CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

Rozměr: px
Začít zobrazení ze stránky:

Download "CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ."

Transkript

1 CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt ještě jednou, desetkrát nebo kolkrát ještě? Jaká hodnota je ta pravá? Jná stuace: Teore praví, že ta a ta fyzkální velčna má nabývat určté hodnoty. Vaším úkolem je přesvědčt se o tom. Provedete měření. Velce pravděpodobně naměřená hodnota nebude stejná s teoretckou. Znamená to, že teore neplatí? Pro odpověď na tyto otázky se musíme obrátt na teor chyb. Ta nám umožní ohodnott kvaltu měření a na výše uvedené otázky odpovědět. Základním axomem, který musíme vždy podržet v pamět je: ŽÁDNÉ MĚŘENÍ NENÍ DOBRÝM MĚŘENÍM, POKUD NENÍ URČENA JEHO CHYBA. (Pozn.: Můžeme, a často je to nutné, mluvt o chybě teoretckých výsledků. Tím se však zde nebudeme zabývat.) Podrobný výklad teore chyb zde není možný, uvedeme proto jen základní pojmy a výsledky této teore. Chybou měření ε budeme rozumět rozdíl mez naměřenou hodnotou x m a skutečnou (pravou) hodnotou x měřené velčny X. Je tedy ε = x m x. Problém je, že skutečnou hodnotu měřené velčny neznáme a nemůžeme tedy takto chybu spočítat! (Pozor! Tabulková hodnota není skutečnou hodnotou! Je to také výsledek měření, a jako takový známý jen přblžně. Stejně není skutečnou hodnotou teoretcká předpověď: skutečnost může být jná než teore předvídá.) Teore chyb proto musí skutečnou hodnotu odhadnout a také odhadnout přesnost tohoto odhadu. Jedné měření k odhadu chyby nestačí není s čím srovnávat. Je proto třeba měřt vícekrát. (Mohl bychom sce použít chybu danou přístrojem, ale další naměřená hodnota může být jná.) Úkolem teore chyb je tedy na základě souboru měření najít nejlepší odhad x o skutečné hodnoty x měřené velčny X (v podstatě takový, aby rozptyl naměřených hodnot byl nejmenší) a určt jak přesný tento odhad je, tj. stanovt jeho absolutní chybu δ x o. Tato chyba není odchylkou od skutečné hodnoty (jak se často student domnívají), ale charakterzuje velkost ntervalu, v němž můžeme s nějakou dohodnutou pravděpodobností očekávat, že bude skutečná hodnota ležet. Standardně se volí pravděpodobnost výskytu skutečné hodnoty v ntervalu ( xo δ xo, xo + δ xo ) rovna 0, (vz dále). Výsledek pak uvádíme ve tvaru x = x ± δ. o x o 1

