Parciální derivace. Derivace. Obyčejná derivace. Aplikace parciálních derivací - základní myšlenky. Parciální derivace

Rozměr: px
Začít zobrazení ze stránky:

Download "Parciální derivace. Derivace. Obyčejná derivace. Aplikace parciálních derivací - základní myšlenky. Parciální derivace"

Transkript

1 Parciální derivace Derivace Derivace je matematický prostředek, který umožňuje sledovat, měřit a porovnávat ryclosti změn fyzikálníc veličin Přirozeně se tak objevuje při formulaci a popisu téměř všec dynamicky probíajícíc fyzikálníc jevů (Fyzikální popis světa tak je prezentovaný středoškolskou fyzikou je častou pouze jakousi aproximací ve které jevy probíají konstantní ryclostí - například bez derivací umíme studovat pouze rovnoměrný nebo rovnoměrně zryclený poyb) Poznámka Všude v následujícím textu budeme předpokládat, že funkce a derivace které zde vystupují jsou dostatečně ladké a rovnosti platí na dostatečně pěknýc množinác V praktickýc aplikacíc bývají tyto předpoklady zpravidla triviálně splněny, proto je pro úsporu místa nebudeme vypisovat Zájemce najde poučení v odborné literatuře Obyčejná derivace Derivace funkce y = f(x) je definována vztaem f (x) = lim f(x + ) f(x) Jedná se o veličinu udávající, jak rycle se mění funkční odnoty funkce při změnác vstupníc dat Alternativní označení je df dx Derivace f (x) je směrnice tečny ke grafu funkce y = f(x) v bodě [x, f(x)] Lineární aproximací funkce y = f(x) v bodě x 0 je f(x) f(x 0 ) + f (x 0 )(x x 0 ) Slovy: funkční odnota teď (v x) je funkční odnota před cvílí (v x 0 ) plus celková změna, která je součinem ryclosti změny (f (x 0 )) a času, za který se změna udála (x x 0 ) Parciální derivace Pro funkce dvou proměnnýc rozlišujeme parciální derivace podle jednotlivýc proměnnýc (x, y) (x, y) = lim f(x +, y) f(x, y) = lim f(x, y + ) f(x, y) Obrázek 1: Parciální derivace funkce f v bodě [2, 2] jsou derivace křivek vzniklýc na řezec rovinami x = 2 a y = 2 Jedná se o stejnou veličinu jako u obyčejné derivace, ale vždy jenom vzledem k jedné proměnné Parciální derivace f tedy udává, jak rycle se mění f při změnác veličiny x V definici a při výpočtu parciální derivace podle x je proměnná y konstantní Geometricky to je možno interpretovat tak, že studujeme křivku, která vznikne na řezu grafu funkce z = f(x, y) rovinou y = konst Alternativní označení: f x(x, y), f y(x, y) Aplikace parciálníc derivací - základní myšlenky Parciální derivace je ryclost změny funkce f(x, y) při změnác veličiny x Pokud se veličina x změní o x, funkční odnota se změní o přibližně x Pokud je veličina x známa s cybou x, veličina f je vypočítána s cybou x Pokud je u celková vnitřní energie v jednotkovém objemu tělesa (ustota tepelné energie), je u t ryclost, s jakou se tato energie mění v čase Pokud ke změně docází pomocí vedení tepla, je tato derivace rovna tepelnému toku přes ranice Pokud docází ke generování tepla v tělese (cemická reakce, elektrický proud), je tato derivace rovna tepelnému výkonu zdroje V obecném případě se oba faktory sčítají, což vede k odvození rovnice vedení tepla ze zákona zacování Jednotkou derivace je jednotka veličiny f dělená jednotkou veličiny x Analogická tvrzení jako pro veličinu x platí pro veličinu y

