Vkládání pomocí Viterbiho algoritmu

Rozměr: px
Začít zobrazení ze stránky:

Download "Vkládání pomocí Viterbiho algoritmu"

Transkript

1 Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C

2 Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme váhu, která udává jeho ctlvost na změnu. Nebudeme nutně mnmalzovat počet změn v nosč, ale celkovou váhu změn. C

3 Značení Nosč rozdělujeme na bloky n hodnot z konečného tělesa F q. Rozdíl oprot matcovému vkládání: Nepracujeme s jednotlvým bloky samostatně. Sestrojíme z nch posloupnost vektorů {x } l =, kde x = (x (),..., x (n) ) T F n q. Máme tedy nosč {x } l = a stegoobjekt {y } l =. Zpráva je obecně posloupnost vektorů {z } l =, kde z F m q. My se omezíme na případ m =. Zpráva je pak posloupnost jednosložkových vektorů. Budeme j psát jako posloupnost skalárů {z } l =. C3

4 Proč se omezujeme na m =? Zobecnění pro m > je jednoduché. Složtost Vterbho algortmu neúměrně narůstá s m. Relatvní kapacta nosče je α = m log q. n Čl jsme omezen na hodnoty tvaru α = log q. n Nevadí. Ve steganograf obvykle cílíme na hodnoty blízké. C4

5 Konvoluční extrakce Extrakce zprávy se provádí konvolučním překladačem. Implementace pomocí konvolučního kodéru. Kontrolorova normální forma: n paměťových regstrů. Pozorovatelova normální forma: m = paměťový regstr. r (j) = hodnota j-té buňky regstru na konc -tého kroku. d = délka regstru. D = operátor zpoždění. Defnujeme r (j) = pro j d. Hodnoty f (k) j F q a g j F q jsou konstanty a g =. C5

6 Konvoluční extrakce y () f () f ()... f () f () d y () f () f () f () f () d y (n) z f (n). f (n) r ()... f (n) f (n) d r () + D + D D +. r (d). g g g d g d... C6

7 Algortmus (konvoluční extrakce) vstup: stegoobjekt {y } l = z Fn q, parametry f (k) j F q a g j F q výstup: zpráva {z } l = (s,..., s d ) := (,..., ) for =,..., l do 3 for j =,..., n do 4 (s,..., s d ) := (s,..., s d ) + y (j) (f (j),..., f (j) d ) 5 z := s 6 (s,..., s d ) := (s,..., s d ) + s (g,..., g d ) 7 (s,..., s d ) := (s,..., s d, ) 8 return {z } l = C7

8 Vkládání Extrakční algortmus popíšeme jako konečný překladač. Pro tento překladač sestrojíme trelážový graf. (Graf vývoje stavů v závslost na vstupu.) Obecně: Cesty v grafu = všechny možné vstupy překladače. Náš trk: Graf sestavíme tak, aby obsahoval pouze ty cesty (vstupy), jejchž výstupem je zpráva, kterou chceme vložt. Tyto cesty jsou kanddátky na stegoobjekt. Vterbho algortmus potom najde cestu, která se nejméně lší od nosče, resp. má nejmenší váhu (dstorz). C8

9 Příklad Celý proces předvedeme na následujícím příkladu. Mějme extrakční algortmus nad F s parametry f(d) = ( + D + D, D + D, + D ) a g(d) = D : y () y () y (3) z D + D + C9

10 Příklad Ukázka přechodu automatu: Počáteční stav r () r () =. Vstup y = (,, ) T. () Výsledný stav r r () =. Výstup z =. / Záps: D + D + C9

11 Příklad Ukázka přechodu automatu: Počáteční stav r () r () =. Vstup y = (,, ) T. () Výsledný stav r r () =. Výstup z =. / Záps: D + D + C9

12 Příslušný konečný překladač / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / C

13 Trelážové moduly Přechody rozdělíme do dvou trelážových modulů podle jejch výstupních hodnot. Výstup Výstup C

14 Treláž pro vložení zprávy V závslost na zprávě pospojujeme moduly do treláže. Vterbho algortmus najde cestu treláží, která se nejvíce podobá nosč. C

