Počítačové vyhledávání genů a funkčních oblastí na DNA
|
|
- Zdeňka Mašková
- před 5 lety
- Počet zobrazení:
Transkript
1 Počítačové vyhledávání genů a funkčních oblastí na DNA
2 Hodnota genomových sekvencí záleží na kvalitě anotace Anotace Charakterizace genomových vlastností s použitím výpočetních a experimentálních metod Hledání genů: Predikce Kde jsou geny lokalizovány? Podobnost Jak geny vypadají? Domény Jakou funkci mají proteiny? Funkce V jakých metabolických drahách? Evidence Experimentální důkaz genu
3 Hledání genů Geny tvoří obsahovou složku genomu Jedinečné sekvence odpovědné za funkční produkt Variabilní délka Strukturní geny jednoduché složené z exonů a intronů Geny pro funkční RNA RNAi (interfering RNA) rrna (ribosomal RNA) trna (transfer RNA) snrna (small nuclear) snorna (small nucleolar) Jakým způsobem vyhledávat geny?
4 Přístupy pro hledání genů 1. Metody založené na hledání podobností s již popsanými geny 2. Metody srovnávací genomiky Srovnání více dokončených genomů Hledání konzervativních oblastí 3. Využití algoritmů a statistických metod pro analýzu sekvence Hledání signálů 4. Integrované přístupy
5 Integrovaný přístup predikce genu
6 Prokaryotický versus eukaryotický gen vyžadují odlišné přístupy Prokaryota malé genomy bp Vysoká hustota kódujících sekvencí (>90%) Žádné introny (vyjímky Archea, fágy) Hledání otevřených čtecích rámců Doplněno např. hledáním signálů pro vazebná místa ribozómu Operony: jeden transkript, mnoho genů Úspěšnost cca 99 % Problémy: překrývající se ORFs, krátké geny, místa TSS a promotory Eukaryota Velké genomy bp Nízká hustota kódujících sekvencí (<50%) UTRs Struktura intron/exon Statistické modely frekvencí nukleotidů Sledování závislostí přítomných ve struktuře kodonů Obsah GC Přesnost dosahuje cca 50 % Problémy: mnoho! postranskripční modifikace alternativní sestřih
7 Příklady velikostí genomů Druh Velikost Genů Genů na Mb H. sapiens Mb D. melanogaster 137 Mb C. elegans 85,5 Mb A. thaliana 115 Mb S. cerevisiae 15 Mb E. coli 4,6 Mb
8 1. Metody založené na hledání podobností s již popsanými geny Založené na konzervativním charakteru sekvencí s určitou funkcí Využívají nástroje pro lokální nebo globální přiložení sekvencí (BLAST, FASTA, LAGAN, AVID, atd.) Nemohou identifikovat geny, které nejsou v databázi (~50% genů) Omezení u sekvencí s nízkou podobností
9 Metody založené na hledání Databáze Proteiny cdna (evidence RNA) EST, UniGene podobností Nástroje pro párové přiložení sekvencí umožňující analýzu genů Hledání genů na základě podobnosti sekvencí proteinů blastx tblastn fastx genomové prohlížeče
10 2. Srovnávací genomika hledání na základě homologie Hledání založené na předpokladu, že kódující sekvence jsou více konzervativní než nekódující Dva přístupy: intra-genomický (genové rodiny) inter-genomický (mezi druhy) Mnohonásobné přiložení homologických oblastí exony regulační oblasti Obtížné stanovení limitů podobnosti a optimální evoluční vzdálenosti
11 Co je srovnáváno? Lokalizace genů v genomu Struktura genů Počet exonů Délky exonů Délky intronů Podobnost sekvencí Vlastnosti genů Místa sestřihu Využití kodonů Konzervované sekvence
12 Proč používat přístupy srovnávací genomiky? Konzervovanost sekvencí v průběhu značných evolučních vzdáleností značí specifickou funkci (geny, funkčníregulační oblasti) Ztráta konzervovanosti během krátkých evolučních vzdáleností značí adaptivní evoluci šimpanz myš kuře Fugu VISTA Genome Browser
13 Konzervativní charakter regulačních oblastí a exonů
14 Lokální versus globalizované sekvenční přiložení A B B A A A B C C A A B C B Local A B C Local A B B A Global A A B C C Global
15 Problém globálního přiložení Nalezení nejefektivnější transformace jedné sekvence do druhé vyžaduje využití přístupů pro identifikaci přestaveb Bodové změny, delece Inverze Translokace Duplikace Kombinace uvedených změn
16 Příklad srovnání lokusů a chromozómů Charakterizace rozdílů umožňuje odhalit mechanismy změn Human Mouse Rat