2 Kvaltu měření pak hodnotíme buď pomocí této absolutní chyby, nebo častěj pomocí chyby relatvní, defnované jako podíl absolutní chyby a odhadované hodnoty: ξ x o = δ xo / xo. Relatvní chyba je bezrozměrná, nebo j vyjadřujeme v procentech (po vynásobení čntelem 100). Toto vyjádření chyby odpovídá lépe logartmcké reakc našch smyslů běžné ntuc. (Zjevně je něco jného obdržet záslku uhlí na zmu s přesností jeden klogram a znát se stejnou absolutní chybou velkost rodnných zásob zlata. Zde je evdentně výhodnější uvést přesnost pomocí relatvní chyby.) Chyby obvykle rozdělujeme na soustavné a náhodné. Soustavné chyby, zvané též systematcké, jednosměrně zkreslují výsledek měření. Jsou dány metodou měření (tzv. chyba metody jde pak o ne zcela vhodně provedené měření), kvaltou přístrojů (tzv. přístrojová chyba, kterou obvykle lze na základě údajů výrobce odhadnout) a kvaltou prováděných měření (tzv. osobní chyba). Soustavnou chybu nelze odstrant výpočtem. Projeví se až porovnáváním daného měření s měřením provedeným jnou metodou, s měřením provedeným jným (lepším) přístroj nebo jným osobam. Je-l ovšem chyba jž zjštěna, můžeme provést odpovídající korekce. V rámc fyzkálního praktka by měly být zvolené metody dostatečně vhodné a přístroje dostatečně kvaltní. Náhodné chyby jsou dány ne úplně kontrolovatelným vnějším (tlak, teplota, vlhkost vzduchu, elektromagnetcké rušení, vbrace, sesmcké vlvy,...) a vntřním (kolísání měřené velčny, tepelný šum, ) vlvy. Obecně předpokládáme, že takové vlvy jsou malé, že je jch mnoho a že přblžně se stejnou pravděpodobností zvyšují nebo snžují měřenou velčnu. Nestejnost výsledků měření nterpretujeme jako důsledek přítomnost náhodných chyb a metody teore pravděpodobnost využívané v teor chyb nám dovolí tuto skutečnost kvantfkovat. Může se také stát, že mez naměřeným hodnotam je údaj, který je na první pohled zjevně výrazně odlšný. Vznkl nejspíše nepozorností, č nějakým netypckým ovlvněním systému. Takovéto chybě říkáme hrubá. Níže uvedeme konvenční pravdlo pro vyřazení takovéhoto údaje ze souboru naměřených hodnot. Dále se postupně zaměříme na určení odhadu výsledku měření a odhadu chyby v případě přímých měření. Ukážeme, jak provádět odhady chyb měřcích přístrojů. Uvedeme, jak zvolt optmální počet měření a kdy je možno vyškrtnout hrubou chybu. Poté se budeme věnovat odhadu výsledku měření a odhadu chyby pro nepřímé měření. Specálně se budeme věnovat chybám parametrů funkčních (lneárních a na lneární převodtelných) závslostí. Nakonec ukážeme, v jaké podobě uvádíme výsledky měření. A. Přímé měření fyzkální velčny zatížené náhodnou chybou Proveďme N měření fyzkální velčny X. Výsledky měření nechť jsou x 1,, x N. Zajímá nás, jaký je nejlepší odhad x o skutečné hodnoty x měřené velčny X a s jak velkou chybou δ x je určen. o 13

3 Budeme předpokládat, že rozložení náhodných chyb je takové, že nejlepším odhadem skutečné hodnoty je artmetcký průměr: 1 x = x. N To je např. splněno, je-l rozložení chyb dáno tzv. Gaussovým rozdělením (též zvaným normální). Pravděpodobnost dp, že chyba měřené hodnoty x m x leží v ntervalu ( ε, ε + dε) je pak dána vztahem 1 ε d p = G ( ε ) dε =.exp dε π. σ σ, kde parametr σ (tzv. směrodatná odchylka) charakterzuje šířku Gaussova rozdělení, a tím velkost očekávatelné chyby. Funkce G(ε) má význam hustoty pravděpodobnost, tj. pravděpodobnost přpadající na chybu jednotkové velkost (obr. 1). Pravděpodobnost výskytu chyby v nějakém ntervalu ε 1, ε zjstíme pak ntegrací uvedeného výrazu. hustota pravděpodobnost G( ) 0,683 0,1355 0,1355 0,017 0,017 0, , Obr. 1 Gaussovo rozdělení hustota pravděpodobnost Pravděpodobnost výskytu chyby ε jedné naměřené hodnoty uvntř určtého ntervalu je rovna velkost plochy (pod křvkou) vymezené hrancem tohoto ntervalu. (P ±σ = 0,683, P ±σ = 0, ,1355 = 0,954, P ±3σ = P ±σ + 0,017 = 0,9974, P ± = 1) Matematkové umějí dokázat, že pro nekonečně mnoho nekonečně malých náhodných vlvů dostaneme Gaussovo rozdělení přesně (tzv. centrální lmtní věta). Pro fyzkální stuace nemusí a často an nemůže (např. u velčn, které jsou vždy kladné) Gaussovo rozdělení popsovat rozdělení chyb. Předpokládá se ale, že odchylky artmetckých průměrů od skutečné hodnoty jsou už rozloženy podle Gaussova rozdělení. Pro dostatečně velké soubory měření, kde N 30, jž bývá tento předpoklad splněn. (Př menším počtu měření, jak tomu bývá ve fyzkálním praktku, s pouze hrajeme na správný výpočet. Můžeme ovšem provést korekc 14

