NĚKTERÁ POUŽITÍ INTEGRÁLU GEOMETRICKÉ APLIKACE

Rozměr: px
Začít zobrazení ze stránky:

Download "NĚKTERÁ POUŽITÍ INTEGRÁLU GEOMETRICKÉ APLIKACE"

Transkript

1 NĚKTERÁ POUŽITÍ INTEGRÁLU V této kpitole budou ukázány jednoduché plikce integrálu. Důležitější než výsledné vzorce jsou všk postupy, které k nim vedou. GEOMETRICKÉ APLIKACE OBSAH NĚKTERÝCH ROVINNÝCH OBRAZCŮ Měření obecných podmnožin Euklidovských prostorů je obtížné ( v některých přípdech nemožné). Touto situcí přesným mtemtickým přístupem se zbývá teorie míry (viz kpitolu 30). Některé ne zcel přesné části této kpitoly budou upřesněny i v kpitolách o funkcích více proměnných. Zde bude pojednáno o měření jednodušších speciálních množin, které všk jsou zákldem pro většinu přípdů objevujících se v prxi. Pro,,velikost" některých podmnožin R n se používá různých termínů, npř. délk pro intervly v R, obsh pro geometrické obrzce v R 2, objem pro těles v R 3. Zčíná se měřením podmnožin R. Mírou intervlu I n přímce s koncovými body, b je jeho délk b bez ohledu n to, zd je to intervl otevřený, uzvřený nebo polootevřený (tj, hrnice tu nehrje žádnou roli). Stejný vzorec lze použít i pro bod (degenerovný intervl [, ]), což znmená, že mír bodu (přesněji mír jednobodové množiny) je 0. V Poznámkách je návod, jk určit míru některých složitějších množin reálných čísel. Množin se rozřeže rovnoběžnými řezy n úzké proužky, které se djí při jejich velmi mlé šířce povžovt z obdélníky lze tedy spočítt jejich obsh. Sečtením ploch těchto obdélníků se dostne zhrub obsh obrzce. Rozřezáním množiny n proužky sečtením obshů obdélníků proximujících jednotlivé řezy se dostne zhrub mír množiny A. Pokud se bude šířk obdélníků zužovt, bude výsledné číslo míru lépe vyjdřovt. V limitě, tj. pro nekonečně mlou šířku obdélníků, se dostne hledná mír. Oznčí-li se A(t) mír průniku množiny A s kolmicí n osu x v bodě t, pk se může A(x) povžovt z míru množiny A, pokud vše použité rozumně existuje. Pro pochopení stčí se omezit n jednodušší množiny určené křivkmi, jko npř. množiny bodů ležící mezi grfy dvou funkcí nebo vnitřky uzvřených křivek. Nvíc jen tkové, že použité řezy jsou intervly body (možná někdy jejich sjednocení). Je-li 0 pro x [, b], je podle předchozího postupu obshem množiny {(x, y); x [, b], 0 y } integrál, což je v souldu s dřívějším popisem Newtonov integrálu. Obsh množiny bodů ležících mezi grfy dvou spojitých funkcí f, g n intervlu [, b] je P = g(x). Protože nebyl uveden žádná definice obshu rovinného obrzce, lze poslední rovnost chápt jko definici obshu uvedených množin. Pro množinu určenou prmetricky zdnou křivkou (x = ϕ(t), y = ψ(t) pro t (, b)) se použije předchozí vzorec P = y (= ) dostne se P = ψ(t)ϕ (t) dt. 1