15 Rozdíly oprot treláž pro dekódování kódů Treláž se skládá z různých modulů v závslost na zprávě. Nevyžadujeme, aby překladač skončl v nulovém stavu. Hrany označujeme vstupním hodnotam překladače místo výstupních hodnot. Vkládač: Upravuje vstup, aby dosáhl požadovaný výstup. Dekodér: Upravuje poškozený výstup, aby dosáhl platný výstup. Vstup překladače je delší než výstup. Konvoluční extraktor: n m. Konvoluční kodér: n m. C3

16 Vterbho algortmus V první fáz procházíme treláž zleva doprava, tj. pro =,..., l. Pro každé máme až q d možných stavů překladače. Pro každý z těchto stavů spočítáme váhu nejlehčí cesty, která do něho vede, a zaznamenáme poslední hranu cesty. Jakmle dojdeme na konec treláže, vybereme stav, do kterého vede nejlehčí cesta. Zpětným průchodem tuto cestu zrekonstruujeme. Průběh algortmu s předvedeme na příkladu nosče {x } 3 = = {(,, )T, (,, ) T, (,, ) T, (,, ) T } Používáme Hammngovu metrku. C4

17 Vterbho algortmus {x } 3 = {z } 3 = C5

18 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

19 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

20 Vterbho algortmus {x } 3 = {z } 3 = C5

21 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

22 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

23 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

24 Vterbho algortmus {x } 3 = 3 {z } 3 = C5

25 Vterbho algortmus {x } 3 = {z } 3 = C5

26 Vterbho algortmus {x } 3 = {z } 3 = C5

27 Vterbho algortmus {x } 3 = {z } 3 = {y } 3 = C5

28 Vterbho algortmus {x } 3 = {z } 3 = {y } 3 = C5

29 Vterbho algortmus {x } 3 = {z } 3 = {y } 3 = C5

30 Vterbho algortmus {x } 3 = {z } 3 = {y } 3 = C5

31 Časová složtost algortmu Procházíme l modulů zleva doprava. V každém modulu projdeme (až) q d stavů a spočítáme váhu nejlehčí cesty, která do každého stavu vede. Pro každý stav tedy zvážíme všechny vstupující hrany. Do každého stavu vede v průměru q qn hran. Zvážení jedné hrany vyžaduje O(n) porovnání. Zpětný průchod má složtost O(n) operací. (Zanedbatelné.) Časová složtost algortmu je O(q d+n ln) porovnání. Složtost ještě vylepšíme na O(q d+ ln) vektorových operací tak, že rozvneme treláž. C6

32 Rozvnutí modulů Každý přechod automatu rozvneme na n + podkroků. Čl každý modul rozvneme na n + podmodulů. Přpomeňme algortmus konvoluční extrakce: (s,..., s d ) := (,..., ) for =,..., l do 3 for j =,..., n do 4 (s,..., s d ) := (s,..., s d ) + y (j) (f (j),..., f (j) d ) 5 z := s 6 (s,..., s d ) := (s,..., s d ) + s (g,..., g d ) 7 (s,..., s d ) := (s,..., s d, ) 8 return {z } l = C7

33 Příklad: Rozvnutí přechodu automatu D + D + Na počátku máme (s, s, s ) = (,, ). Podkroky pak jsou:. (s, s, s ) := (s, s, s ) + (,, ) = (,, ). (s, s, s ) := (s, s, s ) + (,, ) = (,, ) 3. (s, s, s ) := (s, s, s ) + (,, ) = (,, ) 4. (s, s, s ) := (s, s, s ) + (,, ) = (,, ) (s, s, s ) := (s, s, ) = (,, ) C8

34 Rozvnutí modulu s výstupem výstupní symbol Přčtení y () (,, ) pro y () F. Přčtení y () (,, ) pro y () F. Přčtení y (3) (,, ) pro y (3) F. Posunutí regstru. C9

35 Rozvnutí modulu s výstupem výstupní symbol Přčtení y () (,, ) pro y () F. Přčtení y () (,, ) pro y () F. Přčtení y (3) (,, ) pro y (3) F. Přčtení zpětné vazby (,, ) a posunutí regstru. C