4 na malý počet měření pomocí tzv. Studentova rozdělení odhad očekávané chyby se pak zvětší.) Je možno dokázat, že rozdělení chyb artmetckých průměrů (získal bychom je z mnoha měření po N hodnotách, přčemž z každé N-tce hodnot by se vypočítal jeden artmetcký průměr) je N -krát užší než je rozdělení chyb jednotlvých naměřených hodnot. Lze vypočítat, že parametr σ Gaussova rozdělení je roven střední kvadratcké odchylce od skutečné hodnoty: ( ε ) σ = ε G dε. Velčna σ se nazývá rozptyl a lze jej odhadnout pomocí tzv. výběrového rozptylu naměřených hodnot od průměru, tj. velčny 1 s = ( x x). N 1 Ukazuje se, že nejlepší odhad rozptylu je σ s. Rozptyl σ, jenž charakterzuje rozdělení odchylek (chyb) artmetckých průměrů od skutečné hodnoty, bude pak N-krát menší: ( x x) σ σ =, tj. N N ( N 1) ( x x) σ σ =. N N ( N 1) Pro hodnocení přesnost měření se používá tzv. směrodatná (nazývaná též standardní nebo střední kvadratcká) chyba artmetckého průměru, která je rovna parametru σ. Výsledek měření pak konvenčně vyjadřujeme takto: Naměřená hodnota velčny X je rovna x ±σ. Pro správné pochopení výrazu x ± σ je vhodné s uvědomt tuto skutečnost: Pravděpodobnost, že chyba měření bude menší než E dostaneme ntegrací Gaussova rozdělení (vz obr. 1): E 1 ε E E p( E) = exp dε = Φ Φ, π. σ σ σ σ E 1 z z kde Φ( z) = e dz π je tzv. gaussovská dstrbuční funkce chyb, která bývá často tabelována. Provedeme-l ntegrac v mezích σ až + σ zjstíme, že pravděpodobnost výskytu chyby našeho artmetckého průměru v ntervalu ( σ, + σ ) je 0, (tečky symbolzují další neuváděná desetnná místa). Máme tedy 68,3% pravděpodobnost, že náš artm. průměr leží v oblast ± σ okolo skutečné hodnoty. Nebo obráceně: máme 68,3% pravděpodobnost, že skutečná hodnota leží v oblast ± σ okolo našeho průměru. Pokud bychom např krát změřl N hodnot a vypočetl 15

