Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat

Rozměr: px
Začít zobrazení ze stránky:

Download "Automatizační technika. Obsah. Algebra blokových schémat Vývojové diagramy. Algebra blokových schémat"

Transkript

1 Akademický rok 07/08 Připravil: adim Farana Automatizační technika Algebra blokových chémat, vývojové diagramy Obah Algebra blokových chémat ývojové diagramy Algebra blokových chémat elikou výhodou popiu vlatnotí lineárních dynamických členů pomocí přenoů je možnot používání blokových chémat, ve kterých každý člen je vyjádřen blokem vepaným přenoem, čítání či odčítání veličin je vyjádřeno umačním uzlem, a větvení veličin informačním uzlem. a b c yjádření: a dynamického členu blokem, b čítání či odečítání veličin umačním uzlem, c větvení veličin informačním uzlem

2 Algebra blokových chémat 4 Pro blok platí pro umační uzel Ze umačního uzlu může vycházet pouze jeden výtup. yplněný egment vyjadřuje znaménko minu. Někdy míto vyplněného egmentu e znaménko minu napíše u přílušné veličiny Sériové zapojení 5 Pro ériové zapojení bloků platí X X X X ériového zapojení platí, že výledný přeno je dán oučinem jednotlivých přenoů na pořadí nezáleží. Paralelní zapojení 6 Pro paralelní zapojení bloků platí paralelního zapojení platí, že výledný přeno je dán oučtem jednotlivých přenoů uvažováním přílušných znamének u oučtového uzlu.

3 7 Zpětnovazební zapojení PŘÍMÁ ĚTE X ± X ZPĚTNOAZEBNÍ ĚTE Zpětnovazební zapojení bloků je velmi důležité celou teorii automatického řízení. Platí pro něj vztahy X X X X zpětnovazebního zapojení je výledný přeno dán přenoem v přímé větvi podělený záporným u kladné zpětné vazby, rep. kladným u záporné zpětné vazby oučinem přenoů v přímé i zpětnovazební větvi zvětšeným o jedničku. 8 Základní úpravy blokových chémat Přeunutí informačního uzlu před blok Přeunutí informačního uzlu za blok 9 Základní úpravy blokových chémat Přeunutí umačního uzlu před blok Přeunutí umačního uzlu za blok

4 0 Základní úpravy blokových chémat Přeunutí bloku z paralelní větve Přeunutí bloku ze zpětnovazební větve Příklad Blokové chéma je třeba zjednodušit za předpokladu, že za výtupní veličiny jou uvažovány obrazy a E. Z důvodu jednoduchoti a přehlednoti u přenoů a obrazů veličin není uváděna nezávile proměnná komplexní proměnná. P E S MČ Řešení příkladu a a Nejdříve předpokládáme, že výtupní veličina je a vtupní veličina, a proto uvažujeme = 0. Potupná úprava a zjednodušení blokového chématu je: S S MČ MČ Z poledního chématu již plyne výledný přeno S wy S MČ 4

5 Řešení příkladu a Nyní jako vtupní veličina je uvažována a výtupní. P P S MČ tupní veličina = 0 a umační uzel e znaménkem minu e přeune P S MČ ýledný přeno má tvar na pořadí přenoů v oučinu S MČ nezáleží SMČ P vy S MČ 4 Řešení příkladu a Pro výtupní veličinu platí rovnice wy vy které odpovídá zjednodušené blokové chéma vy wy 5 Řešení příkladu b b Nyní předpokládáme, že výtupní veličina je E. Pro vtupní veličinu za předpokladu = 0 je výchozí blokové chéma: E MČ S pro vtupní veličinu za předpokladu = 0 je výchozí blokové chéma: E P MČ MČ S 5