36 Rozvnutá treláž a dstrozní funkce Trelážové moduly nahradíme jejch rozvnutým verzem. Vterbho algortmus najde cestu rozvnutou treláží, která se nejvíce podobá nosč. Algortmus umí zohlednt váhy jednotlvých změn v nosč. Ke každému prvku nosče x (j) ρ (j) : F q R. přřazujeme dstorzní funkc Hodnota ρ (j) (a) udává, jak moc by přspělo nastavení y (j) = a ve stegoobjektu k celkové dstorz vyvolané vkládáním. C

37 Příklady dstrozních funkcí Chceme-l Hammngovu metrku, defnujeme { ρ (j), jestlže a = x (j) (a) =, jestlže a x (j) Pro psaní na mokrý papír defnujeme ρ (j) (a) =,., jestlže prvek na j-té pozc v -tém bloku je mokrý a zároveň a x (j), jnak. Pro vkládání př kvantzac defnujeme ρ (j) (a) = (dstorze př vložení a) (dstorze př zaokrouhlení). C

38 Algortmus (vkládání pomocí Vterbho algortmu) vstup: dstorzní funkce prvků nosče {ρ } l =, zpráva {z } l = nad F q, parametry f (k) j F q a g j F q výstup: stegoobjekt {y } l = Incalzace. for s F d+ q \ {} do w[s] := 3 w[] := Dopředný průchod treláží. 4 for =,..., l do 5 for j =,..., n do do 7 path (j) [s] := arg mn a Fq w[s a(f (j),..., f (j) d )] + ρ(j) (a) 8 w [s] := mn a Fq w[s a(f (j),..., f (j) d )] + ρ(j) (a) 9 w := w 6 for s F d+ q for (s,..., s d ) F d q do w [(s,..., s d, )] := w[(z, s,..., s d ) z (g (),..., g (n) )] for s d F q \ {} do 3 w [(s,..., s d )] := 4 w := w C3

39 Algortmus (pokračování) Volba stavu, ve kterém končí nejlehčí cesta. 5 (s,..., s d ) := arg mn s F w[s ] d+ q Rekonstrukce nejlehčí cesty zpětným průchodem treláže. 6 for = l,..., do 7 (s, s,..., s d ) := (z, s,..., s d ) z (g,..., g n ) 8 for j = n,..., do 9 y (j) := path (j) [(s,..., s d )] (s,..., s d ) = (s,..., s d ) y (j) return {y } l = (f (j),..., f (j) d ) w[s] = váha nejlehčí cesty, která vede do s. path (j) [s] = poslední hrana nejlehčí cesty, která vede do s. C4

40 Složtost algortmu Nejčastěj jsou volány nstrukce na řádcích 7 a 8, celkem (lnq d+ )-krát. Instrukce na řádku 7 provádí q-krát: vektorovou operac (nejdražší), nahlédnutí do pamět, (j) volání ρ (a) (předpokládáme v konstantním čase), porovnání. Časová složtost: O(q d+ ln) vektorových operací. Obvykle stačí specalzace algortmu pro q =, kterou lze mplementovat pomocí operací xor. V pol path ukládáme q d+ ln prvků tělesa F q. Paměťová složtost: O(q d+ ln log q) btů. C5

41 Výsledky několka expermentů Stegosystém popsaný v příkladu dosahuje efektvty e = 3,87, přčemž α = /3. Toto velm dobře odpovídá efektvtě Hammngových kódů v dané oblast. Použjeme-l větší regstr lze dosáhnout lepších výsledků. Např. d =, pak pro α = /3 lze dosáhnout efektvty 4,94. Přítomnost zpětné vazby g(d) nevedla k měřtelnému zlepšení efektvty vkládání. C6

STEGANOGRAFIE A DIGITÁLNÍ MÉDIA

STEGANOGRAFIE A DIGITÁLNÍ MÉDIA 2 STEGANOGRAFIE A DIGITÁLNÍ MÉDIA 3 ANDREW KOZLÍK 4 5 6 7 Toto jsou provzorní skrpta k přednášce Steganografe a dgtální méda na MFF UK v letním semestru akademckého roku 204/5. Témata zde pokrytá tvoří