2 Vzorec P = ψ(t)ϕ (t) dt vyjdřuje míru množiny bodů ležících mezi křivkou intervlem n ose x, který obshuje průmět křivky. Absolutní hodnotou odstrníme možné záporné znménko. Je-li grfem jednoduchá uzvřená křivk (pro přesnou definici viz kpitolu 22), udává vzorec obsh vnitřku této křivky. P = ψ(t)ϕ (t) dt U polárně zdných křivek (r = ρ(t) pro t (α, β)) je proměnnou úhel hodnotou vzdálenost bodu od počátku. Při velmi mlé změně dt úhlu t změn r vyplní,,křivý" trojúhelník s vrcholem v počátku, úhlem při vrcholu rovným dt výškou z počátku n protilehlou strnu rovnou r. Velikost protilehlé strny je, pro velmi mlý úhel dt, rovn r dt. Obsh vzniklého trojúhelník je tedy roven (1/2) r r dt. Součet všech těchto obshů, tj. integrál P = 1 β ρ 2 (t) dt, pro 0 α < β 2π, 2 α určuje míru množiny bodů ležících mezi křivkou přímkmi procházejícími počátkem svírjícími s kldnou částí osy x úhly α, β, resp. Mír množiny A by smozřejmě neměl záviset od jejího posunutí nebo otočení. Nezávislost předchozího přístupu n posunutí se ukáže sndno (viz Otázky). Pro otočení je to složitější. Speciálním přípdem otočení (o 90 o ) je postup, kdy se vezme projekce A n osu y použijí se míry B(u) řezů rovnoběžných s osou x, tj. průniku A s kolmicí n osu y v bodě u. To znmená, že integrál by se měl rovnt integrálu P y = B(u)du c P x = A(t)dt Poznámky 1 Příkldy 1 Otázky 1 Cvičení 1 OBJEM NĚKTERÝCH TĚLES Následující popis je opět vhodný pro velmi obecné podmnožiny R 3, le je lépe mít n mysli jen geometrická těles. Necht A je podmnožin prostoru R 3, jejíž průmět n osu x leží v intervlu (, b). Necht pro kždé t (, b) je A(t) mír průniku množiny A s rovinou kolmou n osu x v bodě t. Pk mír množiny A je V = A(x). 2

3 Podobně jko u rovinných obrzců je i v prostoru někdy vhodnější použít místo osy x jinou osu. Fubiniov vět opět tvrdí, že se pro hezké množiny dostne stejný výsledek. Je-li A rotční těleso, je počítání objemu jednodušší, protože je sndné spočítt plochu příslušných řezů (tj. kruhů). Necht těleso A vzniklo rotcí grfu funkce f n intervlu (, b) kolem osy x. Pk jeho objem je dán vzorcem V = π y 2 = π f 2 (x). Je-li grf funkce zdán prmetricky (x = ϕ(t), y = ψ(t), t (, b)), dostne se doszením z x, y do vzorce prmetrický tvr V = π y 2 = π f 2 (x). V = π ψ 2 (t)ϕ (t) dt. Má-li rotční těleso,,díru", tj, vznikne rotcí okolo osy x plochy ležící mezi grfy funkcí g f, odečte se od objemu pro funkci f objem pro funkci g: V = π (f 2 (x) g 2 (x)). Uvedenému postupu pro získání předešlých vzorců se říká metod disků nebo mezikruží je odvozen z postupu pro objem obecných těles. Pro rotční těles lze zvolit i jiný postup, tzv. metodu válců, kdy těleso chápeme jko sjednocení tenkých válců s osou stejnou jko je rotční os těles. Necht těleso A vzniklo rotcí grfu funkce f n intervlu (, b) kolem osy x. Pk jeho objem je dán vzorcem 2π y p(y) dy, 0 kde d je mximum funkce f n (, b) p(t) je délk průniku přímky y = t s množinou {(x, y); 0 y }. Poznámky 2 Příkldy 2 Otázky 2 Cvičení 2 DÉLKA ROVINNÝCH KŘIVEK Délk L nějké křivky (čáry) z bodu A do bodu B se zjistí sečtením jejích velmi mlých úseků ds, které je možné povžovt z úsečky, tj. B L = ds. A Úsečk ds je přeponou prvoúhlého trojúhelník se strnmi dy. Tedy je ds = 2 + dy 2 = 1 + ( dy ) 2. Podle zdání křivky (jko funkce, prmetricky, polárně) se z y nebo x dosdí příslušné funkce dostne se 3