6 6 Řešení příkladu b Pro obě bloková chémata lze napat výledné přenoy přímo we S MČ Pro výtupní veličinu E platí rovnice PMČ ve S MČ E we ve ve E we 7 Příklad Pro náledující zapojení je třeba určit výledný přeno wy K S 8 Řešení příkladu a Sumační uzel mezi bloky přenoy a S e potupně přeune tak, aby pak již bylo možné jednoduše určit hledaný přeno wy. K K S S Na základě pravidel pro paralelní a zpětnovazební zapojení lze pát K S KS S wy S S 6

7 9 Řešení příkladu b ýledný přeno wy můžeme zíkat ještě nadněji. Blokové chéma upravíme K S Pro výtupní veličinu tj. její obraz platí S KS KS S S S S Algoritmu Algoritmu je přený předpi definující výpočtový proce vedoucí od měnitelných výchozích údajů až k žádaným vždy právným výledkům. Tento předpi e kládá z jednotlivých výpočtových kroků, které jou zapány v určitém pořadí. Počet výpočtových kroků muí být konečný. latnoti algoritmu determinovanot - hrnuje přenot, rozumitelnot a jednoznačnot. každém okamžiku řešení muí být jané, jakou operaci má algoritmu provádět. hromadnot maovot - algoritmu muí popiovat zpracování celé kupiny příbuzných hodnot. rezultativnot - algoritmu muí vždy dopět ke právnému výledku, a to pomocí konečného počtu kroků. opakovatelnot - při tejných hodnotách vtupních dat muí algoritmu vždy dopět ke tejnému výledku. 7

8 Algoritmu veru program program = poloupnot příkazů, dokumentuje e výpiem programu, je chráněn autorkým zákonem. algoritmu = potup práce, dokumentuje e zápiem algoritmu, je možné ho patentovat. Program realizuje algoritmu algoritmy, algoritmu je jeho nutnou oučátí. Popi algoritmu Slovní popi pracovní potup, trukturovaný text, zápi pomocí grafu, peudokód programovací. rafický zápi vývojový diagram, diagram aktivit ML, Kopenogram, NS-diagram, trukturogram. ývojový diagram Popi algoritmů pro FOTAN FOmula TANlator IBM v r. 954 Formalizován různými normativy ČSN začátek čti čílo čílo = 0 - piš čílo konec - čílo je udé piš liché piš udé 8

9 Diagram aktivit ML Diagramy aktivit e podobají vývojovým diagramům, ale jou nátrojem komplexního CASE Computer-Aided Software Engineering ytému názvem nified Modeling Language, ve zkratce ML. Zpracování ouboru dat <>0 čti čílo piš čílo =0 piš "liché" piš "udé" Strukturogram Michael A. Jackon, 975 Základní truktury: ekvence poloupnot operací, elekce větvení. opakování zvláštní případ ekvence. Snadné potupné upřeňování algoritmu Michael Anthony Jackon * 96 Jednoznačný vztah mezi daty a algoritmem Strukturogram tupní oubor dat : vtup : Algoritmu zpracování výtup číla nula začátek tělo konec * čílo znázornění opakování číel : příprava čti čílo * řádek : piš čílo text vtup / napiš "udé" čílo je udé / napiš "liché" čti čílo 9

10 Základní truktury Peudojazyk ývojový diagram Diagram aktivit Strukturogram Programový celek rutina, podrogram, procedura a pod. - definice název parametry... end název začátek. jeden celý trukturogram programový celek - použití volání konec název parametry názevpar. název par. názevpar. Podmíněná činnot, rozhodování Peudojazyk ývojový diagram Diagram aktivit Strukturogram Provedení konkrétní činnoti popi činoti popi činnoti popi činnoti popi činnoti Podmíněná činnot provádí e pouze pokud je plněna určitá podmínka if podmínka podmíněná činnot end if - podmínka činnot myl má jen rozhodování činnot podmínka ozhodování pokud platí určená podmínka, provede e činnot, jinak činnot if podmínka činnot ele činnot end if podmínka - jinak činnot [podmínka ] činnot podmínka podmínka činnot činnot činnot činnot loučení Peudojazyk ývojový diagram Diagram aktivit Strukturogram ětvení podle hodnoty výrazu e provádí určená činnot cae výraz=hodnota činnot cae výraz=hodnota činnot... cae ele činnot při neznámé hodnotě end cae výraz = hodnota činnot - výraz = hodnota n činnot n - činnot při neznámé hodnotě jinak činnot n [podm. ] [podm. ] činnot činnot výraz = hodnota výraz = hodnota... činn. činn. činnot při nezn. hodnotě Opakování pevným počtem opakování for počítadlo=začátek to konec tep krok činnot end for počítadlo=začátek počít. > konec - je nutno etavit z otatních značek podobně jako u vývojového diagramu # počet opakování činnot činnot počítadlo=počítadlokrok 0