2 Ve fyzice často pracujeme s funkcemi, které mají spojité parciální derivace Takové funkce se nazývají ladké funkce Aplikace parciálníc derivací - příklad Příklad: Brzdná dráa L (v metrec) auta o motnosti m (v kilogramec) brzdícío z ryclosti v (v kilometrec za odinu) je dána vzorcem L = kmv 2, kde k = (m od 2 )/(kg km 2 ) Pro m = 1100 kg a v = 100 km/od je brzdná dráa 3795 m Parciální derivace podle m je L m = kv2 a pro zadané odnoty vycází L m = 00345m/kg Každý kilogram motnosti nad 1100 kg auta jedoucío ryclostí 100 km/od prodlouží brzdnou dráu o cca 35 cm Parciální derivace podle v je L v = 2kmv a pro zadané odnoty vycází L v = 0759 m/(km/od) = od Každý kilometr za odinu nad 100 km/od u auta vážícío 1100 kg prodlouží brzdnou dráu o cca 76 cm Zjednodušený vzorec pro brzdnou dráu auta s motností blízkou 1100 kg a ryclostí blízkou 100 km/od je L (m 1100) (v 100), kde motnost a ryclost se dosazují v kilogramec a metrec a brzdná dráa vycází v metrec Z parciální derivace podle v víme, že změna ryclosti o v změní brzdnou dráu přibližně o L 2kmv v Nabízí se otázka, proč s touto přibližnou informací pracovat, když změnu umíme určit i přesně, L = km(v + v) 2 k mv 2 = 2kmv v + k m( v) 2 Překvapivě, přibližný vzorec založený na derivacíc je vždy jednodušší, než přesný výpočet změny Tento efekt je možné vidět u drué mocniny, je výraznější u vyššíc mocnin a stane se fatálním u obecnýc neceločíslenýc mocnin nebo obecnějšíc funkcí Pokud náš výpočet vstupuje do komplexnějšíc inženýrskýc modelů, staly by se neřešitelnými Že s derivací jde jenom o aproximaxci vůbec nevadí, protože zapojením důmyslnýc matematickýc postupů zapracovanýc přímo v definici (limita) srážíme cybu na nulu Zákon šíření cyb (cyba nepřímo měřené veličiny) V praxi často měříme nepřímo veličinu f tak, že měříme veličiny x 1, x 2,, x n a odnotu veličiny f určíme pomocí vzorce f(x 1, x 2,, x n ) Měření každé z veličin je zatíženo cybou Je-li cyba veličiny x i rovna x i, způsobí tato odcylka to, že cyba veličiny f bude (v souladu se vzorcem pro lineární aproximaci) přibližně f x i i Celkovou cybu veličiny f můžeme určit sečtením cyb způsobenýc jednotlivými veličinami x i Častěji se však používá následující vzorec f(x 1, x 2, x n ) označovaný zákon šíření cyb Zákon šíření cyb - příklad ( ) 2 ( ) 2 ( ) 2 x 1 + x x n 1 2 n Kanadský empirický vzorec pro pocitovou teplotu v zimě (wind-cill factor) je W (T, v) = T 1137v T v 016, kde T je teplota (ve stupníc Celsia) a v je ryclost větru (v km/od) Teplota byla změřena 110 C s cybou 02 C a ryclost 26 km/od s cybou 5 km/od S využítím zákona šíření cyb určíme, jaký vliv mají nepřesnosti v měření na nepřesnost vypočítané veličiny Dosazením do vzorce dostáváme W ( 11, 26) = C Derivováním dostáváme T (T, v) = v016, v (T, v) = v T v 084 a po dosazení ( 11, 26) = 1289, T v ( 11, 26) = 0163 C od/km Za dané teploty a ryclosti větru způsobí nárůst teploty o jeden stupeň nárůst pocitové teploty přibližně o 13 stupně Podobně, zesílení větru o jeden kilometr za odinu způsobí snížení pocitové teploty přibližně o 016 stupně Ze zákona šíření cyb dostáváme pro cybu pocitové teploty (dosazováno bez jednotek) W = ( ) 2 + ( ) 2 = 085 C Pocitová teplota je tedy W = 202 C ± 09 C

