reálných AP na činnot, protože je to celkem rozáhlá problematika a není zde na to protor.. VEZE S VÝSTUPNÍ DISTIBUCÍ VYUŽÍVAJÍCÍ MO-CCCII Aktivní filtr na obr..a je více-myčková integrátorová truktura [8], [9], [], jejíž záadní výhodou oproti jiným je, že zde prakticky neexituje třetí vyokoimpedanční uzel, který by způoboval vznik parazitního pólu. Struktura je typ ditribucí, kde ditribuční prvek je realizován jako více-výtupový proudový konvejor (CC) a integrátory potačují velmi jednoduché a základní ( jediným výtupem Z). Prvek nee označení CCCII (current controlled current conveyor II) [], [] a umožňuje změnou natavovacího proudu I b měnit odpor proudového vtupu CC ( X ). Na pozici ditributorů (jeden je potřeba i na vtupu) jou pak MO- CCCII (multiple output - CCCII). Pro zíkání všech přenoových funkcí je nutný konfigurační přepínač. V zapojení jou MO-CCCII vlatně pouze dva, a proto všechny prvky neou v obr.. označení CCCII. Z principu není prvek CCCII 4 nutný, ale ním lze realizovat všechny přenoové funkce druhého řádu, DP, PP, HP, PZ a FČ namíto pouze prvních třech. ekonfigurace typu přenou je možná pouhou změnou přepojení výtupu vtupního ditributoru tvořeného pomocí CCCII 4. Potupné epínání SW - SW 3 umožní docílit přílušné výtupní odezvy typu DP, PP (invertující) a HP. Pro konfiguraci PZ je třeba epnout SW a SW a pro FČ jou epnuty všechny tři oučaně. Ideální přenoové funkce obvodu na obr..a jou velmi jednoduchého tvaru kde CC C K DP ( ) =, K PP ( ) =, ( ) D( ) D( ) D( ) + CC + K PZ ( ) =, C CC K ( ) D( ) FČ D( ) + C D ( ) + Charakteritický kmitočet a činitel jakoti jou K HP =, (.), (.), (.3) =. (.4), (.5), (.6) =. (.7) ω C =, C C C C Q = C, (.8), (.9) C C kde = + X a X = f (I b ), tejně pro ( X ~ U t /I b, U t - teplotní napětí [], []). Filtr byl navržen na f C = MHz Q =. Hodnoty jou C = C = C = pf a = = = 36 Ω ( X, = 3 Ω pro I b, = 55 µa), kde = = = 5 Ω. CC

11 loužících k ditribuci mají nataven I b3,4 = µa. Výledky analýz v kmitočtové oblati obvodu na obr..a jou na obr... Podrobnoti o použitém modelu CCCII lze najít plné verzi diertační práce (kap. 5.. a příloha P-). / /C - - IOUT IINP /C B3 B B / DP PP HP a) b) Obr.. Filtr. řádu založený na truktuře ditribucí a prvky MO-CCCII: a) obvodová realizace, b) obvodová realizace modifikací pro další možnoti řízení Na obr..b je modifikace dikutovaného obvodu, která díky vložení proudových zeilovačů dokáže měnit i další parametry filtru (Q, K, BW u PP). Nové ymbolické přenoové funkce a návrhové vztahy mají nyní tvary ) ( C C C B C C B K Q G K G DP + + =, ) ( C C C B C B K Q G K G PP + + =, (.), (.) ) ( C C C B B K Q G K G HP + + =, ) ( C C C B C C B K Q G K G PZ =, (.), (.3) ) ( C C C B C C C B K Q G K G FČ =, _ C C B C Q Q G =, _ K B G K =. (.4), (.5), (.6) Výledky imulací této modifikace (obr..b) proudovými zeilovači reprezentovanými pomocí proudové náobičky EL8 [3] jou na obr..3.

12 Parametry návrhu (, C, f C,...) jou ponechány tejné, jako v předcházející ituaci. Lze doáhnout změny K od do 5 db a BW od khz do 4 MHz a oučaně Q od 6 do,74 pomocí změny ziku B G_K a B G_Q od, do. Je vidět, že kombinace ovládání odporu proudového vtupu ( X ) CCCII a proudového přenou (B G ) v přílušných větví dokáže zajitit požadovanou variabilnot parametrů filtru, avšak za cenu zkomplikování. K [db] HP K [db] FČ I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz Q =, L = 5 Ω,E+4,E+5,E+6,E+7,E+8 DP PP imulace idealni f [Hz] I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz Q =, L = 5 Ω PZ idealni imulace,e+5,e+6,e+7,e+8 f [Hz] a) b) K [db] I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz Q =, L = 5 Ω imulace idealni ) f -3dB =,76 MHz (I b, = 55 µa) ) f -3dB = 4,36 MHz (I b, = µa) 3) f -3dB = 7,63 MHz (I b, = µa) 4) f -3dB =, MHz (I b, = 5 µa) 5) f -3dB =,5 MHz (I b, = µa),e+5,e+6,e+7,e+8 f [Hz] ϕ [deg] I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz Q =, L = 5 Ω -4,E+4,E+5,E+6,E+7,E+8 f [Hz] c) d) Obr.. Dotupné modulové frekvenční charakteritiky: a) DP, PP, HP, b) PZ a FČ, c) ladění změnou I b ledované na DP, d) fázová charakteritika FČ K[dB] K = 4,9 db (B G_K =,) K = -,7 db (B G_K =,) K = -7, db (B G_K =,5) I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz K [db] - I b = I b = I b = 55 µa I b3 = I b4 = µa f C =,6 MHz BW = 3,97 MHz (Q =,74) B G_Q = B G_K =, BW =,88 MHz (Q =,) B G_Q = B G_K =, - K = -3, db (B G_K =,5) K = -,3 db (B G_K =,) -5,E+4,E+5,E+6,E+7 f [Hz],E BW =,89 MHz (Q =,3) B G_Q = B G_K =,5 BW =,4 MHz (Q = 4,9) B G_Q = B G_K =,5 BW =, MHz (Q = 6) B G_Q = B G_K =, -6,E+5,E+6,E+7 f [Hz],E+8 a) b) Obr..3 Další dotupné možnoti elektronického řízení zíkané přidáním řiditelných proudových zeilovačů: a) řízení základního přenou K, b) změna šířky páma PP