11 Opakování Peudojazyk ývojový diagram Diagram aktivit Strukturogram Opakování tetem na začátku dokud platí podmínka, činnot e opakuje - pokud na začátku opakování není podmínka plněna, činnot e vůbec neprovede while podmínka činnot - podmínka end while činnot je nutno etavit z otatních značek podobně jako u vývojového diagramu * podmínka činnot Opakování tetem na konci opakování končí, pokud je plněna podmínka - i když podmínka platí již na začátku opakování, činnot e jednou provede repeat činnot until podmínka v některých jazycích - while činnot end while podm. činnot podmínka je nutno etavit z otatních značek podobně jako u vývojového diagramu neexituje Zvláštní činnoti Peudojazyk ývojový diagram Diagram aktivit Strukturogram tupní nebo výtupní operace Jako každá jiná činnot popi činnoti jako každá jiná aktivita Jako každá jiná činnot Přípravná činnot Jako každá jiná činnot popi činnoti jako každá jiná aktivita Jako každá jiná činnot Spojka činnot končí v jedné čáti algoritmu a pokračuje v jiné čáti Neexituje čílo čílo Neexituje Neexituje Algoritmu náobení dvou Náobení číel číel Single Acc= 0 začátek tělo konec Exp = exponenta exponentb - / BitB, I= přičti náobení / # bit I = to 4 poun ShiftA Proměnné: A, B činitelé normalizované mantiy Acc akumulátor Exp exponent I celočíelné počítadlo Funkce: Shiftx bitová rotace vpravo exponentx exponent číla Acc=Acc A normalizace / BitAcc, 0= / uprav ShiftAcc ShiftA Exp = Exp

12 Tetování algoritmu Náobení číel začátek tělo konec Acc= 0 Exp = exponenta # I = to 4 exponentb - bit Proměnné: A : 0, , , , B : 0, náobení poun Acc=Acc A / BitB, I= přičti normalizace / BitAcc, 0= / / ShiftA Acc : 0, Chyba opiu,, riziko ručního tetování Exp: -7-6 uprav ShiftAcc ShiftA Exp = Exp I: atd. Hodnocení ložitoti algoritmů ypočitatelnot algoritmu Turingův troj Alan M. Turing, 96 abtraktní model počítače, Alonzem Churchem vylovili domněnku, že je ekvivalentní počítačem nekonečnou pamětí, Dokázal, že nelze etavit troj, který určí, zda e libovolný troj zataví. Determinitický Turingův troj nekonečná páka čtecí hlava proceor Alan Mathion Turing * London ilmlow Další krok závií na vnitřním tavu a přečtené hodnotě Čaová ložitot algoritmu Ča na vykonání algoritmu vyjádřený v počtu elementárních operací. šechny operace trvají tejně dlouho. Složitot algoritmu je funkcí vtupu n. Kontantní rozdíly e ignorují. Nechť fn, gn jou funkce z množiny přirozených číel do množiny reálných číel, pak fn = Ogn, pokud exituje kontanta c, že pro velké n platí: fn cgn.