Více

Proudové šifry a posuvné registry s lineární zpětnou vazbou

Proudové šifry a posuvné registry s lineární zpětnou vazbou Proudové šifry a posuvné registry s lineární zpětnou vazbou Andrew Kozlík KA MFF UK Proudové šifry Bloková šifra Šifruje velké bloky otevřeného textu. Bloky mají pevnou délku. Velké znamená, že je prakticky

Více

Psaní na mokrý papír. Andrew Kozlik KA MFF UK

Psaní na mokrý papír. Andrew Kozlik KA MFF UK Psaní na mokrý papír Andrew Kozlik KA MFF UK W1 Motivace Problém: Vkládání do některých prvků nosiče má vysoký dopad na detekovatelnost. PNG/GIF: Oblasti s nízkou texturou. JPEG: Nulové AC koeficienty.

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Konvolučníkódy. MI-AAK(Aritmetika a kódy)

Konvolučníkódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Konvolučníkódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

8a.Objektové metody viditelnosti. Robertsův algoritmus

8a.Objektové metody viditelnosti. Robertsův algoritmus 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Lingebraické kapitolky - Počítání s maticemi

Lingebraické kapitolky - Počítání s maticemi Lingebraické kapitolky - Počítání s maticemi Jaroslav Horáček KAM MFF UK 20 Rozehřívačka: Definice sčítání dvou matic a násobení matice skalárem, transpozice Řešení: (A + B ij A ij + B ij (αa ij α(a ij

Více

ARITMETICKOLOGICKÁ JEDNOTKA

ARITMETICKOLOGICKÁ JEDNOTKA Vyšší odborná škola a Střední průmyslová škola elektrotechncká Božetěchova 3, Olomouc Třída : M4 Školní rok : 2000 / 2001 ARITMETICKOLOGICKÁ JEDNOTKA III. Praktcká úloha z předmětu elektroncké počítače

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Andrew Kozlík KA MFF UK

Andrew Kozlík KA MFF UK Autentizační kód zprávy Andrew Kozlík KA MFF UK Autentizační kód zprávy Anglicky: message authentication code (MAC). MAC algoritmus je v podstatě hashovací funkce s klíčem: MAC : {0, 1} k {0, 1} {0, 1}

Více

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Struktura a architektura počítačů (BI-SAP) 3

Struktura a architektura počítačů (BI-SAP) 3 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Principy komunikace s adaptéry periferních zařízení (PZ)

Principy komunikace s adaptéry periferních zařízení (PZ) Principy komunikace s adaptéry periferních zařízení (PZ) Několik možností kategorizace principů komunikace s externími adaptéry, např.: 1. Podle způsobu adresace registrů, které jsou součástí adaptérů.

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Základy algoritmizace. Hašování

Základy algoritmizace. Hašování Základy algoritmizace Hašování Problematika hašování Hašování - nástroj na jednoduchý způsob "zakódování vstupních dat. Vstupní data jsou zpracována hašovací funkcí jsou jistým způsobem komprimována. Relativně

Více

3. Vícevrstvé dopředné sítě

3. Vícevrstvé dopředné sítě 3. Vícevrstvé dopředné sítě! Jsou tvořeny jednou nebo více vrstvami neuronů (perceptronů). Výstup jedné vrstvy je přitom připojen na vstup následující vrstvy a signál se v pracovní fázi sítě šíří pouze

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jří Holčík, CSc. INVESTICE Insttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a analýz IV - pokračování KLASIFIKACE PODLE MINIMÁLNÍ VZDÁLENOSTI METRIKY PRO URČENÍ VZDÁLENOSTI

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: 1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.

Více

27 Systémy s více vstupy a výstupy

27 Systémy s více vstupy a výstupy 7 Systémy s více vstupy a výstupy Mchael Šebek Automatcké řízení 017 4-5-17 Stavový model MIMO systému Automatcké řízení - Kybernetka a robotka Má obecně m vstupů p výstupů x () t = Ax() t + Bu() t y()

Více

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: 1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktura a archtektura počítačů Logcké obvody - sekvenční Formy popsu, konečný automat Příklady návrhu České vysoké učení techncké Fakulta elektrotechncká Ver..2 J. Zděnek 24 Logcký sekvenční obvod Logcký

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka

Více

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění

Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double

Více

Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice

Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice Hammingovy kódy konstrukce Fanova rovina charakteristický vektor šifrování princip generující a prověrková matice dekódování H.kódů třída lineárních binárních kódů s A n, 3 n = délka kódu, d = distance

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Jako pomůcka jsou v pravém dolním rohu vypsány binární kódy čísel od 0 do 15 a binární kódy příkazů, které máme dispozici (obr.21). Obr.