13 Zhodnocení Základní koncepce filtru vyniká jednoduchotí, ale díky co nejjednodušším zpětným vazbám je zde možno řídit pouze f C změnou intrinzické hodnoty vnitřních odporů ( X ) proudových vtupů AP (CCCII). Výhoda je zejména ve kutečnoti, že více výtupů MO-CCCII je třeba pouze ve dvou blocích (ditribuční proudové ledovače rozvádějící proudy do konkrétních uzlů) a v upoření počtu paivních oučátek. Modifikace o proudové zeilovače přináší zíkání výhod řízení všech parametrů filtru, ale již to nezanedbatělně komplikuje výlednou trukturu. Doažení největší variability je docíleno kombinací řízení protřednictvím X (I b ) za pomoci natavitelného proudového zeílení B G. Detailní průzkum parazitních vlatnotí AP prokázal, že možnot využití X pro změnu parametru obvodu aplikace je ice vítaná, ale kýtá různá úkalí ve mylu ovlivnění dalších maloignálových parametrů AP (kromě X ), které náledně způobují problémy někdy jinde. Podrobná analýza použitých modelů CCCII bipolárními tranzitory prokázala, že je výtupní odpor prvku celkem malý (několik deítek až tovek kω dle I b ), což má při půobení ve vyoko-impedančních uzlech za náledek vznik parazitních nul a konečného útlumu v neproputných pámech (PP, HP) neupokojivé hodnoty (záleží na aplikaci). Obvod a jeho vlatnoti byly publikovány v [x], [x].. DVOUÚČELOVÝ FILT S ELEKTONICKOU ZMĚNOU PŘENOSU MEZI PZ A FČ Exitují truktury a přítupy, jak bylo vidět v předchozí kapitole i přílušné literatuře [8], [9], [], [4], [5], které umožňují zíkat všechny či většinu přenoových funkcí, avšak většinou v praxi potačují jen některé. Cílem bylo zíkat co nejjednodušší laditelný filtr dvou typů přenoů (PZ, FČ), které e návrhovými způoby, jenž byly použity ve všech předcházejících kapitolách, zíkávají za cenu podtatného nárůtu ložitoti truktury. Pro vytvoření PZ a FČ možnotí elektronického řízení f C či dalších parametrů je nutné velmi mnoho AP, pokud e použije již dikutovaný více-myčkový integrátorový návrhový přítup. Za účelem změny typu přenou je vždy záadní nutnot přepojit vtup či výtup obvodu nebo provét nějaký jiný záah v zapojení (ditribuce proudů). V zapojení na obr..4 toho není zapotřebí. Obvod na obr..4a byl původně navržen bez možnoti řízení, ale bližší analýza ukázala jeho netypické možnoti v elektronickém řízení. Obvod obahuje prvek ECCII- (electronically controllable CCII), který diponuje možnotí měnit proudový přeno mezi branami X a Y. Zavedením obecného natavitelného proudového přenou B G (původně u použitého CCII- B G = ) přešla přenoová funkce obvodu do tvaru

14 K( ) U CBG + C + C C + C C OUT = =, (.7) U C + C INP + + CC CC kde je zajímavý především koeficient protředního členu čitatele. Pro další dikuzi lze uvažovat = = a C = C = C. Filtr e chová jako PZ, pokud je tento koeficient roven a maximální doažitelný útlum v neproputném pámu je prakticky určen pouze reálnými vlatnotmi AP. To je plněno pro B G = (platí C = C ). V případě, že je zajištěno < B G, filtr pracuje jako pámová zádrž proměnným útlumem v neproputném pámu (na f C ) bez ovlivnění čehokoliv dalšího. Pokud je B G >, fázová charakteritika obvodu odpovídá charakteritice FČ, ale modulová charakteritika není úplně rovná (obvod neminimálním argumentem). To natává až pro B G = 3, kdy je koeficient protředního členu čitatele (.7) roven koeficientu protředního členu jmenovatele (e záporným znaménkem). Pro charakteritický kmitočet a činitel jakoti obvodu na obr..4 platí CC ω C =, Q =. (.8), (.9) CC C + C Ze vztahů (.8) a (.9) je ihned patrná nevýhoda. Zde nelze zajitit nezávilou změnu Q a ladění filtru je nutné řešit ouběhem obou hodnot plovoucích rezitorů. To je cena za jednoduchot a další pokytované možnoti. Dalším problémem je exitence plovoucího kondenzátoru. a) b) c) Obr..4 Dvouúčelový filtr možnotí elektronické změny typu přenoové funkce: a) realizace dvěma ECCII-, b) naznačená teoretická možnot řízení f C FETy, c) rozšíření AP o možnot ovládat X (I b ) Obvod na obr..4a byl podroben analýze v PSpice i měřením na vektorovém analyzátoru E57C. Paivní prvky obvodu jem vybral a navrhl náledovně: = = = Ω + 95 Ω ( X ), kondenzátory C = C = C = 47 pf. Pro ověření zde byl opět použit EL8 [3] (dva kuy). Druhý CC je připojen pouze jako napěťový ledovač (jen Y a X brány). Možné je použít i jakýkoliv napěťový ledovač. Na obr..5 jou výledky počítačových imulací a měření. Proudový přeno B G je úměrný U G. Lze vypozorovat, že změna maxima útlumu PZ probíhá od ai 7 do 45 db ( < U G ). Ladění f C změnou odporů FET namíto, (např.

15 BF45 [6]) je umožněno v rozahu ai 6 khz až,7 MHz. Zde je to uvedeno pouze jako ilutrativní příklad, kdy požadavek na řízení f C bude nuceně měřovat na změnu obou pracovních rezitorů v ouběhu. V praxi by byla výhodnější možnot řídit také vtupní odpor X (I b ) u použitého ECCII. Změřená charakteritika při činnoti blízké FČ je záměrně pro U G =,65 V, aby bylo patrné, že do hodnoty B G = 3 tále nebude modul přenou úplně rovný. imulace K [db] U G = V mereni K [db] f C =,687 MHz, V,5 V,6 V,7 V,8 V,85 V -4 idealni -5,E+5,E+6,E+7 f [Hz] -4 U G =, V -5,E+5,E+6,E+7 f [Hz] ϕ [deg] 9 6 f C =,687 MHz a) b) -5,,,4,6,8, U G [V], 3 U G =, V U G =, V -,E+5,E+6,E+7 f [Hz] K min [db] mereno imulace c) d) K [db] - U G = V () U C = -, V (f C = 6 khz) () U C = -,75 V (f C =,6 MHz) (3) U C3 = -,5 V (f C =,3 MHz) (4) U C4 = -,5 V (f C =,5 MHz) 3 4 (5) U C5 = V (f C =,66 MHz) 5-5,E+5,E+6,E+7 f [Hz] e) f) Obr..5 Výledky počítačové a experimentální analýzy: a) rovnání imulace a měření v detailu, b) měřená změna B G způobující proměnný maximální útlum v neproputném pámu, c) měřená změna na fázové charakteritice, d) měřená závilot minima přenou na řídícím napětím U G, e) imulací ověřené ladění f C změnou odporu FET tranzitorů, e) měřená charakteritika blízko režimu FČ (U G =,65 V)

16 V předchozím textu byla uvedena opravdu jedna z nejjednodušších realizací filtru, který dokáže měnit typ přenou bez nutnoti přepojení vtupní či výtupní brány. Exitují zde však nevýhody, jako je nemožnot řízení Q, problematické ladění ouběhem plovoucích rezitorů a exitence plovoucího kondenzátoru. V kap kompletní práce jou vedeny další podrobnoti o tomto typu filtru a natíněno řešení (podtatně ložitější), které uvedené problémy odtraňuje. Zhodnocení Dikutovaný obvod je velmi zajímavý. Umožňuje bez fyzického přepojení vtupu či výtupu změnit typ přenou filtru z PZ na FČ jednoduchou změnou proudového ziku konvejoru. Možné je to i u filtrů myčkových truktur (KHN apod. [8], [9], [7]) v plné univerzální konfiguraci, ale je potřeba mnohem více AP. Cena za tuto vlatnot je komplikovanější ladění, které je záležitotí plovoucích rezitorů nebo X (I b ), pokud to AP umožní (to by byla nejlepší ceta). Nejhůře je na tom činitel jakoti, který je velmi nízký a jeho změna velmi problematická. Díky tomu je i šířka páma zádrže značně velká. Jako příklad jiného řešení byla v rámci kap navržena truktura, která dokáže uvedené nevýhody odtranit, ale v některých ohledech (půobení reálných projevů AP, změna PZ na FČ pouze změnou B G obou polarit, podtatně ložitější, apod.) je původní varianta na obr..4 lepší. Tento obvod jem publikoval v [x3] pouze jako PZ natavitelným útlumem a verze rozšířená o aplikaci i jako FČ a tudium vlivu reálných AP je přijata k publikaci v [x4]. 3 VYBANÁ ŘEŠENÍ Z OBLASTI ELEKTONICKY ŘIDITELNÝCH OSCILÁTOŮ V této čáti jou uvedena některá navržená a tudovaná řešení elektronicky řiditelných ocilátorů, opět pouze zběžně a upozorněním na hlavní vlatnoti obvodů. 3. MINIMÁLNÍ EALIZACE OSCILÁTOU SE DVĚMA ECCII- Ocilátor na obr. 3. diponuje dvěma prvky ECCII-, které v obvodu umožňují elektronické řízení ocilačního kmitočtu (f ) i ocilační podmínky (CO). Pro návrh bylo použito yntézy založené na autonomním obvodu dvou AP a konečného počtu obecných admitancí [6], [], [8] pomocí programu SNAP [9], []. Obvod obahuje pouze dva vyoko-impedanční uzly a je počítáno tím, že oba ideální proudové vtupy prvků ECCII- budou mít předřazenu externí vodivot, která může být v reálném případě přičtena k jejich intrinzické hodnotě (nebo jí nahrazena). To vše znamená jitou konkretizaci výledného obvodu. Charakteritická rovnice má tvar C + + C ( BG ) BGBG + =, (3.) C C C C