5 z nch 1000 artmetckých průměrů, pak přblžně 683 získaných průměrů bude ležet v oblast ± σ kolem skutečné hodnoty. Vdíme, že změření N hodnot a určení artmetckého průměru je vlastně náhodný výběr jednoho průměru z nekonečného množství potencálně možných artmetckých průměrů. Pro prax jsou důležté ještě následující případy: Pravděpodobnost chyby menší než: ± σ je 0,954..., ± 3σ je 0, , ± 0,674...σ je 0,5. Nejníže uvedená chyba se nazývá pravděpodobná a v dřívějších dobách byla užívána jako charakterstka chyby měření. Chybu o velkost 3σ nazýváme krajní. Pokud j použjeme, máme pravděpodobnost, že skutečná hodnota leží vně ntervalu ( x 3σ, x + 3σ ) as 0,007 tedy praktcky nulovou. Poznámka: Chyba σ je ovšem také jen odhadnuta. Lze ukázat, že chyba chyby ční přblžně δ σ σ ( N 1), což pro N = 50 dává chybu chyby as 10 %! Nemá tedy smysl uvádět ve výsledcích chybu přílš přesně. Doplňme nyní, kdy je možno vyloučt ze souboru měření hrubou chybu H. Můžeme to udělat tehdy, je-l její výskyt málo pravděpodobný. K tomu stačí, aby se příslušná naměřená hodnota lšla od artmetckého průměru o více než 3 σ. B. Odhad přístrojové chyby Protože není možno se věnovat odhadu přístrojové chyby obecně, omezíme se jen na dva nejvýznamnější případy: 1) Chyba čtení stupnce a dspleje Pro odhad chyby měření na stupnc se předpokládá, že skutečná hodnota leží s přblžně konstantní pravděpodobností v ntervalu ± 1/ dílku. Rozdělení odchylek tedy v tomto případě není gaussovské, ale přblžně obdélníkové, šroké 1 dílek. Směrodatnou chybu pak získáme (tak, aby byla rovna střední kvadratcké odchylce od skutečné hodnoty) jako odmocnnu z ntegrálu kvadrátů odchylek přes toto rozdělení. Výsledkem pak bude hodnota = 0, , 3 dílku. Jako směrodatnou chybu stupnce budeme proto uvažovat 0,3 dílku. Měřcí přístroje s dgtálním výstupem zaokrouhlují sgnál na poslední platnou číslc, přčemž rozdělení odchylek je opět přblžně rovnoměrné v ntervalu ± 1/ řádu poslední číslce dspleje. Směrodatná chyba proto bude opět 0,3 řádu poslední číslce. ) Chyba elektrckých měřcích přístrojů udávaná výrobcem Starší ručkové elektrcké měřcí přístroje mají uvedenu tzv. třídu přesnost, udávající kolk procent zvoleného rozsahu ční maxmální možná chyba. Např. třída přesnost 0, znamená, že maxmální absolutní chyba ční 0, % rozsahu, bez ohledu na to, jakou hodnotu na daném rozsahu právě měříme. (Rozsah proto volíme tak, aby výchylka ručky zasahovala do horní třetny stupnce, jnak neúměrně narůstá relatvní chyba měření.) 16

6 U novějších přístrojů bývá maxmální chyba udávána předpsem výrobce např. jako součet procentové chyby rozsahu a procentové chyby měřeného údaje nebo jako součet procentové chyby údaje a určtého počtu jednotek posledního místa dspleje. (vz odst. Dgtální měřcí přístroje na str. 37) Zbývá otázka, jak tuto maxmální chybu nterpretovat. Protože se zde také předpokládá přblžně rovnoměrné (obdélníkové) rozdělení odchylek o šířce ± 1 maxmální chyba, bude odpovídající směrodatná chyba rovna ,6 maxmální chyby. Nakonec je třeba se zmínt o problematce skládání chyb. Někdy musíme např. uvážt jak chybu stupnce, tak náhodnou chybu č chybu udanou výrobcem. Pro celkovou chybu σ vznklou skládáním nezávslých chyb σ 1 a σ platí: σ = σ 1 + σ (obdobně př skládání více chyb). Z daného výrazu vyplývají tyto závěry: 1) Je-l jedna z chyb více než 3 menší než druhá, lze j zanedbat. Celkovou chybu to ovlvní o méně než 5,5 %, což je vzhledem k nepřesnost určení chyby zanedbatelné. ) Protože náhodná chyba průměru s velkostí souboru obvykle klesá jako 1 N, může její hodnota být př dostatečně velkém N lbovolně malá. Optmální počet měření pak zřejmě odpovídá případu, kdy je tato chyba zanedbatelná vzhledem k přístrojové chybě č chybě stupnce, tj. je alespoň 3 menší. C. Chyba nepřímo měřené velčny Zatím jsme se zabýval stanovením chyby přímého měření, často ovšem fyzkální velčny měříme nepřímo. Pak je daná velčna funkcí několka přímo měřených velčn. (Např. hustotu látky zjšťujeme na základě měření hmotnost a objemu. Výsledná hustota je pak podílem těchto velčn.) Je-l výsledná velčna Z dána funkcí přímo měřených velčn A, B, C,, tj. Z = f (A, B, C, ), pak, pokud relatvní chyby ξ a, ξ b, ξ c, velčn A, B, C, jsou dostatečně malé (malost ovšem závsí na tvaru funkce f), pro vyhodnocení výsledku platí: 1) Rozumný odhad z o skutečné hodnoty z velčny Z, je dán funkcí f odhadů a o, b o, c o, příslušných velčnám A, B, C, : z o = f (a o, b o, c o, ). ( Rozumný proto, že tento odhad není vždy nejlepší např. artmetcký průměr kvadrátů je vždy větší než kvadrát artmetckého průměru. Obecně však tento odhad použtelný je.) ) Odhad směrodatné chyby σ z je dán vztahem kde σ a, σ b, f f f σ z = σ a + σ b + σ c + K, a b c σ, jsou směrodatné chyby velčn A, B, C,. c 17