4 b 1. L = 1 + f 2 (x), je-li y =, x (, b); 2. L = ϕ 2 (t) + ψ 2 (t) dt, je-li x = ϕ(t), y = ψ(t), t (, b); β 3. L = ρ 2 (t) + ρ 2 (t) dt, je-li r = ρ(t), t (α, β). α Poznámky 3 Příkldy 3 Cvičení 3 POVRCH ROTAČNÍCH TĚLES Podobně jko se odvodil obsh z délky nebo objem z obshu, dá se odvodit povrch těles z délky křivky. Pro šířku ds se použijí výrzy z předchozí části o délce křivek dostne se: b S = L(x) ds = L(x) 2 + dy 2 = L(x) 1 + ( dy ) 2. Jestliže těleso A vzniklo rotcí grfu funkce f n intervlu (, b) kolem osy x, pk je jeho povrch dán vzorcem 2π 1 + f 2 (x), Je-li grf funkce zdán prmetricky (x = ϕ(t), y = ψ(t), t (, b)), použije se vzorec 2π ψ(t) ϕ 2 (t) + ψ 2 (t) dt. V přípdě polárně zdné křivky (r = ρ(t), t (α, β)): Poznámky 4 Příkldy 4 Cvičení 4 β 2π ρ(t) sin(t) ρ 2 (t) + ρ 2 (t) dt. α FYZIKÁLNÍ APLIKACE V této kpitole bude uvedeno jen několik zákldních plikcí v mechnice. V pozdějších kpitolách budou při různých příležitostech uvedeny dlší plikce integrálu ve fyzice. POHYB Jestliže se bod pohybuje po přímce (npř. po ose x) znčí-li s(t) souřdnici bodu v čse t, je s (t) okmžitá rychlost v(t) v čse t v (t) = s (t) okmžité zrychlení v čse t. Je-li tedy dán závislost rychlosti n čse funkcí v(t), není v(t) dt = s(b) s() ujetá vzdálenost, le změn polohy pohybujícího se bodu. 4

5 Ujetá délk cesty od okmžiku t = do okmžiku t = b se spočte integrálem v(t) dt. TĚŽIŠTĚ Zhrub řečeno, soustředí-li se do těžiště těles hmotnost celého těles, pk (tíhové) momenty (vzhledem k nějkým osám) těžiště celého těles se rovnjí. Podobně jko u výpočtu velikosti množin je i u zjišt ování těžiště vhodné zčít u jednodimenzionálních objektů (tj. drátů) postupně zvyšovt dimenzi. Vzhledem k pozdějšímu sndnějšímu přístupu pomocí integrálu funkcí více proměnných plošných integrálů bude zvyšování dimenze ukončeno u rovinných desek. Nejjednodušší je přípd, kdy drát je rovný pk ho lze umístit n kldnou osu x s jedním koncem do počátku druhým do bodu d, kde d je délk drátu. Hustot h je funkce definovná n intervlu [0, d]. Těžiště zřejmě bude ležet n ose x, řekněme v bodě T. Podle úvodního vysvětlení musí být moment drátu roven momentu těžiště, což je T.M (počítá se moment vzhledem k počátku). Moment drátu se spočítá podobně jko hmotnost,,sečtením" momentů všech bodů tedy se rovná 0xh(x). Odtud vyplývá vzorec pro těžiště: T = 0xh(x). 0h(x) Necht je nyní drát zhnutý, npř. je grfem funkce y = n intervlu (, b). V bodě (x, ) má drát hustotu h(x). Hmotnost M drátu se opět spočte,,sečtením" hmotností jednotlivých dílků ds je tedy rovn h(x) ds = h(x) 1 + f 2 (x). Necht má těžiště souřdnice (T x, T y ) má hmotnost M. Jeho momenty vzhledem k osám x, y budou momenty drátu vzhledem k těmto osám. Moment M x drátu vzhledem k ose x je součet momentů jednotlivých dílků, tj. yh(x) ds = h(x) 1 + f 2 (x). Moment M y vzhledem k ose y je roven xh(x) 1 + f 2 (x). Porovnáním momentů M x M y se dostnou vzorce T x = xh(x) 1 + f 2 (x) b h(x) 1 + f 2 (x), T y = h(x) 1 + f 2 (x) h(x). 1 + f 2 (x) Necht je nyní h = 1; pk je hmotnost drátu rovn jeho délce L. Vynásobíte-li vzorec pro T y jmenovtelem dále číslem 2π, dostnete 2πT y.l = S, kde S je povrch rotčního těles vzniklého rotcí drátu okolo osy x. Uvedená rovnost říká, že tento povrch je rovný ploše válcové plochy o poloměru T y výšce L. Tomuto vzorci se někdy říká Guldinovo prvidlo pro rotční plochy: VĚTA. Ploch rotčního těles vytvořeného rotcí rovinné křivky C kolem přímky p je rovn násobku délky křivky C obvodu kružnice o poloměru rovném vzdálenosti těžiště křivky C od p. Tenkou rovnou desku (npř. plech) je možné pokládt z množinu v rovině, n kterém je definován funkce h(x, y) udávjící hustotu v bodě (x, y). 5