17 ze které plyne, že ocilační podmínka a kmitočet jou C + C C B G BG BG, ω =. (3.), (3.3) C C a) b) Obr. 3. Ocilátor využívající dva ECCII- a minimum paivních prvků: a) všechny paivní prvky jou externí, b) využití interních X Z jitého pohledu může být obvod na obr. 3.a nevýhodný. Na první pohled je vidět, že obahuje plovoucí kondenzátor. Další patrná nevýhoda plyne přímo ze vztahu (3.3) pro f (ω ), kde je jané, že rozah řízení je omezen z principu do intervalu B G B G < a tím je tanovena horní mez f. Z (3.) a (3.3) je zřejmé, že pomocí U G (B G ) je možné řízení ocilační podmínky, bohužel opět e záahem do ocilačního kmitočtu. To je cena za jednoduchot. Kmitočet ocilací je možné řídit napětím U G (B G ), ale řízení je u této koncepce principiálně omezeno. Předpokládáli e = = a C = C = C, je potřebný B G (3.), odkud je vidět, že B G e může pohybovat v rozahu až,5 což znamená pouze až,5 V řídícího napětí U G. V kap. 6.. (kompletní verze práce) je natíněno řešení, které tuto nevýhodu odtraňuje. Parametry obvodu byly navrženy náledovně: C = C = C = 47 pf, = = = 95 Ω (přičemž 95 Ω je reálná hodnota vtupního odporu [3]). Na obr. 3. jou zíkané experimentální výledky (pro U G ~ V a U G = ). U kutečného obvodu byla měřením () ověřena změna ocilačního kmitočtu od 38 khz do,75 MHz. Počítačové imulace uvádí rozah 38 khz až,8 MHz, neideální ymbolická analýza pak 66 khz až,8 MHz a výpočet dle ideálního vztahu (3.3) rozah od 46 khz do,737 MHz. Výledky jou rovnány na obr a) b) Obr. 3. Výledky měření: a) v čaové, b) v kmitočtové-pektrální oblati

18 ,E+6 f [Hz] idealni imulace mereni,5e+6,e+6 5,E+5,E+,,,,3,4,5 U G [V] Obr. 3.3 Srovnání zíkaných ladících charakteritik Měřené zkrelení (THD) doahovalo při řízení f v rozahu,9 až,75 MHz (U G od,35 do V) hodnot od,3 do,3 %. V krajní hodnotě U G (od,48 V) pak i téměř %. Podobnoti lze najít v kap. 6.. kompletní verze práce. Zhodnocení Uvedený ocilátor vyniká jednoduchotí a zároveň možnotí řídit elektronicky kmitočet i podmínku ocilací. To je však vykoupeno problematickým vztahem pro f a principielním omezením, které oklešťuje rozah přeladění. Navíc u tohoto obvodu závií vždy f i na parametru řídícím plnění CO (zde B G ). I když nepatrné záahy do U G (CO) v deítkách mv (vlivem případného AGC při ladění) nezpůobí moc podtatné změny f, mohou napomáhat ke zhoršování kmitočtové tability, apod. Díky napětím řízeným AP je možné implementovat i AGC jen použitím právně upraveného výtupního ignálu (uměrnění, vyhlazení, úprava úrovně,...) k řízení CO při širokopámovém ladění. Toto celkem exotické zapojení a jeho podrobná analýza bylo publikováno v [x5] a i pře uvedené nevýhody našlo odezvu mezi zahraničními odborníky (dvě citace). 3. OSCILÁTO S CGCCCTA V oučané době je velkým trendem lučovat AP do větších celků, viz např. [], kde je ukázáno mnoho rozmanitých typů moderních AP. Konkrétně lze jmenovat např. CDTA (current differencing trankonductance amplifier) [], CFTA (current follower tranconductance amplifier) [3] a CCTA (current conveyor tranconductance amplifier) [4]. Polední z nich (CCTA) lučuje proudový konvejor a trankonduktanční ekci (OTA zeilovač). Exituje několik jeho modifikací (řízení X nebo trankonduktance g m či obojí oučaně) a zde je uvedena jedna z poledních. ozdíl od tandardních CCTA počívá v zavedení natavitelného proudového přenou (zeílení) v CCII (ECCII-) čáti CCTA. Díky tomu byla tato modifikace pojmenována unikátním názvem "current gain controlled CCTA", odtud zkratka CGCCCTA.

19 Tento AP umožňuje kontrukci velmi jednoduchého ocilátoru na obr. 3.4a, jehož princip je založen na použití ztrátového a bezeztrátového integrátoru ve myčce. Detailnější princip je patrný z GST na obr. 3.4b. U OUT BG(UG) Y o+ CGCCCTA U OUT -B G/ /C C X Z o+ C U OUT S /( C +) U OUT g m S /( C +) a) b) Obr. 3.4 Jednoduchý ocilátor založený na CGCCCTA: a) obvodové zapojení, b) GST Charakteritická rovnice vychází z analýzy grafu na obr. 3.4b = a po úpravě má tvar B C + ( + ) = G S S g + g, (3.4) m = + m C C a gm gmbg + +, (3.5) C C C + a + a = = odkud ocilační kmitočet (ω ) a ocilační podmínka (CO) jou gmbg g m, ω =. (3.6), (3.7) C C Ocilátor diponuje navzájem nezávilou CO a f. Všechny paivní prvky jou zemněné a ocilátor dovoluje elektronické řízení f pomocí B G. CO je natavitelná pouze změnou, což je ještě mírná nevýhoda, kterou ale řeší zapojení v kap. 6.. úplné verze práce, kde je k tomu použito dalšího proudového ziku. Protože je v koncepci přítomen bezeztrátový integrátor, jedná e o kvadraturní variantu ocilátoru, což prozradilo tudium vztahů obou generovaných amplitud j UOUT = UOUT. (3.8) B G Je vidět, že fázový pouv mezi výtupy je opravdu 9, ale taky je patrná nevýhoda. Ta počívá v záviloti amplitudy U OUT na parametru B G řídícím (ladícím) f. Hodnoty paivních oučátek byly vybrány náledovně: = = = kω, C = C = C = pf. Parametry CGCCCTA jou: fixní g m = ms a při experimentech bylo B G = f(u G ) měněno pomocí U G v rozahu, až 4 V. To vše při napájecím napětí ± 5 V. Pro rozběh ocilací je amozřejmě nutné mírně zvětšit hodnotu a při ladění ocilátoru bez AGC mírně dotavovat (změny v deítkách Ω) takto amplitudu či nižovat nárůt THD. V praxi by protřednictvím byl implementován obvod tabilizace amplitudy, zde by potačil např. řízený FET z výtupního uměrněného (a vyfiltrovaného - vyhlazeného) napětí. CCII (ECCII) čát