3 Gradient Gradient je definován pro skalární funkce Gradient funkce dvou proměnnýc f(x, y): grad f = Gradient funkce tří proměnnýc f(x, y, z): grad f = (, ) (,, ) z Formálně většinou zapisujeme gradient f, kde vystupuje operátor nabla definovaný vztaem ( =,, ) z nebo = (, ) (v závislosti na počtu proměnnýc funkce f) Násobení cápeme jako parciální derivaci Gradient je v každém bodě kolmý k vrstevnici Gradient v přírodě a přírodníc zákonec s funkcí f přitom V jednorozměrném případě je gradient totéž co derivace Přesto se někdy z tradičníc důvodů respektujícíc zvyklosti oboru nemluví o derivaci, ale o gradientu Například mluvíme o gradientu teploty při studiu tepelně izolačníc vlastností izolačníc materiálů Pokud máme na mysli vrstvu z jednoo materiálu (a ne například sendvičovou stěnu), je rozložení teploty lineární a dokonce v tomto případě pojmem gradient vlastně označujeme směrnici přímky S gradientem souvisí majáková navigace při migraci živočiců Ti sledují určitý cemický podnět a poybují se ve směru největšío růstu tooto podnětu (tj ve směru gradientu) Například žralok ve vodě takto sleduje koncentraci krve Pokud je mezi žralokem a zdrojem krve proud, kerý krev unáší, nepopluje žralok rovnou čarou ke zdroji krve, ale koncentrace krve o povede po delší trase Pokud se zajímáme nejenom o směr, ale i velikost gradientu, pomůže to k posouzení jak rycle se mění veličina v prostoru (gradient je velký, jsou-li vrstevnice nausto) Síla ( F ) působící na těleso v silovém poli ve kterém je možno zavést potenciální energii (V ) je gradientem potenciální energie vynásobeným faktorem 1 (záporně vzatý gradient) F = V Pro jednorozměrnou úlou a těleso v potenciálové jámě (tj v rovnovážném stavu, kdy je minimum potenciální energie) můžeme potenciál v okolí minima aproximovat pomocí Taylorova rozvoje V (x) V V (0)x 2 + (souřadnice volíme tak, že toto minimum je pro x = 0) a je-li xv (0) V (0), potom F = V = V (0)x = kx To znamená, že síla je úměrná výcylce, stejně jako u tělesa na pružině Podobně ve vícerozměnrném případě V omogenním tíovém poli s osou z svisle naoru je gravitační potenciál (potenciální energie tělesa o jednotkové motnosti) dán vztaem φ(x, y, z) = gz a gradient je konstantní vektor φ = (0, 0, g) Proto je práce přímo úměrná potenciálu a má smysl práci (změnu potenciální energie) považovat jenom za jiné vyjádření výškovéo rozdílu (změnu souřadnice z) Dokonce je to možné interpretovat jako změnu jednotek Při proudění vody v půdě nebo v rostlinác raje roli celá řada různýc příspěvků k potenciální energii, jako gravitace, vnější tlak, osmóza, kapilarita Pro poodlnou práci někdy všecny tyto faktory přepočítáváme na odpovídající rozdíl výšek vodnío sloupce, čímž je dána piezometrická ladina Je to vlastně celková potenciální energie přepočtená na výšku vodnío sloupce Většina proudění v přírodě je způsobena gradientem veličiny, která je ybatelnou silou tooto proudění Například vítr vznikne rozdílem v prostorovém rozložení tlaku (nenulovým gradientem) Často je intenzita proudění úměrná tomuto gradientu (Fickův zákon) Například ustota toku j při difúzi vody ve dřevě je dána vztaem j = D c, kde c je koncentrace vody a D je difúzní konstanta Lineární aproximace funkce Lineární aproximací funkce z = f(x, y) v bodě (x 0, y 0 ) je f(x, y) f(x 0, y 0 ) + (x 0, y 0 ) nebo (pomocí gradientu) (x x 0 ) + (x 0, y 0 ) (y y 0 ) f(x, y) f(x 0, y 0 ) + f(x 0, y 0 ) (x x 0, y y 0 ) Tečná rovina ke grafu funkce z = f(x, y) vedená bodem [x 0, y 0, z 0 ], kde z 0 = f(x 0, y 0 ) má rovnici z = z 0 + (x 0, y 0 ) nebo (pomocí gradientu) (x x 0 ) + (x 0, y 0 ) (y y 0 ), z = z 0 + f(x 0, y 0 ) (x x 0, y y 0 )