7 Toto je tzv. věta o přenosu chyby. Výše uvedená dvě tvrzení umožňují výpočet odhadu skutečné hodnoty nepřímo měřené velčny a její směrodatné chyby. Specálně pro součet a rozdíl přímo měřených velčn dostaneme a ± b a σ = σ + σ a vztah pro chybu výrazu a m b n, kde m a n jsou číselné parametry (součn velčn odpovídá m = n = 1, podíl m = 1, n = 1), můžeme elegantně zapsat ve tvaru: b m n ( a b ) ( mξa) ( nξb) ξ = +, kde ξ a a ξ b jsou relatvní směrodatné chyby výchozích velčn. (Rozšíření vzorců na případ více velčn je přímočaré.) Ve vztazích vyjadřujících nepřímo měřené velčny často vystupují konstanty. Nechceme-l zvětšt chybu výsledné velčny, je třeba, pokud je to možné, vyjádřt konstantu tak přesně, aby její příspěvek k celkové chybě byl zanedbatelný. Obyčejně volíme relatvní chybu konstanty o řád menší než je velkost ostatních chyb. Není-l to možné, je zapotřebí započítat chybu příslušné konstanty. D. Lneární regrese a její chyba Často nezjšťujeme výslednou velčnu jako funkční vyjádření jných přímo měřených velčn, ale jako parametr vyjadřující charakter závslost měřených velčn. Příkladem může být určení elektrckého odporu na základě voltampérové charakterstky. Níže se omezíme na lneární závslost mez vystupujícím velčnam. Procedura je ovšem použtelná pro závslost převodtelné, např. logartmováním, na lneární. Předpokládejme, že máme dvě řady souvsejících velčn x a y ( = 1 N) a že jejch vzájemná závslost je vyjádřtelná ve tvaru: y = k.x + q. Nejlepším odhadem parametrů k a q, ve smyslu nejmenšího součtu kvadratckých odchylek, je: ( x x) y k = x x a q = y k. x. ( ) V těchto výrazech pruh označuje artmetcký průměr. Geometrcky se jedná o proložení přímky daným (naměřeným) body. Druhá rovnce zjevně říká, že přímka prochází těžštěm bodů grafu. Nalezení optmální přímky aproxmující daná data se nazývá úlohou (jednoduché) lneární regrese. Chyby parametrů k a q jsou dány vztahy: ( y k. x q) ( x x) 1 σ k = a N σ q 1 x = + ( ) N x x ( y k. x q) N 18