20 CGCCCTA je modelována pomocí EL8 [3] a OTA ekce pomocí dvou diamantových tranzitorů (DT) OPA86 [5]. To umožní využívat i napěťové výtupy, protože každý DT obahuje navíc napěťový ledovač, který oddělí vyokoimpedanční uzly pro případný odběr ignálu. Na obr. 3.5 jou výledky měření obvodu pro U G = V (B G ~,9). Podle výledků měření činí ocilační kmitočet ai 853 khz (THD ~,6 %). a) b) Obr. 3.5 Výledky experimentálního měření ocilátoru: a) čaová oblat, b) pektrum U OUT Měřený rozah změny f je mezi, až,3 MHz (, < B G < 3,4). Další podrobnoti včetně ladících charakteritik, záviloti THD na f, tudium reálného chování, atd. lze nalézt v kompletní verzi práce (kap. 6.3.) Zhodnocení Výhodou přítupu návrhu ocilátoru za pomoci CGCCCTA je především značně jednoduchá realizace, která vyžaduje pouze "jeden" AP a zemněné paivní prvky (všechny). Z tohoto pohledu je to nejjednodušší zapojení ocilátoru ( výhodou nezávilé CO a f a přímou možnotí elektronického řízení f ) uvedené v této práci. Typickým problémem je závilot výtupní amplitudy jednoho ignálu na řídícím parametru a nemožnot elektronického řízení CO. Zapojení, jeho analýza, vlatnoti a možnoti byly publikovány v [x6]. 3.3 OSCILÁTOY S POUDOVÝMI ZESILOVAČI A NAPĚŤOVÝMI SLEDOVAČI Hlavním tématem této kapitoly je několik typů ocilátorů, které odtraňují jednu z nevýhod předchozích koncepcí. Jak je patrné u většiny ocilátorů pracujících ve míšeném módu, je většinou nutné výtupní napětí odebírat z vyoko-impedančních uzlů obvodů. Vždy jou nutné přídavné napěťové ledovače na oddělení zátěže nižší impedancí, která by amozřejmě ovlivnila impedanci uzlu a tím pádem i činnot (nejen) ocilátoru. Cílem kapitoly tedy je najít a navrhovat taková zapojení, kde je napěťový ledovač přímo funkční oučátí obvodu (nefiguruje pouze jako

21 oddělovací tupeň) a tím pokytuje možnot odebírat napětí na nízko-impedančním výtupu bez nutnoti další eparace. Formulace požadavků na obvody zde počívá navíc ve využívání pouze jednoduchých prvků, které mají jediný vtup a pouze jediný výtup. Výhodné vlatnoti nabízí využívání kombinace napěťových ledovačů a proudových zeilovačů natavitelným zeílením. Jeden z hlavních cílů kapitoly je taktéž outředěn na hledání aplikací v oblati ocilátorů pro nově vznikající AP, jako je např. DACA [3], [4] vyvíjený Útavem telekomunikací ve polupráci ONemiconductor. V některých aplikacích, i když zde jou ověřovány funkčně a kvalitativně jiným prvkem pracujícím jako obecný řiditelný proudový zeilovač, mohou DACA prvky najít výhodné uplatnění. Většina aplikací tohoto nového prvku byla prozatím rapidně zaměřena na oblat aktivních elektronicky řiditelných filtrů, viz např. [3], [6], a proto je oblat ocilátorů kontrukcemi těmito prvky relativně nezaažena Ocilátor negativním rezitorem Původní koncepce ocilátoru proudovými zeilovači (obr. 3.6a) v kap pracuje na principu dvou napěťových integrátorů (invertující ztrátový a neinvertující bezeztrátový) proudovými AP, vzájemně oddělenými pomocí napěťových ledovačů, díky nimž lze zíkat nízko-impedanční výtupy. Ze ztrátového integrátoru, který je tvořen prvky C, je pomocí dalšího proudového zeilovače (CA) zavedena natavitelná proudová vazba. Obvod (v kompletní verzi diertace) diponuje ideálně nezávilou CO a f, ale vyžaduje připojení kondenzátoru do proudového vtupu, což přináší problémy způobované reálnými AP a nezávilot je ztracena. Proto byla nalezena jednoduchá modifikace. Pro nalezení lze použít heuritického přítupu či jednoduché metody na základně popiu tavovými rovnicemi [7], [8]. Výledek je na obr. 3.6b a princip negativního rezitoru [3] kontruovaného proudovým zeilovačem (CA) na obr. 3.6c. Ve výledku e opět jedná o invertující bezeztrátový a neinvertující ztrátový integrátor ve myčce, který je doplněn negativním rezitorem (v obr. 3.6b vyznačená čát). Z ekv = f(b G ) Z B G U G CA a) b) c) Obr. 3.6 Ocilátor proudovými zeilovači a napěťovými ledovači: a) původní varianta, b) modifikace negativním rezitorem, c) dílčí čát předtavující negativní rezitor Charakteritická rovnice, ocilační podmínka a ocilační kmitočet obvodu na obr. 3.6b jou tvarů

22 G + G3 + G3BG BG GG + =, C C C B GG, ω = G. (3.9), (3.), (3.) 3 CC G B G + G Je patrné, že f je řiditelný pomocí B G a CO natavitelná protřednictvím B G. Opět e jedná o kvadraturní typ ocilátoru, kde relace mezi produkovanými amplitudami je dána vztahem U U OUT OUT = j B. (3.) Opět je zde problém záviloti U OUT na B G. Obvod na obr. 3.6b byl navržen za použití prvku EL483 [9] na pozici invertujícího CA, EL8 [3] na pozici CA. Napěťový ledovač byl kontruován z velmi dobrého operačního zeilovače LT364 [3]. Hodnoty paivních oučátek byly vybrány ohledem na předpokládané pracovní pámo, tedy = = 3 = = kω, C = C = C = pf. Je patrné, že v ideálním případě muí být zajištěno zeílení B G a pro nejvyšší natavitelný kmitočet B G = (maximální doažitelná hodnota pro CA etavený na základě EL483 [9]. Napájecí napětí je vzhledem k doporučením kladeným na aktivní prvky. Ideální ocilační kmitočet by měl nabývat hodnoty,59 MHz. U tohoto typu ocilátoru byla prakticky vyzkoušena jednoduchá verze AGC, která využívá nelineární oblat převodní charakteritiky zeilovače bipolárním tranzitorem. Pro natavené parametry byl změřen f =,63 MHz, což je značně nižší hodnota. Doazením do odvozeného vztahu, který repektuje vlivy reálných AP (viz. kap. 6.4.), je očekávaná hodnota,93 MHz. Takto razantní pokle kutečné hodnoty f mají na vědomí především vtupní odpory proudových vtupů použitých CA (jeden je dokonce pře 3 Ω) v kombinaci přídavnými parazitními kapacitami v obou uzlech. Výledky jou na obr G a) b) Obr. 3.7 Výledky měření: a) čaová oblat, b) pektrum U OUT Záviloti f, THD a výtupních úrovní na ladícím parametru (B G ) jou dokumentovány na obr Přeladění je umožněno zhruba od, do,3 MHz, změnou B G od, do.