4 Lineární aproximace funkce - příklad Kanadský empirický vzorec pro pocitovou teplotu v zimě (wind-cill factor) je W (T, v) = T 1137v T v 016, kde T je teplota (ve stupníc Celsia) a v je ryclost větru (v km/od) Teplota byla změřena 110 C s cybou 02 C a ryclost 26 km/od s cybou 5 km/od S využítím zákona šíření cyb určíme, jaký vliv mají nepřesnosti v měření na nepřesnost vypočítané veličiny Na předcozíc slidec jsme vypočítali W ( 11, 26) = C ( 11, 26) = 1289, T v ( 11, 26) = 0163 C od/km Za dané teploty a ryclosti větru způsobí nárůst teploty o jeden stupeň nárůst pocitové teploty přibližně o 13 stupně Podobně, zesílení větru o jeden kilometr za odinu způsobí snížení pocitové teploty přibližně o 016 stupně Přibližný vzorec pro pocitovou teplotu platný pro teploty blízké 110 C a ryclosti větru blízké 26 km/od je Tečna k vrstevnici W (T + 11) 0163(v 26) Pro z = 0 = z 0 dostáváme z tečné roviny následující: Necť f(x 0, y 0 ) = 0 Tečna k vrstevnici funkce f(x, y) na úrovni nula, tj ke křivce 0 = f(x, y), vedená bodem [x 0, y 0 ] má rovnici 0 = f(x 0, y 0 ) (x x 0, y y 0 ) Implicitně definovaná funkce Mějme funkci f(x, y) dvou proměnnýc a její vstevnici na úrovni C f(x, y) = C (1) Tato rovnice za jistýc okolností může definovat y jako funkci proměnné x Věta o implicitní funkci: Uvažujme funkci f(x, y) dvou proměnnýc, splňující v nějakém bodě (x 0, y 0 ) podmínku f(x 0, y 0 ) = 0 a mající v okolí bodu (x 0, y 0 ) spojité parciální derivace Rovnice f(x, y) = 0 vrstevnice na úrovni 0 popisuje křivku procázející bodem (x 0, y 0 ) Platí-li (x 0, y 0 ) 0, je rovnicí f(x, y) = 0 v okolí bodu (x 0, y 0 ) implicitně určena právě jedna spojitá funkce y = g(x) (tj vrstevnice je v okolí bodu (x 0, y 0 ) grafem nějaké spojité funkce g) Funkce g z předcozío bodu má v x 0 derivaci (x 0,y 0) g (x 0 ) = (x 0,y 0) Lokální extrémy funkce více proměnnýc Podobně jako pro funkce jedné proměnné definujeme i pro funkce více proměnnýc lokální extrémy následovně: funkce má v daném bodě lokální minimum, pokud v nějakém okolí tooto bodu neexistuje bod s menší funkční odnotou a podobně, funkce má v bodě lokální maximum, pokud v okolí tooto bodu neexistuje bod s vyšší funkční odnotou Věta (Fermatova nutná podmínka pro lokální extrémy): Jestliže funkce více proměnnýc má v nějakém bodě svůj lokální extrém, pak každá parciální derivace, která v tomto bodě existuje, je nulová V bodě lokálnío extrému ladké funkce je tedy nulový gradient Složené funkce Derivace složené funkce f(x, y), kde x = x(u, v), y = y(u, v) je u = u + ( u = f u, ) u Derivace složené funkce f(x, y, z), kde x = x(t), y = y(t), z = z(t) (derivace podél křivky): df dt = dx dt + dy dt + ( dz dx z dt = f dt, dy dt, dz ) dt Je-li křivkou vrstevnice, je f konstantní podél křivky, derivace je nulová, protože funkční odnoty se nemění Skalární součin ( je nulový ) a gradient f je kolmý na dx tečný vektor k vrstevnici, tj na vektor dt, dy dt, dz dt