6 Při výpočtu těžiště desky lze postupovt stejně jko u výpočtu těžiště drátu. Ztím všk není definován integrál přes množiny v rovině tk je nutné postup rozdělit. Výpočet hmotnosti je podobný výpočtu plochy. Uděljí se řezy desky kolmé npř. n osu x zjistí se jejich hmotnosti ty se pk,,sečtou". Je-li desk npř. množinou bodů ležících mezi grfy dvou funkcí ({(x, y); x (, b), g(x) y }) hustot je dán funkcí h(x, y), pk hmotnost M je rovn ( M = g(x) ) h(x, y) dy. Stejným způsobem se určí momenty desky vzhledem k osám x, y: určí se moment vzhledem k ose x řezu desky kolmého n osu x tyto momenty se,,sečtou". Dostne se ( ) M x = yh(x, y) dy. g(x) podobně se vypočte M y. Pro těžiště se tedy získjí vzorce ) ( g(x) xh(x, y) dy b ) ( g(x) T x = ), T y = ( yh(x, y) dy g(x) h(x, y) dy b ) ( g(x) h(x, y) dy. Necht je nyní h = 1; pk je hmotnost desky rovn jeho obshu P. Podobně jko u drátu se úprvou vzorce pro T y dostává 2πT y.p = 2π (f 2 (x) g 2 (x))/2 = V kde V je objem rotčního těles vzniklého rotcí plechu okolo osy x. Podobně jko u plochy rotčního těles je tedy i objem počítán jko by byl zákldní ploch, která rotuje, soustředěn do těžiště to obíhlo kolem osy x. Tomuto vzorci se někdy říká Guldinovo prvidlo pro rotční objemy: VĚTA. Objem rotčního těles vytvořeného rotcí rovinné množiny A kolem přímky p, neprotínjící množinu A, je rovn násobku obshu množiny A délky kružnice o poloměru rovném vzdálenosti těžiště množiny A od p. SÍLA, PRÁCE Klsický vzorec W = F d vypočítává práci W vykonnou působením síly F po dráze délky d (síl působí ve směru dráhy). Necht ve směru osy x působí síl velikosti F (x) v bodě x. Její práce n úseku je rovn (n tk mlém úseku lze povžovt sílu z konstntní). W = F (x). Je-li desk ponořen kolmo do kpliny, působí n mlý dílek desky hydrosttická síl hx (z jedné strny desky), kde h je hustot kpliny x je vzdálenost dílku od hldiny kpliny. Je-li l(x) délk množiny bodů desky, které jsou všechny vzdálené x od hldiny, je hydrosttická síl působící n tuto množinu rovn hxl(x) celková hydrosttická síl působící n jednu strnu desky je tedy hxl(x), kde, b jsou nejmenší, resp. největší, vzdálenosti bodů desky od hldiny. Mění-li se hustot kpliny s hloubkou, místo h se píše h(x). Příkldy 5 Cvičení 5 6