23 ,E+7 f [Hz],4E+6 f [Hz],E+6,E+6,E+6 8,E+5 6,E+5,E+5 idealni ocekavano ( ohledem na parazitni vlatnoti) mereno AGC,E+4,,,4,6,8 B, G [-] 4,E+5,E+5,E+ ocekavano mereno AGC,,,4,6,8, B G [-] a) b) U OUT, [Vp-p] 3,5 5 THD [%] 4,5 4 3,5,5 U OUT U OUT 3,5,5 U OUT,5,E+,E+5 4,E+5 6,E+5 8,E+5,E+6,E+6 f [Hz],5 U OUT c) d),e+,e+5 4,E+5 6,E+5 8,E+5,E+6,E+6,4E+6 f [Hz] U OUT [VP-P],5,5 y =,698x,53,5,,,4,6,8, B G [-] Obr. 3.8 Zíkané výledky: a) rovnání ideální, očekávané a měřené ladící záviloti f na B G, b) detail ladící charakteritiky na změřené a očekávané výledky, c) závilot výtupních úrovní na f, d) závilot THD na f, e) závilot U OUT na B G 3.3. Modifikace rozšiřující obvod o další proudový zeilovač Předchozí verze ocilátoru je výhodná a ještě relativně jednoduchá, ale tále e potýká problémem záviloti jedné z produkovaných amplitud na řídícím parametru (a tím pádem na f ). Problém vyřeší vložení dalšího proudového zeilovače do ztrátového integrátoru ( C ), čímž e z něj tane bezeztrátový a k e)

24 dipozici je nyní další natavitelná čaová kontanta. Zapojení je na obr Veškeré nutné inverze jou ituovány do napěťových ledovačů (repektive invertorů), nikoliv již do proudových zeilovačů, a proto je možné použít všechny CA e tejnou polaritou výtupního proudu. Obr. 3.9 ozšiřující modifikace umožňující řízení f bez záviloti amplitudy generované ignálu na řídícím parametru Charakteritická rovnice, ocilační podmínka a ocilační kmitočet tohoto obvodu jou G G3BG 3 BG BG GG + =, B G3 C C C, B B G G G G ω =. (3.3), (3.4), (3.5) CC Studium relace mezi výtupními amplitudami lze popat vztahem UOUT BG BG C = = j, (3.6) UOUT B B B C G G G j C CC který v případě rovnoti B G = B G = B G přechází na U OUT C = j. (3.7) U C OUT Pokud je tedy zaručena rovnot proudových zeílení natavujících čaové kontanty integrátorů, je teoreticky zajištěno, že amplitudy generovaných ignálů e během ladícího proceu nebudou měnit. Podobný účinek lze zajitit, pokud jou v ouběhu měněny oba rezitory a (jedná e amozřejmě o rezitory řiditelný typ SCO). ozah přeladění je mnohem větší, než u dalších uvedených typů ocilátorů v této práci, ale předpokládá nyní ouběžné řízení B G a B G. Ocilační kmitočet závií na B G lineárně, neboť v předchozích případech byl vždy ladící parametr pod odmocninou. Pro ověření byly použity analýzy a imulace na počítači při tejných hodnotách paivních prvků, jako v předchozí kapitole a za použití tejného AGC. Hodnoty natavitelných proudových přenoů (zeílení) jou nyní B G, =,3 (U G, =,5 V) a B G3 (U G3 V). Prvky CA opět zatupují EL8 [3] a jako napěťové ledovače a invertory byly použity operační zeilovače

25 diferenčním výtupem AD838 [3]. Ideální hodnota f je pro tyto parametry 3,66 MHz. Předpoklad, který repektuje reálné parametry aktivních prvků, udává f = 3,8 MHz a imulace pokytla hodnotu 3, MHz. Ocilátor na obr. 3.9 umožňuje odebírat ignály čtyř fází, pokud e využijí jinak neuplatnitelné výtupy napěťových ledovačů/invertorů. Na obr. 3. je čaový průběh všech dotupných výtupních ignálů ocilátoru. Obr. 3. Čaový průběh dotupných výtupních napětí Na obr. 3. je zaznamenáno několik period pro více dikrétních kmitočtů (hodnot B G, ) na důkaz neměnnoti amplitudy při širokopámovém přeladění. Obr. 3. Přeladění zaznamenané v čaové oblati Detailnější výledky chování ocilátoru při ladění uvádí obr. 3., kde je zachycen rozah doaženého kmitočtové přeladění, změny výtupní úrovně a zkrelení. ozah přeladění je umožněn a vyzkoušen v rozahu,4 MHz až 4,39 MHz při B G, od, do 3,4. Během ladění e výtupní amplitudy všech generovaných průběhů výtupních ignálů téměř nemění a nabývají hodnoty kolem 5,5 V P-P. Harmonické zkrelení doahuje velmi zajímavých hodnot, ve většině páma je kolem,5 % a méně.

26 5,E+6 f [Hz] 4,E+6 U OUT, [Vp-p] 6,5 6 OUT + 3,E+6 5,5,E+6 OUT -,E+6 imulace ocekavano 5,E+,,5,,5,,5 3, 3,5 4, B G, [-] 4,5,E+,E+6,E+6 3,E+6 4,E+6 5,E+6 f [Hz] a) b) 3 THD [%],5,5 OUT - OUT +,5,E+,E+6,E+6 3,E+6 4,E+6 5,E+6 f [Hz] Obr. 3. Výledky imulací ladícího proceu: a) rovnání očekávané ladící charakteritiky a výledků zíkaných imulací, b) závilot výtupní úrovně na ocilačním kmitočtu, c) závilot THD na ocilačním kmitočtu Zhodnocení Prezentovaný návrh a typ ocilátorů, které jou založeny na proudových zeilovačích a napěťových ledovačích, přináší výhody v možnotech nezávilého přímého elektronického řízení CO i f. Náledná modifikace umožňuje odtranit záadní nevýhodu většiny koncepcí, která počívá v záviloti amplitudy jednoho z kvadraturních ignálů na ocilačním kmitočtu (repektive řídícím parametru). Zde byla vyzkoušena velice jednoduchá varianta ytému AGC, která využívá nelineární oblati převodní charakteritiky zeilovače bipolárním tranzitorem. Tato metoda je teoreticky aplikovatelná ve všech předchozích typech ocilátorů, které poléhají na řízení ocilační podmínky pomocí řídícího napětí. Názory na ocilátory založené na řiditelných proudových zeilovačích (zde napětím) e mohou lišit, někdo může považovat plovoucí rezitory za nevýhodu tejně tak, jako nutnot většího počtu AP. Především je třeba mylet na to, že vyšší hodnoty vtupních odporů proudových zeilovačů způobí podtatné rozdíly mezi ideální a kutečnou hodnotou f. Je potřeba je v těchto kmitočtových pámech uvažovat (polu parazitními kapacitami uzlů) pro přené určení f. Lze říci, že typ ocilátoru na obr. 3.9 je v práci jednoznačně nejlepší z hledika širokopámového přeladění, nízkého THD a rovnoti generovaných úrovní při přelaďování. Praktické experimenty napoledy c)