13 ýpočet ložitoti algoritmu Náobení dvou čtvercových matic rozměru n n Sub NaobeniCtvercovychMatican n,bn n,cn n For I = to n n * For J = to n n * ci, J = 0 For K = to n n * ci, J = ci, J ai, K*bK, J Next K Next J Next I End Sub fn = nnn=5n n n zjednodušení fn = n n n = n Složitot algoritmů Polynomiální ložitot: výpočet vyžaduje Ok d bitových operací čítání d =, náobení d =. Nepolynomiální ložitot: ložitot výpočtu rotoucím n rote rychleji. n! - Onlog n = O k k. a n Příklady funkcí Funkce Přibližné hodnoty Průběh funkcí v logaritmickém měřítku n nlog n n n 04,7E0,07E0 n log n 099,94E 7,90E9 n! ,E57 4E567 logfn n nlogn n^ ^n n^logn n! n

14 Třídy NP a NP-úplných problémů P chůdné algoritmy běžící nejhůře v polynomiálním čae PT náobení, NP problém nondeterminitic polynomial nechůdné algoritmy, v PT lze pouze ověřit právnot řešení faktorizace, NP-úplný problém NP problémy vzájemně mapovatelné v PT obchodní cetující, exituje P tranformace jednoho na druhý. 4

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Informatika Algoritmy

Informatika Algoritmy Informatika Algoritmy Radim Farana Podklady předmětu Informatika pro akademický rok 2010/2011 Obsah Algoritmus. Vlastnosti algoritmu. Popis algoritmu. Hodnocení algoritmů. Příklady algoritmů. Algoritmus

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Násobení. INP 2008 FIT VUT v Brně

Násobení. INP 2008 FIT VUT v Brně Náobení INP 2008 FIT VUT v Brně Náobení a náobičky Při náobení číel v dvojkové outavě můžeme náobit abolutní hodnoty číel a pak doplnit do výledku znaménko, anebo raději náobit přímo číla e znaménkem.

Více

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012) Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5

2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5 Obsah Obsah 1 Řídicí struktury 1 2 Podmínka 1 2.1 Podmínka typu case......................... 2 3 Příkaz skoku 3 4 Cykly 4 4.1 Cyklus s podmínkou na začátku................... 4 4.2 Cyklus s podmínkou

Více

Technická kybernetika. Linearizace. Obsah

Technická kybernetika. Linearizace. Obsah Aademcý ro 06/07 řpravl: adm Farana Techncá ybernea Idenface yémů, algebra bloových chéma Obah Lnearzace. Analycá denface. Expermenální denface. Algebra bloových chéma. Záladní přenoy reglačního obvod.

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. ) ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Teorie elektronických obvodů (MTEO)

Teorie elektronických obvodů (MTEO) Teorie elektronických obvodů (MTEO) Laboratorní úloha čílo teoretická čát Filtry proudovými konvejory Laboratorní úloha je zaměřena na eznámení e principem činnoti proudových konvejorů druhé generace a

Více

Algoritmizace. 1. Úvod. Algoritmus

Algoritmizace. 1. Úvod. Algoritmus 1. Úvod Algoritmizace V dnešní době již počítače pronikly snad do všech oblastí lidské činnosti, využívají se k řešení nejrůznějších úkolů. Postup, který je v počítači prováděn nějakým programem se nazývá

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

Příklady k přednášce 6 - Spojování a struktury

Příklady k přednášce 6 - Spojování a struktury Příklad k přednášce 6 - Spojování a truktur Michael Šebek Automatické řízení 07 7-3-8 Automatické řízení - Kbernetika a robotika Zpětnovazební pojení tavových modelů Odvození obecného případu (značení

Více

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz

ANALÝZA A KLASIFIKACE DAT. Institut biostatistiky a analýz ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík,, CSc. III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných dat je vyjádřen n-rozměrným loupcovým vektorem hodnot x i,