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

2.6.4 Lineární lomené funkce s absolutní hodnotou

2.6.4 Lineární lomené funkce s absolutní hodnotou .6. Lineární lomené funkce s absolutní hodnotou Předpoklady: 60, 603 Pedagogická poznámka: Hlavním cílem hodiny je nácvik volby odpovídajícího postupu. Proto je dobré nechat studentům chvíli, aby si metody

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem

souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem souřadné systémy geometrické určení polohy pevně spojené se vztažným tělesem kartézský souřadný systém Z Y X kartézský souřadný systém Z Y X kartézský souřadný systém Z x y Y X kartézský souřadný systém

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte

Více

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo

Více

1 Měření kapacity kondenzátorů

1 Měření kapacity kondenzátorů . Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

Dů kazové úlohy. Jiří Vaníček

Dů kazové úlohy. Jiří Vaníček Dů kazové úlohy Jiří Vaníček Následující série ú loh je koncipována tak, ž e student nejprve podle předem daného konstrukčního postupu sestrojí konstrukci a v ní podle návodu objeví některý nový poznatek.

Více

7. Silně zakřivený prut

7. Silně zakřivený prut 7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Seznámíte se s další aplikací určitého integrálu výpočtem délky křivky.

Seznámíte se s další aplikací určitého integrálu výpočtem délky křivky. .. Délk olouku křivky.. Délk olouku křivky Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem délky křivky. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál

Více

TEORETICKÝ VÝKRES LODNÍHO TĚLESA

TEORETICKÝ VÝKRES LODNÍHO TĚLESA TEORETICKÝ VÝKRES LODNÍHO TĚLESA BOKORYS (neboli NÁRYS) je jeden ze základních pohledů, ze kterého poznáváme tvar kýlu, zádě, zakřivení paluby, atd. Zobrazuje v osové rovině obrys plavidla. Uvnitř obrysu

Více

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15 Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající

Více

Vítězslav Bártl. prosinec 2013

Vítězslav Bártl. prosinec 2013 VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav

Více

CZ.1.07/1.1.08/03.0009

CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vrtání Vrtání je nejstarší a nejpoužívanější technologická operace. Kromě vrtání do plného materiálu rozlišujeme

Více

CVIČENÍ č. 8 BERNOULLIHO ROVNICE

CVIČENÍ č. 8 BERNOULLIHO ROVNICE CVIČENÍ č. 8 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Z injekční stříkačky je skrze jehlu vytlačovaná voda. Průměr stříkačky je D, průměr jehly d. Určete výtokovou rychlost,

Více

Válec - slovní úlohy

Válec - slovní úlohy Válec - slovní úlohy VY_32_INOVACE_M-Ge. 7., 8. 20 Anotace: Žák řeší slovní úlohy z praxe. Využívá k řešení matematický aparát. Vzdělávací oblast: Matematika Autor: Mgr. Robert Kecskés Jazyk: Český Očekávaný

Více

371/2002 Sb. VYHLÁŠKA

371/2002 Sb. VYHLÁŠKA 371/2002 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 26. července 2002, kterou se stanoví postup při znehodnocování a ničení zbraně, střeliva a výrobě jejich řezů ve znění vyhlášky č. 632/2004

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Uživatelská nastavení parametrických modelářů, využití

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika

MODEL MOSTU. Ing.Jiřina Strnadová. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti. Předmět:Fyzika MODEL MOSTU Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti Model mostu Teoretický úvod: Příhradové nosníky (prutové soustavy) jsou složené z prutů, které jsou vzájemně spojené

Více

(1) (3) Dále platí [1]:

(1) (3) Dále platí [1]: Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené

Více

Autodesk Inventor 8 vysunutí

Autodesk Inventor 8 vysunutí Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt

Více

Strojní součásti, konstrukční prvky a spoje

Strojní součásti, konstrukční prvky a spoje Strojní součásti, konstrukční prvky a spoje Šroubové spoje Šrouby jsou nejčastěji používané strojní součástí a neexistuje snad stroj, kde by se nevyskytovaly. Mimo šroubů jsou u některých šroubových spojů