17 Základní zdroje a přístupy Databáze NCBI: Genomy, Geny, Proteiny, SNPs, ESTs, Taxonomie, atd. databáze genomových center Analytický software Databázové dotazy (nalezení podobných sekvencí), algoritmy pro přiložení, shluková analýza, vyhledávání repetic, predikce genů Algoritmy pro dlouhá globální přiložení lokální přiložení s rozšířeným vkládáním mezer citlivé, ale málo specifické pro dlouhé sekvence BLASTZ BLAT globální přiložení AVID LAGAN S-LAGAN MAVID, MLAGAN
18 AVID Umožňuje srovnání pouze homologních sekvencí bez duplikací, inverzí nebo translokací Pokud je aplikován na celé genomy, vyžaduje předem přípravu a identifikaci vzájemně si odpovídajících regionů
19 LAGAN (Limited Area Global Alignment) Umožňuje srovnat mnohem delší sekvence než AVID v důsledku jiného algoritmu pro identifikaci vzájemně odpovídajících si úseků Používá se společně s následným lokálním přiložením dlouhých sekvencí (BLAT) rat mouse rat - human
20 Multi-LAGAN (MLAGAN) V porovnání s LAGAN provádí navíc mnohonásobná globální přiložení Nejprve provede přiřazení více příbuzných genomů a následně přiřazuje genomy více fylogeneticky vzdálené Umožňuje konstrukci fylogenetických stromů na základě globálního přiložení genomů
21 Shuffle-LAGAN (S-LAGAN) Slouží pro globální přiložení kompletních sekvencí genomů Detekuje genomová přeskupení a inverze Poskytuje přiřazení všech kombinací vložených sekvencí
22 Precomputed alignments U významných skupin organismů jsou k dispozici rozsáhlá mezidruhová srovnání UC Santa Cruz/PennState (translated BLAT or BLASTZ) Berkeley Genome Pipeline (BLAT/AVID) Ensembl (Phusion/Blastn) Vista Genome Server (LAGAN/SLAGAN/AVID) NMPDR (National Microbial Pathogen Data Resource)
23 Genome Browsers Generic Genome Browser (CSHL) NCBI Map Viewer Ensembl Genome Browser UCSC Genome Browser genome.ucsc.edu/cgi-bin/hggateway?org=human Apollo Genome Browser
24 Vista Tools
25 Odhalení genů s použitím ESTs Expressed Sequence Tags (ESTs) reprezentují sekvence exprimovaných genů (cdna). Jestliže se oblast shoduje s EST s vysokou stringencí, pravděpodobně se jedná o gen EST podává přesnou predikci hranic exonů.
26 3. Predikce kódující oblasti na Prokaryota základě hledání signálů Hledání otevřených čtecích rámců doplněné hledáním konzervativních signálů v transkripčních jednotkách ORF Finder (Open Reading Frame Finder) Eukaryota Predikce promotorů Predikce polya-signálů Predikce míst sestřihu a start/stop kodonů
27 Výpočetní přístupy Klíčové jsou signály pro odhalení genů iniciační a terminační kodony promotory vazebná místa pro ribozómy (RBS) místa sestřihu terminátory transkripce polyadenylační místa vazebná místa pro transkripční faktory
28 Model pro hledání jednoduchých genů
29 Struktura prokaryotické transkripční jednotky promotor gen gen gen terminátor start stop operon
30 Konzervativní struktury v promotoru prokaryot +10 Ribosomal binding site GGAGG
31 Signály v jednoduchém strukturním genu
32 Signály senzory ve struktuře eukaryotického genu
33 Metody pro vyhledávání signálů hledání konvenční sekvence spolu s možnostmi přípustných odchylek použití vážených matic každá pozice vzoru signálu připouští shodu s jakýmkoli zbytkem různé zbytky mají v každé pozici přiřazenou jinou významnost
34 Příklad konsenzní sekvence signálu Získána výběrem nejčastěji se vyskytující báze v každé pozici mnohonásobného přiložení příslušné subsekvence našeho zájmu konsensus sequence konsensus (IUPAC) TACGAT TATAAT TATAAT GATACT TATGAT TATGTT TATAAT TATRNT Vede ke ztrátě informací a získání mnoha falešně pozitivních i negativních výsledků
35 Příklad poziční vážené matice Vyjadřuje frekvenci každé báze v každé pozici příslušné sekvence TACGAT TATAAT TATAAT GATACT TATGAT TATGTT A C G T Skóre každého předpokládaného místa je vyjádřeno součtem hodnot z matice (převedeno na pravděpodobnosti) Nevýhody: Je vyžadována hraniční hodnota Předpokládá nezávislost sousedících bází
36 Příklad signálu RBS (vazebné místo pro ribozóm)
37 Vazebné místo pro ribozóm (RBS) a iniciační kodon ATG u E. coli