5 Druá derivace Druá derivace je derivace první derivace U funkce dvou proměnnýc připadají v úvau čtyři kombinace f, f, f, f Věta (Scwarzova) Jsou-li smíšené derivace ladké na otevřené množině, jsou zde stejné, tj platí = Vzledem k této větě existují jenom tři drué parciální derivace Je tedy bezpečné psát 2 2 f, 2 f, 2 2 f, nebo Totální diferenciál f xx, f xy, f yy Totálním diferenciálem funkce z = f(x, y) v bodě (x 0, y 0 ) nazýváme výraz df = f(x 0, y 0 ) (dx, dy) = (x 0, y 0 ) Máme-li vektorové pole F (x, y) = (M(x, y), N(x, y)), dx + (x 0, y 0 ) dy Laplaceův operátor Laplaceův operátor, je definován v kartézskýc souřadnicíc a trojrozměrném prostoru vztaem f = 2 () 2 f + 2 () 2 f + 2 (z) 2 f V prostorec jiné dimenze postupujeme analogicky, jenom vynecáme nebo přidáme derivace podle dalšíc proměnnýc Označení symbolem je stejné jako změna funkce f a je nutné tyto dva významy symbolu nezaměňovat Cceme-li se vynout nedorozumění, je možno pro označení Laplaceova operátoru používat 2 namísto Laplaceův operátor vystupuje v problémec týkajícíc se elektrickéo nebo gravitačnío potenciálu, difuze, nebo kmitů a šíření vln Vlnová rovnice popisující vlnění resp cvění je rovnice 1 c 2 2 u t 2 = 2 u Například u kmitání struny nebo membrány je v odovození této rovnice i lineární aproximace sin x x Vedení tepla v prostředí bez zdrojů nebo spotřebičů tepla je popsáno rovnicí u t = D 2 u Při ustáleném vedení tepla je derivace podle času nulová a takové vedení tepla je popsáno rovnicí 0 = 2 u Stejná rovnice popisuje proudění obecně Například proudění podzemní vody propustnými vrstvami půdy resp máme-li výraz M(x, y)dx + N(x, y)dy, může nastat otázka, zda k tomuto výrazu existuje totální diferenciál, tj zda existuje skalární funkce f, jejímž gradientem je vektorové pole F Toto je důležitá otázka ve fyzice, protože umožňuje rozodnout, ke kterému silovém poli je možno zavést potenciální energii Funkce f se v tomto kontextu nazývá skalární potenciál vektorovéo pole nebo kmenová funkce diferenciálu Věta (platí za předpokladu dostatečně ladkýc funkcí na otevřené množině): Vektor F (x, y) = (M(x, y), N(x, y)) je gradientem nějaké funkce f(x, y) právě tedy když platí M(x, y) = N(x, y)

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ).

III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce. a = (x 0, y 0 ), h = (h 1, h 2 ). III. Diferenciál funkce a tečná rovina 8. Diferenciál funkce. Přírůstek funkce = f(x 0 + h 1, y 0 + h 2 ) f(x 0, y 0 ) f u (x 0, y 0 ), kde u = (h 1, h 2 ). ( ) = f(x 0 + h 1, y 0 ) f(x 0, y 0 ) x (x 0,

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Přednáška 4: Derivace

Přednáška 4: Derivace 4 / / 7, :5 Přednáška 4: Derivace Pojem derivace ormuloval v 7. století Isaac Newton při výpočtec poybu planet sluneční soustavy. Potřeboval spočítat úlovou ryclost planet. Její směr je dán tečnou ke dráze