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Modul: Cvičebnice programování ISO - soustruh

Modul: Cvičebnice programování ISO - soustruh Název projektu: Sbližování teorie s praxí Datum zahájení projektu: 01.11.2010 Datum ukončení projektu: 30.06.2012 Obor: Mechanik Ročník: Třetí, čtvrtý seřizovač Zpracoval: Zdeněk Ludvík Modul: Cvičebnice

Více

Hřídelové čepy. Podle tvaru, funkce a použití rozeznáváme hřídelové čepy: a) válcové b) kuželové c) prstencové d) kulové e) patní

Hřídelové čepy. Podle tvaru, funkce a použití rozeznáváme hřídelové čepy: a) válcové b) kuželové c) prstencové d) kulové e) patní Hřídelové čepy Hřídelový čep je část hřídele, která je ve styku s ložiskem. Každý hřídel je uložen nejméně na dvou ložiskách. Má tedy alespoň dva hřídelové čepy. Reakce vyvolané zatížením jsou přenášeny

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_E.2.02 Integrovaná střední škola

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Měření hustoty kapaliny z periody kmitů zkumavky

Měření hustoty kapaliny z periody kmitů zkumavky Měření hustoty kapaliny z periody kmitů zkumavky Online: http://www.sclpx.eu/lab1r.php?exp=14 Po několika neúspěšných pokusech se zkumavkou, na jejíž dno jsme umístili do vaty nejprve kovovou kuličku a

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

MMEE cv.4-2011 Stanovení množství obchodovatelného zboží mezi zákazníkem a dodavatelem

MMEE cv.4-2011 Stanovení množství obchodovatelného zboží mezi zákazníkem a dodavatelem MMEE cv.4-2011 Stanovení množství obchodovatelného zboží mezi zákazníkem a dodavatelem Cíl: Stanovit množství obchodovatelného zboží (předmět směny) na energetickém trhu? Diagram odběru, zatížení spotřebitele

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Technický popis koncovky výfukového systému vozu Mercedes Econic 1833LL:

Technický popis koncovky výfukového systému vozu Mercedes Econic 1833LL: Všeobecný popis: Cílem je vyřešit provedení odsávacího systému na stanicích HZS MSK opravou stávajícího stavu, v souladu s aktuálními požadavky na tento systém celkem pro 5 ks používaných vozidel CAS 20

Více

Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ

Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ Cvičení 3 z předmětu CAD I PARAMETRICKÉ 3D MODELOVÁNÍ Cílem cvičení je procvičení předchozích zkušeností tvorby modelu rotační součásti a využití rotačního pole naskicovaných prvků. Jak bylo slíbeno v

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_INOVACE_E.2.13 Integrovaná střední škola

Více

Možnosti stanovení příčné tuhosti flexi-coil pružin

Možnosti stanovení příčné tuhosti flexi-coil pružin Jaub Vágner, Aleš Hába Možnosti stanovení příčné tuhosti flexi-coil pružin Klíčová slova: vypružení, flexi-coil, příčná tuhost, MKP, šroubovitá pružina. Úvod Vinuté pružiny typu flexi-coil jsou dnes jedním

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

Dva jednoduché inovační pokusy z mechaniky

Dva jednoduché inovační pokusy z mechaniky Dva jednoduché inovační pokusy z mechaniky JOSEF JANÁS Pedagogická fakulta MU, Brno Úvod Pokus ve vyučování fyzice má stejný význam jako ve fyzice, tzn. je verifikátorem pravdivosti výsledku úvah nebo

Více

AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED)

AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED) 20. Července, 2009 AMU1 Monitorování bezpečného života letounu (RYCHLÝ PŘEHLED) ZLIN AIRCRAFT a.s. Oddělení Výpočtů letadel E-mail: safelife@zlinaircraft.eu AMU1 Monitorování bezpečného života letounu

Více

ÚVOD DO HRY PRINCIP HRY

ÚVOD DO HRY PRINCIP HRY Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA

Více

Sada 2 Matematika. 19. Logaritmy

Sada 2 Matematika. 19. Logaritmy S třední škol stvení Jihlv Sd 2 Mtemtik 9. Logritm Digitální učení mteriál projektu: SŠS Jihlv šlon registrční číslo projektu:cz..9/.5./34.284 Šlon: III/2 - inovce zkvlitnění výuk prostřednictvím IC Mgr.