27 uvedeného obvodu budou teprve náledovat a měly by potvrdit vlatnoti tohoto řešení. Malá čát tohoto tématu byla publikována v [x7]. 4 ZÁVĚ Diertační práce e zabývá tudiem elektronicky řiditelných aplikací reálných aktivních prvků v multifunkčních filtrech a ocilátorech. Prvních několik tran je věnováno oučanému tavu, kde jou rozebrány vhodné aktivní prvky a jejich vlatnoti. Dále jou celkem podrobně dikutovány oučané trendy v přítupech k návrhu a yntéze a požadavkům na aktivní prvky a navrhované aplikace. Na úvod kapitoly o tudiu elektronického řízení a reálného chování v oblati multifunkčních filtračních aplikací je několik tránek věnováno metodě yntézy a návrhu za pomoci grafů ignálových toků a upřeněn mírně modifikovaný přítup (dvojité šipky ve větvích konverzí mezi U a I), který je používán v téměř celé práci. Jiné použité metody návrhu jou detailně vyvětleny v konkrétních kapitolách. V kapitole zabývající e problematikou v oblati filtrů je pozornot věnována detailnímu tudiu variability parametrů u vhodných obvodových truktur, které jou navrhovány a analyzovány za pomoci grafů ignálových toků. Způobem, kterým jou použity v práci, je obvod uvažován jako ytém e vzájemnými konverzemi mezi napětími a proudy, což je píše blíže blokovému přítupu i pro paivní čáti a prvky, které e klaickou metodou popiují vlatními myčkami (Coate), nebo e zahrnují do dílčích bloků (integrátorů, ditributorů, zeilovačů,...). Velká naha je věnována především tudiu dopadu reálných aktivních prvků na činnot aplikace. Díky tomuto tudiu jou odvozeny vztahy, které umožňují na základě znalotí parametrů aktivních prvků určit předpokládané chování. Např. v problematice vícemyčkových integrátorových filtračních truktur lze určit hodnotu konečného útlumu v neproputných pámech. V další čáti je pozornot věnována elektronicky laditelným ocilátorům, k jejichž návrhu byla použita řada metod. To byly např. již zmiňované grafy ignálových toků (hojně používané u aktivních filtrů), autonomní obvody obecnými admitancemi, řazení integrátorů do myček a metoda tavových rovnic. Je zde vyzkoušeno (i prakticky) několik užitečných možnotí, jak docílit elektronického řízení aplikace. V mnoha případech je použito řízení pomocí obecného proudového přenou B G. Některé typy zíkaných ocilátorů jou velmi jednoduché minimem aktivních i paivních prvků, ale většinou e ukazuje, že je to vykoupeno nějakou horší vlatnotí, nejčatěji závilotí f také na parametru natavujícím CO. Složitější varianty jou z pohledu elektronického řízení vemě výhodnější, protože řízení CO a f bývá oddělené a bez vzájemného ovlivnění, i když detailní tudium dopadu parametrů reálných AP někdy prokáže opak. Ve většině případů je však vliv natavovaného parametru, který e v důledku parazitních parametrů AP nechtěně objeví např. ve vztahu pro f, mnohem méně podtatný než v případě, že je parametr přítomen i v ideálních vztazích (přítomnot parametru natavujícího CO ve vztahu

28 pro f ). V problematice ocilátorů lze zíkanými vztahy, ve kterých jou zahrnuty podtatné vlivy reálných AP, určit předpokládanou hodnotu ocilačního kmitočtu (lišící e od ideálního), která byla ve většině případů potvrzena i experimentálně. Dalším dikutovaným projevem je závilot amplitudy jednoho z generovaných ignálů (u kvadraturních typů) na ladícím parametru a tedy i na f. Jedno z prezentovaných řešení bylo navrženo tak, aby bylo janě vidět, jak tento problém odtranit. Znamená to navýšení počtu AP a nutnot ouběžného řízení dvou parametrů, ale rozah přeladění e značně rozšíří. Několik variant ocilátorů využívá napěťové ledovače jako funkční oučát obvodu (z hledika yntézy), ne pouze jako případné impedanční oddělení. Velmi jednoduchá koncepce AGC e ukázala jako dotačující při širším přeladění f nejméně ve dvou případech řízení plnění CO pomocí natavovacího napětí, což bylo ověřeno i experimentálně. Navržené obvody jou pouzovány dle výledků ymbolické analýzy (nápomocen je SNAP a Matlab), která zahrnuje podtatné parametry aktivních prvků, náleduje imulace v OrCAD modelováním na 3. úrovni (ABM řízené zdroje - lineární, kmitočtově závilé) a poté imulace vhodnými modely vyšší úrovně (známé či upravené tranzitorové truktury) či makromodely výrobců, pokud takový aktivní prvek může vhodně zatoupit obecný funkční blok v aplikaci. Pak u vybraných typů náleduje ověření měřením. Diertační práce prezentuje několik modifikovaných (ve mylu řízení) i nových obvodových truktur v oblati aktivních elektronicky řiditelných variabilních vícefunkčních filtrů. Zejména je zajímavá varianta MO-CCCII v kap. 5.., která využívá kombinaci dvou druhů řízení (vtupní odpor X a proudový přeno B G ) ve truktuře ditribucí. Díky tomu je docíleno téměř všetranných možnotí variability aplikace. Struktura neobahuje, na rozdíl od některých dalších, v ditribučním bodě vyoko-impedanční uzel, protože výtup integrátoru je přímo vázán na nízkoimpedanční vtup ditributoru. Další zajímavou původní trukturou (kap. 5..3) je např. dikutovaný dvouúčelový filtr (PZ/FČ) ECCII-, který nevyžaduje pro změnu typu přenou přepojení vtupní nebo výtupní brány (potačuje na to pouhá elektronická změna parametru). Zíkaný obvod je velmi jednoduchý a má několik nevýhod, které odtraňuje mnohem ložitější realizace. V oblati ocilátorů bylo nalezeno několik řešení plňujících podmínku elektronického řízení CO i f. Některá jou vým způobem zcela exotická a jedinečná vou jednoduchotí (kap. 6., kap. 6.., kap. 6.3.). V rámci této čáti práce byla předtavena nová modifikace prvku CCTA. Některá jou komplikovanější (kap. 6.4., kap ), ale vynikají pecifickými vlatnotmi a chopnotmi, jako je nezávilé řízení CO a f, zíkání ignálu vzájemným fázovým pouvem 9 a vícefázový výtup.

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha čílo teoretická čát Filtry proudovými konvejory Laboratorní úloha je zaměřena na eznámení e principem činnoti proudových konvejorů druhé generace a

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY Ing. Roman Šotner STUDIUM ELEKTRONICKÉHO ŘÍZENÍ A REÁLNÉHO CHOVÁNÍ VARIABILNÍCH FILTRAČNÍCH A OSCILAČNÍCH

Více

UNIVERZÁLNÍ ELEKTRONICKY PŘELADITELNÝ BIKVAD S DISTRIBUOVANOU

UNIVERZÁLNÍ ELEKTRONICKY PŘELADITELNÝ BIKVAD S DISTRIBUOVANOU 9/47 9. 9. 9 UNIVERZÁLNÍ ELEKTRONICKY PŘELADITELNÝ BIKVAD S DISTRIBUOVANOU STRUKTUROU V PROUDOVÉM MÓDU VYUŽÍVAJÍCÍ MO-CCCII Roman Šotner, Jiří Petržela, Jan Kovář Útav radioelektroniky Fakulta elektrotechniky

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Útav teoretické a experimentální elektrotechniky Ing. Martin Friedl SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ SYNTHESIS

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava

Více

PŘELAĎOVÁNÍ AKTIVNÍCH FILTRŮ POMOCÍ NAPĚŤOVĚ ŘÍZENÝCH ZESILOVAČŮ

PŘELAĎOVÁNÍ AKTIVNÍCH FILTRŮ POMOCÍ NAPĚŤOVĚ ŘÍZENÝCH ZESILOVAČŮ PŘELAĎOVÁNÍ AKTIVNÍCH FILTRŮ POMOCÍ NAPĚŤOVĚ ŘÍZENÝCH ZESILOVAČŮ Tuning Active Filters by Voltage Controlled Amplifiers Vladimír Axman *, Petr Macura ** Abstrakt Ve speciálních případech potřebujeme laditelné