Jako pomůcka jsou v pravém dolním rohu vypsány binární kódy čísel od 0 do 15 a binární kódy příkazů, které máme dispozici (obr.21). Obr. Model procesoru Jedná se o blokové schéma složené z registrů, paměti RAM, programového čítače, instrukčního registru, sčítačky a řídicí jednotky, které jsou propojeny sběrnicemi. Tento model má dva stavy:

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5

1.1 Struktura programu v Pascalu Vstup a výstup Operátory a některé matematické funkce 5 Obsah Obsah 1 Programovací jazyk Pascal 1 1.1 Struktura programu v Pascalu.................... 1 2 Proměnné 2 2.1 Vstup a výstup............................ 3 3 Operátory a některé matematické funkce 5

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ

ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ ASYMPTOTICKÉ VLASTNOSTI ODHADŮ S MINIMÁLNÍ KOLMOGOROVSKOU VZDÁLENOSTÍ Bc. Jtka Hanousková 1 Abstrakt: Příspěvek se zabývá postačujícím podmínkam pro konzstenc odhadů s mnmální Kolmogorovskou vzdáleností

Více

Watkinsův algoritmus řádkového rozkladu

Watkinsův algoritmus řádkového rozkladu Watkinsův algoritmus řádkového rozkladu 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 15 Watkinsův algoritmus nepotřebuje výstupní buffer rastrový výstup

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA Katedra Matematky Řetězové zlomky Dplomová práce Brno 04 Autor práce: Bc. Petra Dvořáčková Vedoucí práce: doc. RNDr. Jaroslav Beránek, CSc. Bblografcký záznam

Více

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii.

permutace, popisující nějaké symetrie, je i π permutace, popisující nějakou symetrii. DSM Cv Pólyova věta Budeme se zabývat objekty (na množně X - to jsou vrcholy těchto objektů) s různým prvky symetre (například to mohou být různé brože, tsky, ale také strukturní vzorce různých chemckých

Více

5. Sekvenční logické obvody

5. Sekvenční logické obvody 5. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody - příklad asynchronního sekvenčního obvodu 3.

Více

Ochrana dat před shluky chyb, Berlekamp- Preparatův kód

Ochrana dat před shluky chyb, Berlekamp- Preparatův kód 749 9..7 Ochrana dat před shluky chyb, Berlekamp- Preparatův kód Ing. Vítězslav Křivánek, Ústav Telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké Učení Technické v Brně, Purkyňova

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

PSK1-9. Číslicové zpracování signálů. Číslicový signál

PSK1-9. Číslicové zpracování signálů. Číslicový signál Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační

Více

Analýza toku dat. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. 15. listopad, 2012

Analýza toku dat. Petr Krajča. Katedra informatiky Univerzita Palackého v Olomouci. 15. listopad, 2012 Překladače 2 Analýza toku dat Petr Krajča Katedra informatiky Univerzita Palackého v Olomouci 15. listopad, 2012 Petr Krajča (UP) KMI/PRKL2: Přednáška I. 15. listopad, 2012 1 / 33 Lokální analýza: živost

Více

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek

Ivana Linkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE. 2 NURBS reprezentace křivek 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Ivana Lnkeová SPECIÁLNÍ PŘÍPADY NURBS REPREZENTACE Abstrakt Příspěvek prezentuje B-splne křvku a Coonsovu, Bézerovu a Fergusonovu kubku jako specální případy

Více

IB111 Úvod do programování skrze Python

IB111 Úvod do programování skrze Python Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově

Více

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD .. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová

Více

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20

Regulární výrazy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března / 20 Regulární výrazy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 14. března 2007 1/ 20 Regulární výrazy Jako například v aritmetice můžeme pomocí operátorů + a vytvářet výrazy jako (5+3)

