Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou"

Transkript

1 Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009

2 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem WCONROL. Změřte tatickou charakteritiku regulované outavy tak, že na vtup outavy potupně přivedete např. 5%, 50%, 70%, 90% maximální hodnoty akční veličiny. 3. Změřte alepoň dvakrát přechodovou charakteritiku regulované outavy při změně akční veličiny o 5-0%, přičemž rozah volte v lineární oblati tatické charakteritiky, např. z 50% na 70%. Přechodové charakteritiky archivujte vhodnou periodou a lučte je do jedné charakteritiky. Z této loučené přechodové charakteritiky určete parametry regulované outavy pomocí Strejcovy metody použitím modelu druhého řádu bez dopravního zpoždění. 4. Vyhodnoťte naměřené hodnoty do protokolu vykrelete tatickou charakteritiku a její závilot vyjádřete rovnicí vykrelete naměřené přechodové charakteritiky a loučenou přechodovou charakteritiku proveďte aproximaci přechodové charakteritiky Strejcovou metodou a určete pojitý přeno regulované outavy, přičemž pecifikujte parametry včetně fyzikálních jednotek určete ze zíkaného pojitého přenou G S() diferenciální rovnici a analyticky vypočtěte její přechodovou funkci ověřte zíkaný model pomocí programu MALAB/SIMULINK a porovnejte naměřenou charakteritikou (v jednom grafu). - -

3 Vypracování. Statická charakteritika abulka hodnot a graf tatické charakteritiky u [%] [ C] Statická charakteritika 0 6, , , ,0 eplota [ C] 60,00 40,00 0,00 00,00 80,00 60,00,599u + 37,6 R 0, ,00 0,00 0,00 0,00 0,00 40,00 60,00 80,00 00,00 Úroveň akční veličiny [%] Rovnice tatické charakteritiky je,599u + 37,6. Lineární průběh je od 0 do 90 %, tedy na celém vém průběhu. ento průběh je i zároveň téměř hodný e pojnicí trendu.. Přechodové charakteritiky Přechodová charakteritika úrovně 0% eplota [ C] Ča [] - 3 -

4 Přechodová charakteritika úrovně 50% eplota [ C] Ča [] Přechodová charakteritika úrovně 70% eplota [ C] Ča [] - 4 -

5 Přechodová charakteritika úrovně 90% eplota [ C] Ča [] Zprůměrovaná přechodová charakteritika (50% - 70%) 30,000 5,000 0,000 y( [ C] 5,000 0,000 05,000 00, t [] - 5 -

6 Skutečná přechodová charakteritika (50% - 70%),400,00,000 y( [ C/%] 0,800 0,600 0,400 0,00 0, t [] Normovaná přechodová charakteritika (50% - 70%),00,000 0,800 y( [-] 0,600 0,400 0,00 0, t [] 3. Identifikace outavy pomocí Strejcovy metody Pomocí Strejcovy metody je potřeba zíkat aproximační přeno ve tvaru: K G ( ) ( ( Z normovaného grafu byl numericky určen inflexní bod y(t inf) pomocí vztahu: y( t i t ) y( t i t i i ) max pro i 0,,,...,m - 6 -

7 Deet hodnot z pravého a levého okolí inflexního bodu bylo aproximováno přímkou. Její rovnice byla ve tvaru y bt + a y 0,0064t 0, Z této rovnice byli pak pomocí vztahů u a, n zíkány hodnoty doby náběhu n a doby průtahu u. b b τ u n u a - 0,0768 u b 0,0064 n 56,5 b 0,0064 u 0, ,5 n Jelikož hodnota τ 0, 04, byla zvolena pro aproximaci outava druhého řádu různě u velkými čaovými úeky t. V tomto případě e potupovalo takto: Nejprve byla z normovaného grafu odečtena hodnota čau t pro y(t ) 0,70. t 60 [] Pak byl určen oučet čaových kontant + : t ,348 [],564,564 Ze zíkané hodnoty byl vypočítán čaový úek t : ( + ) 0,3574 7,348 45,54 46 t 0,3574 [] Pro t byla odečtena hodnota z normovaného grafu: y ( t ) 0, 9 Z tabulky pak byla odečtena hodnota podílu τ 0, 08 Z jednoduché outavy rovnic byly dopočítány čaové kontanty a τ τ 0,08 7,348 t,564 7,348,83 7,348 4,58-7 -