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1).

y = 2x2 + 10xy + 5. (a) = 7. y Úloha 2.: Určete rovnici tečné roviny a normály ke grafu funkce f = f(x, y) v bodě (a, f(a)). f(x, y) = x, a = (1, 1). III Diferenciál funkce a tečná rovina Úloha 1: Určete rovnici tečné roviny ke grafu funkce f = f(x, y) v bodě (a, f(a)) f(x, y) = 3x 3 x y + 5xy 6x + 5y + 10, a = (1, 1) Řešení Definičním oborem funkce

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018

Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018 Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 3. 9. 6 Obsah přednášky Literatura Derivace

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Parametrické rovnice křivky

Parametrické rovnice křivky Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení

Drsná matematika III 2. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Drsná matematika III. přednáška Funkce více proměnných: Aproximace vyšších rádů, Taylorova věta, inverzní zobrazení Masarykova univerzita Fakulta informatiky 6. 9. Obsah přednášky Literatura Derivace vyšších

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Seriál II.II Vektory. Výfučtení: Vektory

Seriál II.II Vektory. Výfučtení: Vektory Výfučtení: Vektory Abychom zcela vyjádřili veličiny jako hmotnost, teplo či náboj, stačí nám k tomu jediné číslo (s příslušnou jednotkou). Říkáme jim skalární veličiny. Běžně se však setkáváme i s veličinami,

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

8.4. Shrnutí ke kapitolám 7 a 8

8.4. Shrnutí ke kapitolám 7 a 8 8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti

Více

DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ

DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ DERIVACE FUNKCE KOMPLEXNÍ PROMĚNNÉ vlastnosti holomorfní DERIVACE U reálných funkcí více reálných proměnných nebylo možné definovat derivaci analogicky definici reálné jedné reálné proměnné (nešlo dělit...)

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Matematická analýza pro informatiky I. Derivace funkce

Matematická analýza pro informatiky I. Derivace funkce Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou

Vlastní (charakteristická) čísla a vlastní (charakteristické) Pro zadanou čtvercovou matici A budeme řešit maticovou 1 Vlastní (charakteristická) čísla a vlastní (charakteristické) vektory matice Pro zadanou čtvercovou matici A budeme řešit maticovou rovnici A x = λ x, kde x je neznámá matice o jednom sloupci (sloupcový

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálníc rovnic Mirko Navara ttp://cmp.felk.cvut.cz/ navara/ Centrum strojovéo vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a ttp://mat.feld.cvut.cz/nemecek/nummet.tml

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc.

Studijní text pro obor G+K Katedra matematiky Fakulta stavební ROVNICE. Doc. RNDr. Milada Kočandrlová, CSc. Studijní text pro obor G+K Katedra matematiky Fakulta stavební České vysoké učení technické OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Doc. RNDr. Milada Kočandrlová, CSc. Lektorovali: RNDr. Milan Kočandrle, CSc.,

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Příklady ke zkoušce z Aplikované matematiky

Příklady ke zkoušce z Aplikované matematiky Příklady ke zkoušce z Aplikované matematiky Robert Mařík 2. února 205 Odpovědi nechápejte prosím jako vzorové odpovědi na jedničku. Často nejsou úplné, neodpovídají na všechny části otázky a slouží spíše

Více

Diferencovatelné funkce

Diferencovatelné funkce Přednáška 5 Diferencovatelné funkce Jak jsme se zmínili v minulé přednášce, je lavní myšlenkou diferenciálnío počtu naradit danou funkci y = f) v okolí bodu a polynomem V této přednášce se budeme podrobně

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

6 Součinitel konstrukce c s c d

6 Součinitel konstrukce c s c d 6 Součinitel konstrukce c s c d Součinitel konstrukce c s c d je součin součinitele velikosti konstrukce (c s 1) a dynamickéo součinitele (c d 1). Součinitel velikosti konstrukce vyjadřuje míru korelace

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více