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

2.7.15 Rovnice s neznámou pod odmocninou I

2.7.15 Rovnice s neznámou pod odmocninou I .7.15 Rovnice s neznámou pod odmocninou I Předpoklady: 711, 71 Pedagogická poznámka: Látka této hodiny vyžaduje tak jeden a půl vyučovací hodiny, pokud nepospícháte můžete obětovat hodiny dvě a nechat

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

Funkce Vypracovala: Mgr. Zuzana Kopečková

Funkce Vypracovala: Mgr. Zuzana Kopečková Funkce Vypracovala: Mgr. Zuzana Kopečková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů OP

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

MECHANICKÁ PRÁCE A ENERGIE

MECHANICKÁ PRÁCE A ENERGIE MECHANICKÁ RÁCE A ENERGIE MECHANICKÁ RÁCE Konání práce je podmíněno silovým působením a pohybem Na čem závisí velikost vykonané práce Snadno určíme práci pro případ F s ráci nekonáme, pokud se těleso nepřemísťuje

Více

Novinky verze ArCon 14 Small Business

Novinky verze ArCon 14 Small Business Novinky verze ArCon 14 Small Business Windows 7 Struktura souborů ArCon 14 Small Business je již optimalizována pro operační systém Windows 7 a nové typy procesorů Intel. Uživatelské prostředí Uživatelské

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz

doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Nevyváženost rotorů rotačních strojů je důsledkem změny polohy (posunutí, naklonění) hlavních os setrvačnosti rotorů vzhledem

Více

Pokyn pro příjemce dotace

Pokyn pro příjemce dotace Pokyn pro příjemce dotace k zajišťování informačních a propagačních opatření při realizaci projektů podpořených z opatření 2.1 Opatření pro produktivní investice do akvakultury a 2.4. Investice do zpracování

Více

Vyučovací předmět / ročník: Matematika / 5. Učivo

Vyučovací předmět / ročník: Matematika / 5. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 5. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK

COPY SPS. Návrh převodovky. Vypracoval Jaroslav Řezníček IV.B 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK SPS 2.KONSTRUKČNÍ CVIČENÍ ZA 4. ROČNÍK Návrh převodovky Vypracoval Jaroslav Řezníček IV.B 26.listopadu 2001 Kinematika Výpočet převodového poměru (i), krouticích momentů počet zubů a modul P 8kW n n 1

Více

Návrh induktoru a vysokofrekven ního transformátoru

Návrh induktoru a vysokofrekven ního transformátoru 1 Návrh induktoru a vysokofrekven ního transformátoru Induktory energii ukládají, zatímco transformátory energii p em ují. To je základní rozdíl. Magnetická jádra induktor a vysokofrekven ních transformátor

Více

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta 1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA)

MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) PH-M5MBCINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA SADA B (TEST PRO PŘIJÍMACÍ ZKOUŠKY DO 8LETÉHO GYMNÁZIA) 1. TYPY TESTOVÝCH ÚLOH V TESTU První dvě úlohy (1 2) jsou tzv. úzce otevřené

Více

Zadání. Založení projektu

Zadání. Založení projektu Zadání Cílem tohoto příkladu je navrhnout symetrický dřevěný střešní vazník délky 13 m, sklon střechy 25. Materiálem je dřevo třídy C24, fošny tloušťky 40 mm. Zatížení krytinou a podhledem 0,2 kn/m, druhá

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

Dynamika tuhých těles

Dynamika tuhých těles Dynamika tuhých těles V reálných technických aplikacích lze model bodového tělesa použít jen v omezené míře. Mnohem častější je použití modelu tuhého tělesa. Tuhé těleso je definováno jako těleso, u něhož

Více