8 Statické zeílení K bylo vypočítáno podle vztahu: y( ) y(0) y( 4,3 K, C / % u( u( 0 Aproximační přeno počítaný Strejcovou metodou má tedy tvar: K G( ) ( (, G( ) (4,58 (,83 Z přenou G() byla zhotovena diferenciální rovnice: Y( ), G( ) U ( ) (4,58 (,83, G( ) 35, , ,385y ( + 7,348y ( + y(,u( y ( + 0,36y ( + 35,385 y( 0,0034u( Úpravou na parciální zlomky a pomocí Laplaceovy tranformace jem dotal přechodovou funkci h(: G( ) H ( ), H ( ) (4,58 (,83, H ( ) (4,58 (,83, A (4,58 (,83 + B (,83 + C (4,58 0 :, A : 0 : 0 7,348A + B + C B 54,458 35,385A +,83B + 4,58C C 0,0798 B + + (4,58 (,83,, 54,458 0,0798 H ( ) + (4,58 (,83 (4,58 (,83 A C - 8 -

9 h(,,40 e 0,00803t + 0,08 e 0,35336 t Přechodová funkce,400,00,000 y( [ C/%] 0,800 0,600 0,400 0,00 0, t [] Porovnání přechodových charakteritik y( [ C/%],400,00,000 0,800 0,600 0,400 0,00 0, t [] Naměřená data Přechodová funkce Přechodová funkce z MALABu - 9 -

10 Závěr Čílo outavy: 6 Výkon topení: Z naměřené tatické charakteritiky jem pro lineární regrei zvolil oblat 0% až 90% maximální hodnoty akční veličiny. Zíkaná rovnice tatické přenoové charakteritiky má tvar,599u + 37,6. ento průběh byl tedy zároveň téměř hodný e pojnicí trendu. Pro naměření přílušných přechodových charakteritik jem i zvolil oblat 50% až 70% maximální hodnoty akční veličiny. Naměřené hodnoty jem z důvodu zašumění zprůměroval a přechodovou charakteritiku jem pounul do počátku (hodnota 50% akční veličiny e rovnala nule ). Zíkanou charakteritiku jem vydělil velikotí koku akční veličiny a znormoval. Z normované charakteritiky jem pomocí Strejcovy metody zíkal parametry pro přeno G(): 4,58 ;,83 ; K, C/%. Zíkaný přeno outavy G() byl tedy, ve tvaru: G ( ). Z tohoto přenou jem, úpravou na parciální (4,58 (,83 zlomky, Laplaceovou tranformací a lovníku pro Laplaceovu tranformaci, zíkal 0,00803t 0,35336t přechodovou funkci h( ve tvaru: h(,,40 e + 0,08 e. Nakonec jem normovanou přechodovou charakteritiku, vypočtenou přechodovou funkci a přechodovou funkci zíkanou pomocí programového protředí MALAB zanel do jednoho grafu. Všechny tři křivky jou téměř totožné, a proto e domnívám, že mé výpočty jou právné

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012)

Vzorový test k přijímacím zkouškám do navazujícího magisterského studijního oboru Automatické řízení a informatika (2012) Vzorový tet k přijímacím zkouškám do navazujícího magiterkého tudijního oboru Automatické řízení a informatika (22). Sekvenční logický obvod je: a) obvod, v němž je výtupní tav určen na základě vtupních

Více

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13

25 Dopravní zpoždění. Michael Šebek Automatické řízení 2013 21-4-13 5 Dopravní zpoždění Michael Šebek Automatické řízení 3-4-3 Dopravní zpoždění (Time delay, tranport delay, dead time, delay-differential ytem) V reálných ytémech e čato vykytuje dopravní zpoždění yt ( )

Více

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů

teorie elektronických obvodů Jiří Petržela syntéza elektronických obvodů Jiří Petržela příklad nalezněte dvě různé realizace admitanční funkce zadané formou racionální lomené funkce Y () () ( ) ( ) : první krok rozkladu do řetězového zlomku () 9 7 9 výledný rozklad ( ) 9 9

Více

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy

7 - Ustálený stav kmitavý a nekmitavý, sledování a zadržení poruchy 7 - Utálený tav kmitavý a nekmitavý, ledování a zadržení poruchy Michael Šebek Automatické řízení 018 31-3-18 Automatické řízení - ybernetika a robotika zeílení ytému na frekvenci ω je G( jω) - viz amplitudový

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. ) ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI ECHNICÁ UNIVERZIA V LIBERCI FAULA SROJNÍ atedra aplikované kybernetiky Obor 3922 Automatizované ytémy řízení ve trojírentví Zaměření Automatizace inženýrkých prací Programový modul pro automatické eřízení