8 Víme-l, že parametr q má být roven nule (jde tedy o přímou úměrnost a hledaná přímka prochází počátkem), pak nejlepší odhad směrnce a její chyba jsou dány vztahy: x y k, = x ( y k. x ) = 1 σ k. N 1 x E. Konečný tvar výsledku měření Výslednou hodnotu měřené velčny píšeme ve tvaru : MĚŘENÁ VELIČINA = VÝSLEDNÁ HODNOTA ± SMĚRODATNÁ CHYBA Směrodatná chyba je určena značně nepřesně (s přesností horší než 10 % vz výše), a proto j zaokrouhlujeme na jednu platnou cfru. Pouze v případě, že první cfrou je číslce 1, zaokrouhlujeme na dvě platné cfry. Za platné se považují všechny cfry kromě nul vlevo od první nenulové cfry. Např. číslo 0,0170 má tř platné cfry. Cfra nula na konc je platná číslo je tím udáno s přesností na desettsícny. Vynechání této nuly sníží přesnost čísla desetkrát. Číslo má pět platných cfer a chceme-l jej uvést pouze na tř platné cfry, musíme použít tvaru 1, ! Výslednou hodnotu zaokrouhlujeme na tolk míst, kolk jch má (jž zaokrouhlená) chyba. Ta korguje poslední (resp. dvě poslední) cfry výsledku. Př konečném zápsu využíváme často exponencálního tvaru zápsu čísel: např. číslo 3 44 ± 679 zaokrouhlíme a zapíšeme jako (34 ± 7).10. Přpomeňme ještě, že zaokrouhlujeme podle hodnoty výrazu za poslední platnou cfrou: Je-l větší než 5, zaokrouhlujeme nahoru, je-l menší pak dolů. V případě, že je výraz přesně roven 5, zaokrouhlujeme nahoru, je-l předchozí cfra lchá, a dolů, je-l sudá (pro vyrovnání statstky zaokrouhlování). Příklady zápsu: Správně: 1,50 ± 0,0 0,6 ± 0,3 0,3 ± 0, ± 9 (3,0 ± 0,) km/s Nesprávně: 1,5 ± 0,0 0,56 ± 0,3 0,341 ± 0, ,1 ± ± 0000 km/s Závěr Zjstl jsme, jak určovat odhad skutečné hodnoty měřené velčny a jeho chybu na základě měření. Odpověděl jsme tak na první otázku z počátku kaptoly. Budeme-l mít více souborů měření téže velčny, pak zjštěné odhady hodnoty a směrodatné chyby nejspíše nebudou zcela stejné. Tyto hodnoty pak můžeme snadno porovnat takto: dva odhady výsledku měření budeme považovat 19

9 za souhlasné, pokud jejch rozdíl bude v absolutní hodnotě menší než dvojnásobek směrodatné chyby, která je v daném případě rovna σ = σ 1 + σ, kde σ 1 a σ jsou směrodatné chyby těchto odhadů. (Odpovídá to vytvoření rozdílu obou odhadů a testování, kdy je tento rozdíl nulový.) Pravděpodobnost, že odhady souhlasí, ale my je na základě tohoto testu označíme (nesprávně) za odlšné, ční cca 5 %. Pokud je rozdíl odhadů větší než dvě a menší než tř směrodatné odchylky σ, považujeme stuac za nerozhodnou a vyžadující další měření. Je-l rozdíl větší než 3 σ, považujeme výsledky za různé, a tedy nesouhlasící. Umíme tedy porovnávat soubory měření. (Souborem měření je tabulková hodnota!) Porovnání s teoretckým výsledkem provádíme obdobně. Teoretcký výsledek charakterzujeme parametry x t a σ t (teoretcká hodnota a její směrodatná chyba teoretcká chyba nebývá vždy uvedena: pak j budeme považovat za zanedbatelnou). Pak s představíme teoretcký výsledek jako kdyby to byl soubor měřených dat, reprezentovaný parametry x t a σ t a porovnáme jej s našm naměřeným daty. Experment pak souhlasí s teorí, pokud se rozdíl expermentální a teoretcké hodnoty nelší v absolutní hodnotě o více než dvě směrodatné chyby σ = σ t + σ e, kde σ e je směrodatná chyba našeho měření. I druhá otázka ze začátku kaptoly je tedy odpovězena. Zpracováno podle normy European Cooperaton for Accredtaton of Laboratores EAL R (vyd. 1997). STRUČNÝ POSTUP PŘI VÝPOČTU CHYB SHRNUTÍ V běžných případech můžeme použít schéma výpočtu chyb zobrazené na obr. 1 na následující straně. Př měření každé z velčn A, B, C, je třeba rozhodnout, zda j měřt vícekrát (N-krát), nebo jen jednou. Nejdříve tedy provedeme několk zkušebních měření a pokud se jednotlvá měření velčny vzájemně lší, musíme měřt vícekrát a data zpracovat statstcky podle kaptoly Chyby měření, odst. A. Vychází-l zkušební měření stále stejně, stačí samozřejmě uvažovat jedné. V obou případech je nutné ještě př měření stanovt chybu použtého měřcího přístroje a sloučt j s chybou statstckou (ve druhém případě rovnou nule). Stanovení hodnot jednotlvých chyb je uvedeno v předcházející kaptole. Pops některých měřcích přístrojů a stanovení jejch chyb je uveden v kaptole Přístroje užívané ve fyzkálním praktku. 0

10 1

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

Masarykova univerzita Ekonomicko správní fakulta

Masarykova univerzita Ekonomicko správní fakulta Masarykova unverzta Ekonomcko správní fakulta Fnanční matematka dstanční studjní opora Frantšek Čámský Brno 2005 Tento projekt byl realzován za fnanční podpory Evropské une v rámc programu SOCRATES Grundtvg.

Více

Úloha II.P... Temelínská

Úloha II.P... Temelínská Úloha IIP Temelínská 4 body; průměr 278; řešlo 49 studentů Odhadněte kolk jaderného palva se spotřebuje v jaderné elektrárně na 1 MWh elektrcké energe kterou spotřebují ldé až v domácnost Srovnejte to

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje

5. MĚŘENÍ STEJNOSMĚRNÝCH MOTORŮ. 5.1 Stejnosměrný motor s cizím buzením 5.1.1 Štítkové údaje nastavíme synchronzac se sítí (označení LINE), což značí, že př kmtočtu 50 Hz bude počet záblesků, kterým osvětlíme hřídel, 3000 mn -1. Řízením dynamometru docílíme stav, kdy se na hřídel objeví tř nepohyblvé

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454. Název DUM: Měření fyzikálních veličin Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Měření fyzikálních

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl

ČVUT FEL. X16FIM Finanční Management. Semestrální projekt. Téma: Optimalizace zásobování teplem. Vypracoval: Marek Handl ČVUT FEL X16FIM Fnanční Management Semestrální projekt Téma: Optmalzace zásobování teplem Vypracoval: Marek Handl Datum: květen 2008 Formulace úlohy Pro novou výstavbu 100 bytových jednotek je třeba zvolt

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6)

1.2. Postup výpočtu. , [kwh/(m 3.a)] (6) 1. Stavebn energetcké vlastnost budov Energetcké chování budov v zním období se v současné době hodnotí buď s pomocí průměrného součntele prostupu tepla nebo s pomocí měrné potřeby tepla na vytápění. 1.1.

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

1. Úvod do základních pojmů teorie pravděpodobnosti

1. Úvod do základních pojmů teorie pravděpodobnosti 1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Stanovení základních materiálových parametrů KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE Stanovení základních materiálových parametrů Vzor laboratorního protokolu Titulní strana: název experimentu jména studentů v pracovní skupině datum Protokol:

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

4. SCHÉMA ZAPOJENÍ U R

4. SCHÉMA ZAPOJENÍ U R EDL 3.EB 5 1/11 1. ZADÁÍ a) Změřte voltampérové charakteristiky dvou různých žárovek pomocí voltmetru a ampérmetru b) Sestrojte grafy =f() c) Vypočítejte statický odpor a graficko-početní metodou dynamický