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

elektrické filtry Jiří Petržela aktivní prvky v elektrických filtrech

elektrické filtry Jiří Petržela aktivní prvky v elektrických filtrech Jiří Petržela základní aktivní prvky používané v analogových filtrech standardní operační zesilovače (VFA) transadmitanční zesilovače (OTA, BOTA, MOTA) transimpedanční zesilovače (CFA) proudové konvejory

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením

Více

Dolní propust třetího řádu v čistě proudovém módu

Dolní propust třetího řádu v čistě proudovém módu 007/.0.007 Dolní propust třetího řádu v čistě proudovém módu Jan Jeřábek a Kamil Vrba xjerab08@stud.feec.vutbr.cz, vrbak@feec.vutbr.cz Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních

Více

elektrické filtry Jiří Petržela aktivní filtry

elektrické filtry Jiří Petržela aktivní filtry Jiří Petržela postup při návrhu filtru nové struktury analýza daného obvodu programem Snap získání symbolického tvaru přenosové funkce srovnání koeficientů přenosové funkce s přenosem obecného bikvadu

Více

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012) Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních

Více

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha číslo 10 návod k měření Filtr čtvrtého řádu Seznamte se s principem filtru FLF realizace a jeho obvodovými komponenty. Vypočtěte řídicí proud všech

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ ČENÍ TEHNIKÉ V BNĚ BNO NIVESITY OF TEHNOLOGY FAKLTA ELEKTOTEHNIKY A KOMNIKAČNÍH TEHNOLOGIÍ ÚSTAV TEOETIKÉ A EXPEIMENTÁLNÍ ELEKTOTEHNIKY FALTY OF ELETOTEHNIAL ENGINEEING AND OMMNIATION DEPATMENT

Více

Příloha 1 Zařízení pro sledování rekombinačních procesů v epitaxních vrstvách křemíku.

Příloha 1 Zařízení pro sledování rekombinačních procesů v epitaxních vrstvách křemíku. Příloha 1 Zařízení pro ledování rekombinačních proceů v epitaxních vrtvách křemíku. Popiovaný způob měření e vztahuje ke labě dopovaným epitaxním vrtvám tejného typu vodivoti jako ilně dopovaný ubtrát.

Více

Digitálně elektronicky řízený univerzální filtr 2. řádu využívající transimpedanční zesilovače

Digitálně elektronicky řízený univerzální filtr 2. řádu využívající transimpedanční zesilovače 007/35 309007 Digitálně elektronicky řízený univerzální filtr řádu využívající transimpedanční zesilovače Bc oman Šotner Ústav radioelektroniky Fakulta elektrotechniky a komunikačních technologií Vysoké

Více

elektrické filtry Jiří Petržela filtry se syntetickými bloky

elektrické filtry Jiří Petržela filtry se syntetickými bloky Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II

2. GENERÁTORY MĚŘICÍCH SIGNÁLŮ II . GENERÁTORY MĚŘICÍCH SIGNÁLŮ II Generátory s nízkým zkreslením VF generátory harmonického signálu Pulsní generátory X38SMP P 1 Generátory s nízkým zkreslením Parametry, které se udávají zkreslení: a)

Více

I. Současná analogová technika

I. Současná analogová technika IAS 2010/11 1 I. Současná analogová technika Analogové obvody v moderních komunikačních systémech. Vývoj informatických technologií v poslední dekádě minulého století digitalizace, zvýšení objemu přenášených

Více

Příklad 1 Ověření šířky trhlin železobetonového nosníku

Příklad 1 Ověření šířky trhlin železobetonového nosníku Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování

Více

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/

Více

OPERA Č NÍ ZESILOVA Č E

OPERA Č NÍ ZESILOVA Č E OPERAČNÍ ZESILOVAČE OPERAČNÍ ZESILOVAČE Z NÁZVU SE DÁ USOUDIT, ŽE SE JEDNÁ O ZESILOVAČ POUŽÍVANÝ K NĚJAKÝM OPERACÍM. PŮVODNÍ URČENÍ SE TÝKALO ANALOGOVÝCH POČÍTAČŮ, KDE OPERAČNÍ ZESILOVAČ DOKÁZAL USKUTEČNIT

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení Jméno a příjmení ID FYZIKÁLNÍ PRAKTIK Ročník 1 Předmět Obor Stud. kupina Kroužek Lab. kup. FEKT VT BRNO Spolupracoval ěřeno dne Odevzdáno dne Příprava Opravy čitel Hodnocení Název úlohy Čílo úlohy 1. Úkol

Více

Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1

Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1 Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1 Heater Voltage 6.3-12 V Heater Current 300-150 ma Plate Voltage 250 V Plate Current 1.2 ma g m 1.6 ma/v m u 100 Plate Dissipation (max) 1.1

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

Experiment s FM přijímačem TDA7000

Experiment s FM přijímačem TDA7000 Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního

Více

Operační zesilovač (dále OZ)

Operační zesilovač (dále OZ) http://www.coptkm.cz/ Operační zesilovač (dále OZ) OZ má složité vnitřní zapojení a byl původně vyvinut pro analogové počítače, kde měl zpracovávat základní matematické operace. V současné době je jeho

Více

1. Matematický model identifikované soustavy

1. Matematický model identifikované soustavy IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46

Více

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?

Více

Generátory měřicích signálů

Generátory měřicích signálů Lubomír Slavík TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, inormatiky a mezioborových tudií Materiál vznikl v rámci projektu ESF (CZ..07/2.2.00/07.0247), který je poluinancován Evropkým ociálním

Více

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. ) ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...

Více

Fyzikální praktikum 3 Operační zesilovač

Fyzikální praktikum 3 Operační zesilovač Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Řízení tepelného výkonu horkovodu simulace řízeného systému i řídicího algoritmu

Řízení tepelného výkonu horkovodu simulace řízeného systému i řídicího algoritmu Řízení tepelného výkonu horkovodu imulace řízeného ytému i řídicího algoritmu Operating of heat rate hot water pipe imulation of control ytem and control algorithm Bc. Michaela Pliková Diplomová práce

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Zpětná vazba a linearita zesílení

Zpětná vazba a linearita zesílení Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje

Více

Přeladitelné filtry s OTA zesilovači

Přeladitelné filtry s OTA zesilovači 7/8 17.7.7 Přeladitelné filtry s OTA zesilovači Ing. Norbert Herencsár, Prof. Ing. amil Vrba, CSc. Ústav telekomunikací, Fakulta elektrotechniky a komunikačních technologií, Vysoké učení technické v Brně,

Více

Vektorové obvodové analyzátory

Vektorové obvodové analyzátory Radioelektronická měření (MREM, LREM) Vektorové obvodové analyzátory 9. přednáška Jiří Dřínovský Ústav radioelektroniky FEKT VUT v Brně Úvod Jedním z nejběžnějších inženýrských problémů je měření parametrů

Více

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické

Více

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač

Více

PROUDOVÝ ZESILOVAČ V DIFERENČNÍCH KMITOČTOVÝCH FILTRECH

PROUDOVÝ ZESILOVAČ V DIFERENČNÍCH KMITOČTOVÝCH FILTRECH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1

Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1 Fakulta biomedicínského inženýrství Elektronické obvody 2016 prof. Ing. Jan Uhlíř, CSc. 1 Obsah předmětu Elektronické obvody 1. Zesilovače analogových signálů 2. Napájení elektronických systémů 3. Nelineární

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením.

ochranným obvodem, který chrání útlumové články před vnějším náhodným přetížením. SG 2000 je vysokofrekvenční generátor s kmitočtovým rozsahem 100 khz - 1 GHz (s option až do 2 GHz), s možností amplitudové i kmitočtové modulace. Velmi užitečnou funkcí je také rozmítání výstupního kmitočtu

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

NÁVRH KMITOČTOVÝCH FILTRŮ METODOU AUTONOMNÍHO OBVODU S VÍCEBRANOVÝMI ZDROJI PROUDU ŘÍZENÝMI PROUDEM

NÁVRH KMITOČTOVÝCH FILTRŮ METODOU AUTONOMNÍHO OBVODU S VÍCEBRANOVÝMI ZDROJI PROUDU ŘÍZENÝMI PROUDEM VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

7. cvičení návrh a posouzení smykové výztuže trámu

7. cvičení návrh a posouzení smykové výztuže trámu 7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení Vyhodnocování impulních měření a kvalita vyokonapěťových měření 1 Měření impulních napětí Metody pro tanovení 50 konvenční (po hladinách) 3 Pravděpodobnotní papír 4 Výpočet 50 a pomocí metody nejmenších

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

BENCHMARKOVÝ MODEL CHLADICÍHO ZAŘÍZENÍ V SUPERMARKETECH SUPERMARKET REFRIGERATION BENCHMARK MODEL

BENCHMARKOVÝ MODEL CHLADICÍHO ZAŘÍZENÍ V SUPERMARKETECH SUPERMARKET REFRIGERATION BENCHMARK MODEL BENCHMARKOVÝ MODEL CHLADICÍHO ZAŘÍZENÍ V SUPERMARKETECH D. Honc, F. Dušek Katedra řízení proceů, Fakulta elektrotechniky a informatiky, Univerzita Pardubice Abtrakt Řízení rozáhlých ytémů je prakticky

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů

teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,

Více

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů

Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů Diagnostika a testování elektronických systémů Úloha A2: 1 Operační zesilovač Jméno: Datum: Obsah úlohy: Diagnostika chyb v dvoustupňovém operačním zesilovači Úkoly: 1) Nalezněte poruchy v operačním zesilovači

Více

Inovace ve vnìjší ochranì pøed bleskem Izolovaný svod HVI s vysokonapěťovou izolací

Inovace ve vnìjší ochranì pøed bleskem Izolovaný svod HVI s vysokonapěťovou izolací Ochrana pøed pøepìtím Ochrana pøed blekem/uzemnìní Ochrana pøi práci DEHN chrání. DEHN + SÖHNE GmbH + Co.KG Han-Dehn-Str. 1 Potfach 1640 92306 Neumarkt Nìmecko. Tel. +49 9181 906-0 Fax +49 9181 906-1100

Více

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah

PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...

Více

Multifunkční kmitočtový filtr s proudovými konvejory dosahující vysoký činitel jakosti

Multifunkční kmitočtový filtr s proudovými konvejory dosahující vysoký činitel jakosti 7/.9.7 Multifunkční kmitočtový filtr s proudovými konvejory dosahující vysoký činitel jakosti Jaroslav oton, amil Vrba Vysoké učení technické v Brně, Fakulta elektroniky a komunikačních technologií Ústav

Více

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,

Více

s = Momentová charakteristika asynchronního motoru s kotvou nakrátko

s = Momentová charakteristika asynchronního motoru s kotvou nakrátko Aynchronní třífázové motory / Vznik točivého pole a základní vlatnoti motoru Aynchronní indukční motory jou nejjednoduššími a provozně nejpolehlivějšími motory. otor e kládá ze tatoru a rotoru. Stator

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1

POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1 POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1 (zimní semestr 2012/2013, kompletní verze, 2. 11. 2012) Téma 1 / Úloha 1: (zesilovač napětí s ideálním operačním zesilovačem) Úkolem je navrhnout dva různé

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo Projektu Škola CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Bc.Štěpán Pavelka Číslo VY_32_INOVACE_EL_2.17_zesilovače 8 Název Základní

Více

Kmitočtová analýza (AC Analysis) = analýza kmitočtových závislostí obvodových veličin v harmonickém ustáleném stavu (HUS) při první iteraci ano

Kmitočtová analýza (AC Analysis) = analýza kmitočtových závislostí obvodových veličin v harmonickém ustáleném stavu (HUS) při první iteraci ano Kmitočtová analýza (AC Analysis) = analýza kmitočtových závislostí obvodových veličin v harmonickém ustáleném stavu (HUS) - napodobování činnosti inteligentního obvodového analyzátoru. Další příbuzné analýzy:

Více

Řada 70 - Měřicí a kontrolní relé, A

Řada 70 - Měřicí a kontrolní relé, A Řada 70 - Měřicí a kontrolní relé, 6-8 - 10 A Řada 70 Síťová kontrolní a měřicí relé, 1- a 3-fázová multifunkční pro kontrolní a měřicí účely: podpětí, přepětí, podpětí a přepětí oučaně, výpadek fáze,

Více

elektrické filtry Jiří Petržela filtry se spínanými kapacitory

elektrické filtry Jiří Petržela filtry se spínanými kapacitory Jiří Petržela motivace miniaturizace vytvoření plně integrovaného filtru jednotnou technologií redukce plochy na čipu snížení ceny výhody koncepce spínaných kapacitorů (SC) koeficienty přenosové funkce

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

VÝPOČET ŠÍŘKY TRHLIN 3. ČÁST CALCULATION OF THE CRACKS WIDTH 3 RD PART

VÝPOČET ŠÍŘKY TRHLIN 3. ČÁST CALCULATION OF THE CRACKS WIDTH 3 RD PART VÝPOČT ŠÍŘKY TRHLIN. ČÁST CALCULATION OF TH CRACKS WIDTH RD PART Jiří Šmejkal, Jarolav Procházka V připravované změně národní přílohy k ČSN N 199-1-1 je navržena změna oučinitele vyjadřujícího vliv betonové

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat

Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat Akademický rok 07/08 Připravil: adim Farana Automatizační technika Algebra blokových chémat, vývojové diagramy Obah Algebra blokových chémat ývojové diagramy Algebra blokových chémat elikou výhodou popiu

Více

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb.

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. Doporučené aplikace tanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. 1 Metodické pokyny pro určení množtví elektřiny z vyokoúčinné

Více

5. POLOVODIČOVÉ MĚNIČE

5. POLOVODIČOVÉ MĚNIČE 5. POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (střední hodnota) a u střídavých i kmitočet. Obr. 5.1. Základní dělení měničů 1 Obr. 5.2.

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno:

1. Navrhněte RC oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: C OSCILÁTO 20-4. Navrhněte C oscilátor s Wienovým článkem, operačním zesilovačem a žárovkovou stabilizací amplitudy, podle doporučeného zapojení, je-li dáno: - rozsah frekvencí: f 60 Hz, f 600Hz - operační

Více

přírodovědných a technických oborů. Scientia in educatione, roč. 5 (2014), č. 1, s

přírodovědných a technických oborů. Scientia in educatione, roč. 5 (2014), č. 1, s [15] Nováková, A., Chytrý, V., Říčan, J.: Vědecké myšlení a metakognitivní monitorování tudentů učiteltví pro 1. tupeň základní školy. Scientia in educatione, roč. 9 (2018), č. 1,. 66 80. [16] Bělecký,

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více