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL

IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL IDENTIFIKACE REGULOVANÉ SOUSTAVY APLIKACE PRO PARNÍ KOTEL Ing. Zeněk Němec, CSc. VUT v Brně, Fakulta trojního inženýrtví, Útav automatizace a informatiky. Úvo, vymezení problematiky Přípěvek ouvií řešením

Více

Nastavení parametrů PID a PSD regulátorů

Nastavení parametrů PID a PSD regulátorů Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána

Více

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL

Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL VŠB-TUO 2005/2006 FAKULTA STROJNÍ PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha 5 Řízení teplovzdušného modelu TVM pomocí PC a mikropočítačové jednotky CTRL SN 72 JOSEF DOVRTĚL HA MINH Zadání:. Seznamte se s teplovzdušným

Více

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení

Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne. Příprava Opravy Učitel Hodnocení Jméno a příjmení ID FYZIKÁLNÍ PRAKTIK Ročník 1 Předmět Obor Stud. kupina Kroužek Lab. kup. FEKT VT BRNO Spolupracoval ěřeno dne Odevzdáno dne Příprava Opravy čitel Hodnocení Název úlohy Čílo úlohy 1. Úkol

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Příklady k přednášce 20 - Číslicové řízení

Příklady k přednášce 20 - Číslicové řízení Příklady k přednášce 0 - Čílicové řízení Micael Šebek Automatické řízení 07-4- Vzorkování: vzta mezi a z pro komplexní póly Spojitý ignál má Laplaceův obraz póly v, Dikrétní ignál má z-obraz αt yt ( )

Více

Téma: Analýza kmitavého pohybu harmonického oscilátoru

Téma: Analýza kmitavého pohybu harmonického oscilátoru PRACOVNÍ LIST č. Téa úlohy: Analýza kitavého pohybu haronického ocilátoru Pracoval: Třída: Datu: Spolupracovali: Teplota: Tlak: Vlhkot vzduchu: Hodnocení: Téa: Analýza kitavého pohybu haronického ocilátoru

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

1 Úvod do číslicové regulace

1 Úvod do číslicové regulace Automatické říení II Úvod do čílicové regulace V náledujícím textu budou uvedeny ákladní vlatnoti, popiy a přehledy týkající e problematiky čílicové regulace. Některé kapitol budou také obahovat řešené

Více

TEPELNÉ ÚČINKY EL. PROUDU

TEPELNÉ ÚČINKY EL. PROUDU Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č 1 EPELNÉ ÚČINKY EL POUDU Jméno(a): Jiří Paar, Zdeněk Nepraš Stanoviště: 6 Datum: 21 5 28 Úvod

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Obvod střídavého proudu s kapacitou

Obvod střídavého proudu s kapacitou Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná

Více

ú ú ú ú úč Š ú Š ú š Č š ú Š š Ř Ý Č ž Š ú Č ó ú ž š šť ž Š ž ž ž Š ž ú ó ž ú Š š š ú š Š Š Š ú ť ú š Š ú ú ú Ř Ý Á Š É š Č Ó Ó Ť Ě Ť š Ý Ů Č Š Ř Š Ě Ý š Č ó ó ú ď Á ó ž ú ž ú Ó Á Ý Á Á š Ť ť ť ť Ť š

Více

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC

Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Řízení tepelné soustavy s dopravním zpožděním pomocí PLC Jan Beran TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY

HPS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECHODOVÉ CHARAKTERISTIKY Schéma PS - SEŘÍZENÍ PID REGULÁTORU PODLE PŘECODOVÉ CARAKTERISTIKY A1 K1L U1 K1R A2 PC K2L K2R B1 U2 B2 PjR PjR F C1 S1 h L S2 F C2 h R A/D, D/A PŘEVODNÍK A OVLÁDACÍ JEDNOTKA u R u L Obr. 1 Schéma úlohy

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ

PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ NS72 2005/2006 PROSTŘEDKY AUTOMATICKÉHO ŘÍZENÍ Úloha č.2 - Průmyslová sběrnice RS485 Vypracoval: Ha Minh 7. 5. 2006 Spolupracoval: Josef Dovrtěl Zadání. Seznamte se s úlohou distribuovaného systému řízení

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 23 2-4-3 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t

Více

PŘECHODOVÁ CHARAKTERISTIKA

PŘECHODOVÁ CHARAKTERISTIKA PŘECHODOVÁ CHARAKTERISTIKA Schéma Obr. 1 Schéma úlohy Popis úlohy Dynamická soustava na obrázku obr. 1 je tvořena stejnosměrným motorem M, který je prostřednictvím spojky EC spojen se stejnosměrným generátorem