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 013 7-4-14 Opakování: Dělení polynomů: e zbytkem a bez Polynomy tvoří okruh, ale ne těleo (Okruh tvoří také celá číla, těleo

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 1 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:

Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu: Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ. 1.07/1.5.00/34.0637 Šablona III/2 Název VY_32_INOVACE_39_Algoritmizace_teorie Název školy Základní škola a Střední

Více

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava

Složitost algoritmů. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Složitost algoritmů doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 27. prosince 2015 Jiří Dvorský (VŠB TUO) Složitost algoritmů

Více

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Základy algoritmizace

Základy algoritmizace Algoritmus Toto je sice na první pohled pravdivá, ale při bližším prozkoumání nepřesná definice. Například některé matematické postupy by této definici vyhovovaly, ale nejsou algoritmy. Přesné znění definice

Více

PSK3-4. Přístupová práva. setfacl z balíčku acl.)

PSK3-4. Přístupová práva. setfacl z balíčku acl.) PSK3-4 Název školy: Autor: Anotace: Vzdělávací oblat: Předmět: Tematická oblat: Výledky vzdělávání: Klíčová lova: Druh učebního materiálu: Vyšší odborná škola a Střední průmylová škola, Božetěchova 3 Ing.

Více

VISUAL BASIC. Přehled témat

VISUAL BASIC. Přehled témat VISUAL BASIC Přehled témat 1 ÚVOD DO PROGRAMOVÁNÍ Co je to program? Kuchařský předpis, scénář k filmu,... Program posloupnost instrukcí Běh programu: postupné plnění instrukcí zpracovávání vstupních dat

Více

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44

Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44 Algoritmizace a programování Ak. rok 2012/2013 vbp 1. ze 44 Vladimír Beneš Petrovický K101 katedra matematiky, statistiky a informačních technologií vedoucí katedry E-mail: vbenes@bivs.cz Telefon: 251

Více

Vývojové diagramy - zápis algoritmu

Vývojové diagramy - zápis algoritmu DUM Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Algoritmy DUM III/2-T1-1-12 PRG-01A-var1 Téma: Vývojové diagramy - výklad Střední škola Rok: 2012 2013 Varianta: A Zpracoval:

Více

Výfučtení: Triky v řešení fyzikálních úkolů

Výfučtení: Triky v řešení fyzikálních úkolů Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

Basic256 - úvod do programování Příklady. ing. petr polách

Basic256 - úvod do programování Příklady. ing. petr polách Basic256 - úvod do programování Příklady ing. petr polách 1 Basic 256 input, print Př.: Vytvořte program pro součet dvou čísel: input "Zadej a: ", a input "Zadej b: ", b print a+b input "Zadej a: ", a

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Operátory pro maticové operace (operace s celými maticemi) * násobení maticové Pro čísla platí: 2*2

Operátory pro maticové operace (operace s celými maticemi) * násobení maticové Pro čísla platí: 2*2 * násobení maticové Pro čísla platí: Pro matice - násobení inverzní maticí inv inverzní matice A -1 k dané matici A je taková matice, která po vynásobení s původní maticí dá jednotkovou matici. Inverzní

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

Propočty přechodu Venuše 8. června 2004

Propočty přechodu Venuše 8. června 2004 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.

CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4. CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného

Více

Příklady k přednášce 19 - Polynomiální metody

Příklady k přednášce 19 - Polynomiální metody Příklady k přednášce 19 - Polynomiální metody Michael Šebek Automatické řízení 016 15-4-17 Dělení polynomů: e zbytkem a bez Polynomy netvoří těleo (jako reálná číla, racionální funkce, ) ale okruh (jako

Více

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15

11 - Regulátory. Michael Šebek Automatické řízení 2015 24-3-15 - Regulátory Michael Šebe Automaticé řízení 5 4-3-5 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

4 HMM a jejich trénov

4 HMM a jejich trénov Pokročilé metody rozpoznávánířeči Přednáška 4 HMM a jejich trénov nování Skryté Markovovy modely (HMM) Metoda HMM (Hidden Markov Model kryté Markovovy modely) reprezentujeřeč (lovo, hláku, celou promluvu)

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Násobení pomocí sčítání

Násobení pomocí sčítání Neznalost zákonů neomlouvá Násobení pomocí sčítání Zadání problému: Vymyslete algoritmus, jak násobit dvě čísla, když operaci násobení neznáme. Upřesnění zadání: Známe čísla, známe operaci sčítání, odčítání.

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar

Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar Základy programování Martin Hejtmánek hejtmmar@fjfi.cvut.cz http://kmlinux.fjfi.cvut.cz/ hejtmmar Počítačový kurs Univerzity třetího věku na FJFI ČVUT Pokročilý 21. května 2009 Dnešní přednáška 1 Počátky

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

Vlastnosti algoritmu. elementárnost. determinovanost. rezultativnost. konečnost. hromadnost. efektivnost

Vlastnosti algoritmu. elementárnost. determinovanost. rezultativnost. konečnost. hromadnost. efektivnost Programování Algoritmus návod na vykonání činnosti, který nás od (měnitelných) vstupních dat přivede v konečném čase k výsledku přesně definovaná konečná posloupnost činností vedoucích k výsledku (postup,

Více

Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly

Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly Počítačové systémy Zobrazení čísel v počítači Miroslav Flídr Počítačové systémy LS 2007-1/21- Západočeská univerzita v Plzni Vážený poziční kód Obecný předpis čísla vyjádřeného v pozičním systému: C =

Více

1.1.7 Rovnoměrný pohyb II

1.1.7 Rovnoměrný pohyb II 1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

11 - Regulátory. Michael Šebek Automatické řízení

11 - Regulátory. Michael Šebek Automatické řízení - Regulátory Michael Šebe Automaticé řízení 7 6-3-7 Nejjednodušší regulátory Automaticé řízení - Kybernetia a robotia v jitém mylu nejjednodušší regulátor je On-Off (Bang-bang) má jen dvě možné výtupní

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ Útav teoretické a experimentální elektrotechniky Ing. Martin Friedl SYNTÉZA MODERNÍCH STRUKTUR KMITOČTOVÝCH FILTRŮ SYNTHESIS

Více

3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3

3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3 Obsah Obsah 1 Program přednášek 1 2 Podmínky zápočtu 2 3 Co je algoritmus? 2 3.1 Trocha historie............................ 2 3.2 Definice algoritmu.......................... 3 3.3 Vlastnosti algoritmu.........................

Více

Algoritmus. Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu.

Algoritmus. Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu. Algoritmus Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu. Klíčové pojmy: Algoritmus, vlastnosti algoritmu, tvorba algoritmu, vývojový diagram, strukturogram Algoritmus

Více

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení

Vyhodnocování impulsních m ěř m ení kvalita vysokonap ěťových měř m ení Vyhodnocování impulních měření a kvalita vyokonapěťových měření 1 Měření impulních napětí Metody pro tanovení 50 konvenční (po hladinách) 3 Pravděpodobnotní papír 4 Výpočet 50 a pomocí metody nejmenších

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 Číslo úlohy: 9

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA MORAVSKÁ OSTRAVA, KRATOCHVÍLOVA 7 Číslo úlohy: 9 STŘEDNÍ PŮMYSLOVÁ ŠKOL MOVSKÁ OSTV, KTOCHVÍLOV 7 Čílo úlohy: 9 Jméno a příjmení: ZPÁV O MĚŘENÍ Martin Dočkal Třída: EP3 Náev úlohy: egulační vlatnoti reotatu Skupina:. Schéma apojení: Měřeno dne: 4.2.2004

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

Příklad 1/23. Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) d) g(x) Ω(f(x))

Příklad 1/23. Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) d) g(x) Ω(f(x)) Příklad 1/23 Pro rostoucí spojité fukce f(x), g(x) platí f(x) Ω(g(x)). Z toho plyne, že: a) f(x) Ο(g(x)) b) f(x) Θ(g(x)) c) g(x) Θ(f(x)) d) g(x) Ω(f(x)) e) g(x) Ο(f(x)) 1 Příklad 2/23 Pro rostoucí spojité

Více

1. Matematický model identifikované soustavy

1. Matematický model identifikované soustavy IDENTIFIKACE SOUSTAVY SEDAČKY SEDAČKA C.I.E.B TYPOVÉ ŘADY 5 A NÁVRH REGULAČNÍHO OBVODU GHARAZI SAYED MOHSEN Technická univerita v Liberci, fakulta trojní, katedra aplikované kybernetiky, Hálkova 6, 46

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Řídicí struktury. alg3 1

Řídicí struktury. alg3 1 Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_148_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká

Více

ALGORITMIZACE Příklady ze života, větvení, cykly

ALGORITMIZACE Příklady ze života, větvení, cykly ALGORITMIZACE Příklady ze života, větvení, cykly Cíl kapitoly: Uvedení do problematiky algoritmizace Klíčové pojmy: Algoritmus, Vlastnosti správného algoritmu, Možnosti zápisu algoritmu, Vývojový diagram,

Více

8 - Geometrické místo kořenů aneb Root Locus

8 - Geometrické místo kořenů aneb Root Locus 8 - Geometrické míto kořenů aneb Root Locu Michael Šebek Automatické řízení 206 0-3-6 Metoda Root Locu Walter R. Evan, AIEE Tranaction, 948 Metoda root locu neboli geometrické míto kořenů vykreluje polohu

Více

Základy algoritmizace a programování

Základy algoritmizace a programování Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní

Více

MANUÁL. Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0

MANUÁL. Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0 www.eucitel.cz MANUÁL Modul KMITÁNÍ A VLNĚNÍ.XLS, verze 1.0 Autor: RNDr. Jiří Kocourek Licence: Freeware pouze pro oobní potřebu. Použití ve výuce je podmíněno uhrazením ročního předplatného přílušnou

Více

Asynchronní motor s klecí nakrátko

Asynchronní motor s klecí nakrátko Aynchronní troje Aynchronní motor klecí nakrátko Řez aynchronním motorem Princip funkce aynchronního motoru Točivé magnetické pole lze imulovat polem permanentního magnetu, otáčejícího e kontantní rychlotí

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Algoritmus Daniela Szturcová Tento

Více

2. lekce Algoritmus, cyklus Miroslav Jílek

2. lekce Algoritmus, cyklus Miroslav Jílek 2. lekce Algoritmus, cyklus Miroslav Jílek 1/36 Algoritmus 2/36 Algoritmus je konečná posloupnost operací, která dává řešení skupiny problémů 3/36 Algoritmus je konečná posloupnost operací, která dává

Více

7. cvičení návrh a posouzení smykové výztuže trámu

7. cvičení návrh a posouzení smykové výztuže trámu 7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Poslední nenulová číslice faktoriálu

Poslední nenulová číslice faktoriálu Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Příklady k přednášce 16 - Pozorovatel a výstupní ZV

Příklady k přednášce 16 - Pozorovatel a výstupní ZV Příklady k přednášce 6 - Pozorovatel a výtupní ZV Michael Šebek Automatické řízení 08 6-4-8 Příklad: Pozorovatel pro kyvadlo naivně pro kyvadlo frekvencí ω 0 a rovnicemi x 0 x 0 navrhneme pozorovatel dvojitým

Více

Analýza diskrétních regulačních obvodů

Analýza diskrétních regulačních obvodů Čílicové říení Analýa ECHNICÁ NIVERIA V IBERCI Hálkova 6 46 7 iberec C akulta mechatroniky a meioborových inženýrkých tudií Čílicové říení Analýa dikrétních regulačních obvodů Studijní materiály oc Ing

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu. Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus

Více