38 Predikce míst sestřihu
39 Pozičně vážená matice pro odvození donorového místa sestřihu Donor site 5 3 Position % A C G T
40 Příklad signálů: místa sestřihu (myš)
41 Statistická analýza sekvence predikovaného genu Důležité je posouzení charakteru sekvence délka obsah GC statistické modely modely frekvencí nukleotidů frekvence využití kodonů
42 Testování ORF využití kodonů
43 Testování ORF frekvence nukleotidů
44 Markovovy modely Vyjadřují pravděpodobnost sekvenčních událostí Nejčastěji používané statistické modely pro hledání genů
45 Příklad komplexního algoritmu se skrytými Markovovy modely (HMM)
46 Příklad komplexního algoritmu se skrytými Markovovy modely (HMM)
47 Populární programy pro predikci genů Programy využívající explicitní pravidla GeneFinder Programy založené na Hidden Markov Models GeneMark Glimmer GenScan TwinScan Programy využívající neuronové sítě Grail, GrailEXP
48 GeneMark
49 Glimmer
50 Genscan
51 Predikce eukaryotických genů: GRAIL II: využívá neuronové sítě
52 Užitečné nástroje Vyhledávače ORF NCBI: Predikce promotoru CSHL: BDGP: fruitfly.org/seq_tools/promoter.html ICG: TATA-Box predictor Predikce polya signálu CSHL: argon.cshl.org/tabaska/polyadq_form.html Predikce míst sestřihu BDGP: Identifikace start/stop kodonu DNALC: Translator/ORF-Finder BCM: Searchlauncher
53 Evaluace vyhledávačů genů Citlivost versus specificita Citlivost Kolik genů bylo nalezeno? Specificita Kolik predikovaných genů představuje skutečné geny?
54 Srovnání různých přístupů pro vyhledávání genů
55 Nomenklatura používaná při anotacích genomů Known Gene Predikovaný gen shodující se v celé délce se známým experimentálně dokázaným genem. Putative Gene Predikovaný gen obsahující region homologický s konzervovaným regionem známého genu. Also referred to as like or similar to. Unknown Gene Predikovaný gen vykazující shodu s genem nebo EST, jejichž funkci neznáme. Hypothetical Gene Predikovaný gen nevykazující významnou podobnost k žádnému známému genu nebo EST.
Studijní materiály pro bioinformatickou část ViBuChu. úloha II. Jan Komárek, Gabriel Demo
Studijní materiály pro bioinformatickou část ViBuChu úloha II Jan Komárek, Gabriel Demo Adenin Struktura DNA Thymin 5 konec 3 konec DNA tvořena dvěmi řetězci orientovanými antiparalelně (liší se orientací
Základy genomiky. I. Úvod do bioinformatiky. Jan Hejátko
Základy genomiky I. Úvod do bioinformatiky Jan Hejátko Masarykova univerzita, Oddělení funkční genomiky a proteomiky Laboratoř molekulární fyziologie rostlin Základy genomiky I. Zdrojová literatura ke
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Predikce genů a anotace sekvence DNA
Predikce genů a anotace sekvence DNA Základní informace Následující text je součástí učebních textů předmětu Analýza sekvencí DNA a je určen hlavně pro studenty Matematické biologie. Může být ovšem přínosný
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
Vyhledávání podobných sekvencí BLAST
Vyhledávání podobných sekvencí BLAST Základní informace Následující text je součástí učebních textů předmětu Analýza sekvencí DNA a je určen hlavně pro studenty Matematické biologie. Může být ovšem přínosný
Osekvenované genomy. Pan troglodydes, 2005. Neandrtálec, 2010
GENOMOVÉ PROJEKTY Osekvenované genomy Haemophilus influenze, 1995 první osekvenovaná bakterie Saccharomyces cerevisiae, 1996 první osekvenovaný eukaryotický organimus Caenorhabditis elegans, 1998 první
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Sekvenování genomů Ing. Hana Šimková, CSc. Cíl přednášky - seznámení se strategiemi celogenomového sekvenování,
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií BAKALÁŘSKÁ PRÁCE Brno, 2016 Markéta Nykrýnová VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Definice genu. = základní jednotka genetické informace zapsaná v NK
Definice genu = základní jednotka genetické informace zapsaná v NK Podle šíře definice: 1. všechny sekvence DNA potřebné k syntéze proteinu nebo RNA, tedy i regulační a signální sekvence (nejširší) 2.
přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza)
Transkripce přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Zpětná transkripce (RT) - přepis genetické informace
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
NGS analýza dat. kroužek, Alena Musilová
NGS analýza dat kroužek, 16.12.2016 Alena Musilová Typy NGS experimentů Název Materiál Cílí na..? Cíl experimentu? amplikon DNA malý počet vybraných genů hledání variant exom DNA všechny geny hledání
Struktura a organizace genomů
CG020 Genomika Přednáška 8 Struktura a organizace genomů Markéta Pernisová Funkční genomika a proteomika rostlin, Mendelovo centrum genomiky a proteomiky rostlin, Středoevropský technologický institut
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Co se o sobě dovídáme z naší genetické informace
Genomika a bioinformatika Co se o sobě dovídáme z naší genetické informace Jan Pačes, Mgr, Ph.D Ústav molekulární genetiky AVČR, CZECH FOBIA (Free and Open Bioinformatics Association) hpaces@img.cas.cz
O původu života na Zemi Václav Pačes
O původu života na Zemi Václav Pačes Ústav molekulární genetiky Akademie věd ČR centrální dogma replikace transkripce DNA RNA protein reverzní transkripce translace informace funkce Exon 1 Intron (413
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková. Parent projekt. Praha 19.2.2009
Potřebné genetické testy pro výzkum a jejich dostupnost, spolupráce s neurology Taťána Maříková Parent projekt Praha 19.2.2009 Diagnostika MD její vývoj 1981-1986: zdokonalování diferenciální diagnostiky
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem
Evoluční genetika 2/1 Zk/Z
Evoluční genetika 2/1 Zk/Z Radka Reifová, Pavel Munclinger, Zuzana Musilová Prezentace a materiály k přednášce http://web.natur.cuni.cz/zoologie/biodiversity/ Evoluční genetika Obor vzniklý propojením
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Bioinformatika. Jiří Vondrášek Ústav organické chemie a biochemie Jan Pačes Ústav molekulární genetiky
Bioinformatika pro PrfUK 2006 Jiří Vondrášek Ústav organické chemie a biochemie vondrasek@uochb.cas.cz Jan Pačes Ústav molekulární genetiky hpaces@img.cas.cz http://bio.img.cas.cz/prfuk2006 syllabus Úterý,
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve
Molekulární biologie. 4. Transkripce
Molekulární biologie 4. Transkripce Transkripce (přepis) genetické informace z DNA do RNA Osnova 1. Transkripce (prokaryotického) bakteriálního genomu 2. Transkripce eukaryotického genomu 3. Posttranskripční
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Využití strojového učení k identifikaci protein-ligand aktivních míst
Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy)
BAKTERIÁLNÍ TRANSPOZONY (mobilní elementy) Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza
Využití rekombinantní DNA při studiu mikroorganismů
Využití rekombinantní DNA při studiu mikroorganismů doc. RNDr. Milan Bartoš, Ph.D. bartosm@vfu.cz Přírodovědecká fakulta MU, 2014 1 2 Obsah přednášky 1) Celogenomové metody sekvenování 2) Sekvenování H.
Využití rep-pcr v bakteriální taxonomii
Využití rep-pcr v bakteriální taxonomii Pavel Švec Česká sbírka mikroorganismů Přírodovědecká fakulta MU rep-pcr založeny na shlukové analýze PCR produktů získaných s primery komplementárními k rozptýleným
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Biologie 4, 2014/2015, I. Literák. pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN
Biologie 4, 2014/2015, I. Literák pralesnička drobná Dendrobates pumilio Kostarika, 2004 GEN PROTEIN >10 LET JE ZNÁM LIDSKÝ GENOM 2000 Bill Clinton, Tony Blair: ukončení hrubého sekvenování lidského genomu
B5, 2007/2008, I. Literák
B5, 2007/2008, I. Literák NOBELOVY CENY V R. 2004 LÉKAŘSTVÍ A FYZIOLOGIE R. AXEL (USA) a L. BUCK (USA): funkce čichového systému u myší cca 1000 genů (u člověka něco méně) pro vznik stejného počtu čichových
Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci
Evoluce RNA Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci Po určité období měl obě funkce jeden typ sloučenin, RNA - informační i
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Genové knihovny a analýza genomu
Genové knihovny a analýza genomu Klonování genů Problém: genom organismů je komplexní a je proto obtížné v něm najít a klonovat specifický gen Klonování genů Po restrikčním štěpení genomové DNA pocházející
Genomické databáze. Shlukování proteinových sekvencí. Ivana Rudolfová. školitel: doc. Ing. Jaroslav Zendulka, CSc.