Více

Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík

Podpora výuky předmětu Teorie automatického řízení I Petr Žajdlík Podpora výuky předmětu "Teorie automatického řízení I" Petr Žajdlík Bakalářká práce 6 ABSTRAKT Abtrakt čeky Tato bakalářká práce e zabývá vzorovým vypracováním zápočtových protokolů polu návrhem zadání

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Měřící a senzorová technika

Měřící a senzorová technika VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ Měřící a senzorová technika Semestrální projekt Vypracovali: Petr Osadník Akademický rok: 2006/2007 Semestr: zimní Původní zadání úlohy

Více

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina:

Pracovní list - Laboratorní práce č. 7 Jméno: Třída: Skupina: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 7 Jméno: Třída:

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VOKÁ ŠKOLA BÁŇKÁ TECHNICKÁ NIVEZITA OTAVA FAKLTA TOJNÍ ZÁKLAD ATOMATICKÉHO ŘÍZENÍ 9. týden doc. Ing. enata ANEOVÁ, Ph.D. Otrava 03 doc. Ing. enata ANEOVÁ, Ph.D. Vyoká škola báňká Technická univerzita Otrava

Více

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky

Doplňky k přednášce 23 Diskrétní systémy Diskrétní frekvenční charakteristiky Doplňky k přednášce 3 Dikrétní ytémy Dikrétní frekvenční charakteritiky Michael Šebek Automatické řízení 011-1-11 Automatické řízení - Kybernetika a robotika e jω Matematika: Komplexní exponenciála = coω+

Více

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I

CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: Bi-VII-1 Srovnání síly stisku pravé a levé ruky Spolupracovník: Hodnocení: Datum měření: Úkol: 1) Porovnejte sílu pravé a levé ruky. 2) Vyhodnoťte

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot

Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Srovnání PID regulace a anisochronního řízení na PLC Tecomat Foxtrot Martin Hunčovský 1,*, Petr Siegelr 1,* 1 ČVUT v Praze, Fakulta strojní, Ústav přístrojové a řídící techniky, Technická 4, 166 07 Praha

Více

KATEDRA ELEKTRICKÝCH MĚŘENÍ

KATEDRA ELEKTRICKÝCH MĚŘENÍ VŠB-TU Ostrava Datum měření: Datum odevzdání/hodnocení: KATEDRA ELEKTRICKÝCH MĚŘENÍ 9. VIRTUÁLNÍ MĚŘICÍ PŘÍSTROJE Fakulta elektrotechniky a informatiky Jména, studijní skupiny: Cíl měření: Seznámit se

Více

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ Laboratorní úloha č 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ 1 Teoretický úvod Pro laboratorní a průmyslové měření teploty kapalných a plynných medií v rozsahu

Více

Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu

Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu 1 Portál pre odborné publikovanie ISSN 1338-0087 Identifikace a řízení nelineárního systému pomocí Hammersteinova modelu Brázdil Michal Elektrotechnika 25.04.2011 V praxi se často setkáváme s procesy,

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon

Systém vztahů obecné pružnosti Zobecněný Hookeův zákon Stém vtahů obecné pružnoti Zobecněný Hookeův ákon V PPI e řešil úloh pružnoti u prutů. Pro řešení pouvů napětí a přetvoření obecného 3D těleo je třeba etavit a řešit tém vtahů obecné pružnoti. Jeho řešení

Více

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení

VŠB - Technická univerzita Ostrava Fakulta strojní Katedra automatizační techniky a řízení VŠB - echnická univerzita Otrava Fakulta trojní Katera automatizační techniky a řízení Ověření méně známé metoy eřizování regulátorů čílicovou imulací a na laboratorním moelu teplovzušného agregátu Vypracoval:

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tematická sada:

Více

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB -TU Ostrava PŘEHODOVÝ DĚJ VE STEJNOSMĚNÉM EL. OBVODU zapnutí a vypnutí sériového členu ke zdroji stejnosměrného napětí Návod do

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII VYSOÁ ŠOLA BÁŇSÁ TECHNICÁ UNIVERZITA OSTRAVA FAULTA STROJNÍ ZÁLADY AUTOMATIZACE TECHNOLOGICÝCH PROCESŮ V TEORII Rozdělení regulovaných soustav Ing. Romana Garzinová, Ph.D. prof. Ing. Zora Jančíková, CSc.