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Finanční matematika. Téma: Důchody. Současná hodnota anuity

Finanční matematika. Téma: Důchody. Současná hodnota anuity Fnanční matematka Téma: Důchody Současná hodnota anuty Důchody Defnce: Důchodem se rozumí pravdelné platby ve stejné výš, tzv. anuty Pozor na nejednotnost termnologe Různé možnost rozdělení důchodů Členění

Více

Kalibrace odporového teploměru a termočlánku

Kalibrace odporového teploměru a termočlánku Kalibrace odporového teploměru a termočlánku Jakub Michálek 10. dubna 2009 Teorie Pro označení veličin viz text [1] s výjimkou, že teplotní rozdíl značím T, protože značku t už mám vyhrazenu pro čas. Ze

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření

Časová hodnota peněz ve finančním rozhodování podniku. 1.1. Význam faktoru času a základní metody jeho vyjádření Časová hodnota peněz ve fnančním rozhodování podnku 1.1. Význam faktoru času a základní metody jeho vyjádření Fnanční rozhodování podnku je ovlvněno časem. Peněžní prostředky získané dnes mají větší hodnotu

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ VENTILATION

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace

Jiří Militky Škály měření Nepřímá měření Teorie měření Kalibrace Tetlní zkušebnctv ebnctví II Jří Mltky Škály měření epřímá měření Teore měření Kalbrace Základní pojmy I PRAVDĚPODOBOST Jev A, byl sledován v m pokusech. astal celkem m a krát. Relatvní četnost výskytu

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. L A B O R A T O Ř O B O R U CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r. Ústav organcké technologe (111) Ing. J. Trejbal, Ph.D. budova A, místnost č. S25b Název práce : Vedoucí práce: Umístění práce: Rektfkace

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky LOGICKÉ OBVODY pro kombinované a distanční studium Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky LOGICKÉ OBVODY pro kombnované a dstanční studum Zdeněk Dvš Zdeňka Chmelíková Iva Petříková Ostrava ZDENĚK DIVIŠ, ZDEŇKA

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

INŽ ENÝ RSKÁ MECHANIKA 2002

INŽ ENÝ RSKÁ MECHANIKA 2002 Ná dní konference s mezná dní účastí INŽ ENÝ RSÁ MECHANIA 00 1. 16. 5. 00, Svratka, Č eská republka PODRITICÝ RŮ ST TRHLINY VE SVAROVÉ M SPOJI OMORY PŘ EHŘÍVÁ U Jan ouš, Ondřej Belak 1 Abstrakt: V důsledku

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Vyjadřování nejistot

Vyjadřování nejistot ÚČEL Účelem stanovení nejistot při měření je zjištění intervalu hodnot okolo výsledku měření, který lze přiřadit k hodnotě měřené veličiny. Nejistota měření zjištěná při kalibraci je základem pro zjištění

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt Automatický výpočet chyby nepřímého měření František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009 Abstrakt Pro správné vyhodnocení naměřených dat je třeba také vypočítat chybu měření. Pokud je neznámá

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84)

Numerické výpočty ve světovém geodetickém referenčním systému 1984 (WGS84) Numercké výpočty ve světovém geodetckém referenčním systému 984 (WGS84) prof. Mara Ivanovna Jurkna, DrSc. CNIIGAK, Moskva prof. Ing. Mloš Pck, DrSc. Geofyzkální ústav ČAV, Praha Vojenský geografcký obzor,

Více

pracovní list studenta

pracovní list studenta ýstup RP: Klíčová slova: pracovní list studenta Funkce nepřímá úměrnost Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti reálných

Více

Konverze kmitočtu Štěpán Matějka

Konverze kmitočtu Štěpán Matějka 1.Úvod teoretcký pops Konverze kmtočtu Štěpán Matějka Směšovač měnč kmtočtu je obvod, který přeměňuje vstupní sgnál s kmtočtem na výstupní sgnál o kmtočtu IF. Někdy bývá tento proces označován také jako

Více