Více

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Kinetika spalovacích reakcí

Kinetika spalovacích reakcí Knetka spalovacích reakcí Základy knetky spalování - nauka o průběhu spalovacích reakcí a závslost rychlost reakcí na různých faktorech Hlavní faktory: - koncentrace reagujících látek - teplota - tlak

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2 4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I

PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Programová realizace DKA typedef enum {q0, q1,... qn,

Více

1 Nejkratší cesta grafem

1 Nejkratší cesta grafem Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto

Více

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012

Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012 Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Algoritmizace. 1. Úvod. Algoritmus

Algoritmizace. 1. Úvod. Algoritmus 1. Úvod Algoritmizace V dnešní době již počítače pronikly snad do všech oblastí lidské činnosti, využívají se k řešení nejrůznějších úkolů. Postup, který je v počítači prováděn nějakým programem se nazývá

Více

Programovatelné relé Easy (Moeller), Logo (Siemens)

Programovatelné relé Easy (Moeller), Logo (Siemens) Programovatelné Easy (Moeller), Logo (Siemens) Základní způsob programování LOGO Programovaní pomocí P - propojení P s automatem sériovou komunikační linkou - program vytvářen v tzv ovém schématu /ladder

Více

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11

B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11 Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy

Posuzování dynamiky pohybu drážních vozidel ze záznamu jejich jízdy Posuzování dynamky pohybu drážních vozdel ze záznamu jejch jízdy Ing. Jaromír Šroký, Ph.D. ŠB-Techncká unverzta Ostrava, Fakulta strojní, Insttut dopravy, tel: +40 597 34 375, jaromr.sroky@vsb.cz Úvod

Více

Matematika IV 9. týden Vytvořující funkce

Matematika IV 9. týden Vytvořující funkce Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení

Více

Skripta ke školení. Základy VBA. vypracoval: Tomáš Herout. tel:

Skripta ke školení. Základy VBA. vypracoval: Tomáš Herout.   tel: Skripta ke školení Základy VBA vypracoval: Tomáš Herout e-mail: herout@helpmark.cz tel: 739 719 548 2016 Obsah TROCHA TEORIE VBA...2 ZPŮSOB ZÁPISU VE VBA...2 CO JE TO FUNKCE...2 CO JE TO PROCEDURA...2

Více

3. Sekvenční logické obvody

3. Sekvenční logické obvody 3. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody příklad sekv.o. Příklad sledování polohy vozíku

Více

Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:

Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má: 1 z 6 14.11.2017 0:03 Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Náhled testu 1 Je dán regulární výraz. Minimální deterministický

Více

BAYESŮV PRINCIP ZDENĚK PŮLPÁN

BAYESŮV PRINCIP ZDENĚK PŮLPÁN ROBUST 000, 7 4 c JČMF 00 BAYESŮV PRINCIP ZDENĚK PŮLPÁN Abstrakt. Poukážeme na možnost rozhodování pomocí Bayesova prncpu. Ten vychází z odhadu podmíněné pravděpodobnosta z předpokladu dsjunktního rozkladu

Více

Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole

Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Příkaz switch Příkaz switch provede příslušnou skupinu příkazů na základě hodnoty proměnné (celočíselné

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Hledáme efektivní řešení úloh na grafu

Hledáme efektivní řešení úloh na grafu Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132 Ak. rok 2015/2016 vbp 1. ze 132 Ing. Vladimír Beneš, Ph.D. vedoucí katedry Petrovický K101 katedra informatiky a kvantitativních metod E-mail: vbenes@bivs.cz Telefon: 251 114 534, 731 425 276 Konzultační

Více

Princip funkce počítače

Princip funkce počítače Princip funkce počítače Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování

Více

Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má:

Náhled testu. Přijímací zkouška magisterského studia. konečný automat bez zbytečných stavů, který přijímá jazyk popsaný tímto výrazem, má: Přijímací zkouška magisterského studia Moodle Test MSP Testy VzorTest-2 Pokus 1 Jste přihlášeni jako Josef Kolář (Odhlásit se) Info Výsledky Náhled Upravit Náhled testu 1 Je dán regulární výraz. Minimální

Více