Více

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs

1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda derivační obvod se zadanou časovou konstantu: τ 2 = 320µs 1 Zadání 1. Navrhněte a prakticky realizujte pomocí odporových a kapacitních dekáda integrační obvod se zadanou časovou konstantu: τ 1 = 62µs derivační obvod se zadanou časovou konstantu: τ 2 = 320µs Možnosti

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

DUM 19 téma: Digitální regulátor výklad

DUM 19 téma: Digitální regulátor výklad DUM 19 téma: Digitální regulátor výklad ze sady: 03 Regulátor ze šablony: 01 Automatizační technika I Určeno pro 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

Odporový dělič napětí a proudu, princip superpozice

Odporový dělič napětí a proudu, princip superpozice Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 1 Odporový dělič napětí a proudu, princip superpozice Datum měření: 20.

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 8 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti 9-6-8 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Příklady k přednášce 25 Dopravní zpoždění

Příklady k přednášce 25 Dopravní zpoždění Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení 28 5-5-8 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { } t f(): t f() t = t

Více

1.1.7 Rovnoměrný pohyb II

1.1.7 Rovnoměrný pohyb II 1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko

Více

Fotoelektrické snímače

Fotoelektrické snímače SB 272 VŠB TUO Ostrava Program 4. Fotoelektrické snímače Vypracoval: Crlík Zdeněk Spolupracoval: Jaroslav Datum měření: 6.04.2006 Zadání 1. Seznamte se s předloženými součástkami pro detekci světelného

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

Obvod střídavého proudu s indukčností

Obvod střídavého proudu s indukčností Obvod střídavého proudu s indukčností Na obrázku můžete vidět zapojení obvodu střídavého proudu s indukčností. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte

Více

Propočty přechodu Venuše 8. června 2004

Propočty přechodu Venuše 8. června 2004 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

Automatizační technika Měření č. 6- Analogové snímače

Automatizační technika Měření č. 6- Analogové snímače Automatizační technika Měření č. - Analogové snímače Datum:.. Vypracoval: Los Jaroslav Skupina: SB 7 Analogové snímače Zadání: 1. Seznamte se s technickými parametry indukčních snímačů INPOS. Změřte statické

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

Příklady k přednášce 2 - Spojité modely

Příklady k přednášce 2 - Spojité modely Příklady k přednášce - Spojité modely Michael Šebek Atomatické řízení 5 Evropký ociální fond Praha & EU: Invetjeme do vaší bdocnoti -5-5 Atomatické řízení - Kybernetika a robotika Řešení tavové rovnice

Více

4. TROJFÁZOVÉ OBVODY

4. TROJFÁZOVÉ OBVODY Katedra obecné elektrotechniky Fakulta elektrotechniky a inforatiky, VŠB - T Otrava 4. TROJFÁZOVÉ OBVODY rčeno pro poluchače všech bakalářkých tudijních prograů FS 4. Úvod 4. Trojfázová outava 4. Spojení

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.7/1.5./34.521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD

VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD Universita Pardubice Ústav elektrotechniky a informatiky Elektronické součástky Laboratorní cvičení č.1 VOLTAMPÉROVÉ CHARAKTERISTIKY DIOD Jméno: Pavel Čapek, Aleš Doležal, Lukáš Kadlec, Luboš Rejfek Studijní

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(

Více

2-LC: Měření elektrických vlastností výkonových spínačů (I)

2-LC: Měření elektrických vlastností výkonových spínačů (I) 2-LC: Měření elektrických vlastností výkonových spínačů (I) Cíl měření: Ověření a porovnání vlastností výkonových spínačů: BJT, MOSFET a tyristoru. Zkratování řídících vstupů Obr. 1 Přípravek pro měření

Více

PŘECHODOVÝ JEV V RC OBVODU

PŘECHODOVÝ JEV V RC OBVODU PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A13 Určení měrného náboje elektronu z charakteristik magnetronu Název: Pracoval: Martin Dlask. stud. sk.: 11 dne:

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK C) REGULAČNÍCH VENTILŮ

MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK C) REGULAČNÍCH VENTILŮ Univerzita Pardubice Fakulta elektrotechniky a informatiky Měření neelektrických veličin Laboratorní úloha č. 8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK C) REGULAČNÍCH VENTILŮ Roman Mikulka, Martin

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Kvalita regulačního pochodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L.

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L. 1 Pracovní úkoly 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,1; 0,3; 0,5; 1,0; 3,0; 5,0 µf, R = 20 Ω). Výsledky měření

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Otázky k úloze (domácí příprava): Pro jakou teplotu je U = 0 v případě použití převodníku s posunutou nulou dle obr. 1 (senzor Pt 100,

Více