Genomické databáze Shlukování proteinových sekvencí Ivana Rudolfová školitel: doc. Ing. Jaroslav Zendulka, CSc. Obsah Proteiny Zdroje dat Predikce struktury proteinů Cíle disertační práce Vstupní data
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci KFC/BIN - Podmínky Seminární práce: http://rosalind.info/ - alespoň 10 vyřešených problémů
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Unikátní sekvence. GEN je organizovaný úsek nukleové kyseliny projevující se a přenášející se jako základní jednotka dědičné (genetické) informace.
GENOMIKA GEN Unikátní sekvence Geny, regulační sekvence, pseudogeny, nefunkční mutované geny, fragmenty, endogenní retroviry, počátky replikace GEN je organizovaný úsek nukleové kyseliny projevující se
DETEKCE GENŮ V DNA SEKVENCÍCH
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS DETEKCE GENŮ V DNA
Molekulární genetika: Základní stavební jednotkou nukleových kyselin jsou nukleotidy, které jsou tvořeny
Otázka: Molekulární genetika, genetika buněk Předmět: Biologie Přidal(a): jeti52 Molekulární genetika: Do roku 1953 nebylo přesně známa podstata genetické informace, genů, dědičnosti,.. V roce 1953 Watson
Aplikovaná bioinformatika
Aplikovaná bioinformatika Číslo aktivity: 2.V Název klíčové aktivity: Na realizaci se podílí: Implementace nových předmětů do daného studijního programu doc. RNDr. Michaela Wimmerová, Ph.D., Mgr. Josef
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Lesnická genetika. Dušan Gömöry, Roman Longauer
Lesnická genetika Dušan Gömöry, Roman Longauer Brno 2014 1 Tento studijní materiál byl vytvořen v rámci projektu InoBio Inovace biologických a lesnických disciplín pro vyšší konkurence schopnost, registrační
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALÝZA VARIABILITY INTRONŮ BAKALÁŘSKÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT
Využití DNA sekvencování v
Využití DNA sekvencování v taxonomii prokaryot Mgr. Pavla Holochová, doc. RNDr. Ivo Sedláček, CSc. Česká sbírka mikroorganismů Ústav experimentální biologie Přírodovědecká fakulta Masarykova univerzita,
Thursday, February 27, 14
DATABÁZE A VYHLEDÁVÁNÍ SEKVENCÍ MOLEKULÁRNÍ TAXONOMIE 2014 MARIAN NOVOTNÝ PŘEDNÁŠEJÍCÍ Mgr. Marian NOVOTNÝ, PhD. vystudoval odbornou biologii na PřF UK, diplomka v laboratoři doc. Folka doktorát na Uppsalské
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Základy praktické Bioinformatiky
Základy praktické Bioinformatiky PETRA MATOUŠKOVÁ 2018/2019 8/10 Základy praktické bioinformatiky Téma 8/10 Nukleotidová bioinformatika IV Cíle: Student bude schopen navrhnout primery pro kvantitativní
25.2.2014. Genomika. Obor genetiky, který se snaží. stanovit úplnou genetickou informaci. organismu a interpretovat ji v. termínech životních pochodů.
Genomika Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat ji v termínech životních pochodů. 1 Strukturní genomika stanovení sledu nukleotidů genomu organismu,
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje.
Genomika DNA se ani nezajímá, ani neví. DNA prostě je. A my tancujeme podle její muziky. Richard Dawkins: Řeka z ráje. Obor genetiky, který se snaží stanovit úplnou genetickou informaci organismu a interpretovat
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomové projekty SEKVENOVANÉ ROSTLINNÉ GENOMY GROUP GENUS BAC MAP WGS EST Asterids tomato tobacco potato Rosids Arabidopsis
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Sekvenování genomů. Human Genome Project: historie, výsledky a důsledky. MUDr. Jan Pláteník, PhD. Počátky sekvenování
Sekvenování genomů Human Genome Project: historie, výsledky a důsledky MUDr. Jan Pláteník, PhD. (prosinec 2006) Počátky sekvenování 1965: přečtena sekvence trna kvasinky (80 bp) 1977: vynalezena Sangerova
Strom života. Cíle. Stručná anotace
Předmět: Doporučený ročník: Vazba na ŠVP: Biologie 1. ročník Úvod do taxonomie Cíle Studenti zařadí člověka do příslušných taxonů taxonomického systému. Studenti se seznámí s principem fylogenetického
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů