matematika vás má it naupravidl

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "matematika vás má it naupravidl"

Transkript

1 VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti. P edstv, které se pejortivn íká kupecké po t. Potí s mtemtikou tkví v tom, e áci nev dí, e ísl ádné mno ství neozn ují, le e jsou to smbol ve h e se zcel p esnými prvidl, i kd se ísl djí pou ít k ozn ení mno ství i délk i úhlu, je to sice velmi u ite né, le pro hru zvnou mtemtik zcel nepodsttné. Up esn ní význmu slov VÝRAZ má pomoci v lep ím vhledu do logik mtemtik. ALGEBRAICKÝ VÝRAZ je p edpis jedné nebo více mtemtických opercí. OPAKOVÁNÍ m Je výrzem? + ANO Je to p edpis, který obshuje blí e neur ené znk (; m; ; nevíme zd jsou to konstnt i prom nné neznáme jejich hodnotu operátor násobení, umoc ování, d lení (co je operátorem d lení v dném p íkldu? s ítání. ÍKLADY (není, neobshuje operátor b + c d e b f b g 5c h 5. b c b Pro jednou pí eme operátor násobení ( c Operátor násobení pí eme jenom Tm, kde je to nezbtn nutné (np. Pro v í p ehlednost podruhé jej nepí eme (b? n rozdíl od i ( j 8 (není, to je u rovnice; srovnání mtemtického výrzu n jedné strn s hodnotou znku n druhé strn k l b 5 m n (není, neobshuje operátor o (není, je to nerovnice; srovnávání hodnot znk Mtemtik vás nemá it nupo ítt, mtemtik vás má it nuprvidl m jejich ívání pou

2 ZAPI TE JAKO VÝRAZ sou et dvojnásobku znku ísl dvojnásobek sou tu znku ísl 5. ( + 5 druhou mocninu rozdílu znk m n. (m n rozdíl druhých mocnin znk m n... m n 5 sou in výrz r s zmen ený o jejich rozdíl. rs (r s nebo tké rs r + s 6 rozdíl výrz r s (v tomto po dí zv ený o jejich sou et r Ve t íd je d dívek chlpc je o mén ne dívek. Zpi výrzem po et ák d 8 Sd esti výrobk stojí v K. Jkou ástku stojí 5 výrobk? 5 v 6 9 Rchlík jede pr rnou rchlostí b kilometr z hodinu. b Jkou dráhu ujede z minut? 60 0 Auto ujelo z hodin km. Kolik kilometr ujede uto stejnou rchlostí z hodin? Známe íselné výrz np. π ;, výrz s prom nnou np. 5 je-li prom nná ve zlomku (jko v dném p íkldu jde o lomený výrz. Prom nnou ve výrzu rozumíme znk, který ozn uje libovolné íslo z ur ité mno in, kterou nzýváme obor prom nné nebo defini ní obor výrzu. Pokud není obor prom nné výslovn ur en, pov ujeme z obor prom nné mno inu v ech ísel, která lze do výrzu dosdit, ni ztrtí smsl n která z uvedených opercí (nedochází np. k d lení nulou, odmoc ování záporného ísl pod.. íkáme, e pro hodnot z defini ního oboru má výrz smsl. Dosdíme-li z prom nné do výrzu libovolná ísl, pro která má dný výrz smsl, provedeme v echn p edepsné operce, dostneme jko výsledek íslo hodnotu výrzu. Vhodno, který p íkld je výrzem uve mno inu, ve které má smsl + qq πε r 0 π 8 πr Je výrzem má smsl: v mno in p irozených ísel N, v mno in celých ísel Z, v mno in rcionálních ísel Q v mno in reálných ísel R Je výrzem má smsl: v mno in celých ísel Z, v mno in rcionálních ísel Q v mno in reálných ísel R. V mno in p irozených ísel N smsl nemá, proto e v bodu je hodnot výrzu rovná nule nul do mno in p irozených ísel nept í. Je výrzem má smsl: v mno in rcionálních ísel Q v mno in reálných ísel R. Je výrzem má smsl: v mno in kldných reálných ísel R + { ; 0} 5Je výrzem má smsl: v mno in ovoce (plod td. R.

3 b 6Je výrzem má smsl: v mno in reálných ísel R { 0 } ( teno: v mno in reálných ísel mimo bodu r 0. Není výrzem. 8Je výrzem má smsl: v mno in p irozených ísel N, v mno in celých ísel Z, v mno in rcionálních ísel Q v mno in reálných ísel R 9Je výrzem má smsl: v mno in domácích zví t 0 Není výrzem Je výrzem má smsl v mno in rcionálních ísel Q {} teno: v mno in reálných ísel mimo bodu jedn v mno in reálných ísel R {} Je výrzem má smsl: v mno in rcionálních ísel Q v mno in reálných ísel R. Udejte, kd mjí smsl následující výrz: d ( 0 b + ( ( f ( ( 0 c (, e + g + (v mno in R v d ( (v mno in R v d Ted defini ními obor výrz jsou: R { 0 }, b R { 0 }, c R {}, d R { } f { R ; }, g R Hodnot výrzu Ur ete hodnotu výrzu: 5 6 pro pro ; 6 9 pro pro ; pro 0; 0,5; ; ; 0; 0,5; ; 8; c d pro ; 0; ; ; e 5( ( 9 ; ; ; 6 5 ; ;, e R, + pro ; ; ; 5; 5; 5; 5 f ( ( pro ; ; ; ; 6; 5; 5 Zjednodu te výrz správnost výrzu ov te doszením + 8; do dného i uprveného výrzu. Výrz u pt í do zvlá tní ktegorie výrz, kterým se íká mnoho len. Mnoho len s jednou prom nnou je výrz tvru np. b + c 5; kde, b, c jsou koeficient mnoho lenu je prom nná. Výrz, b, c 5 jsou len (jedno len mnoho lenu. Pojem mnoho lenu lze ilustrovt i n p ípdu více prom nných, kde místo mocnin jedné prom nné jsou sou in mocnin n kolik prom nných. Uvedu n kolik p íkld : ; + ; + z ; + z + z Se ítt od ítt m eme jen t len mnoho lenu, které se li í nnejvý koeficientem:

4 ( ( i násobení mnoho len je t eb k dý len jednoho mnoho lenu násobit k dým lenem druhého mnoho lenu. P i násobení jednotlivých len se ídíme prvidlem pro násobení mocnin: m. n m+ n íkld: ( ( ( 6 + (. + (.5 + (.( Zvlá tním p ípdem násobení mnoho len je druhá mocnin dvoj lenu tk zvný rozdíl tverc. Postupujeme podle vzorc : A+ B A + AB+ B ; A B A AB+ B ; ( A+ B( A B A B Pro jsou len dvoj lenu on en velkým písmenem? Proto e ozn ují mo nost nhrzení velkého A B A AB+ B m e být A + b písmen dl ím mnoho lenem. Tk np. ve vzorci (nebo jkýkoliv jiný mnoho len B (nebo tké dl í mnoho len; to znmená, e + b + b + b.+ + b + b 6 6b + 9 íkld: + + i d lení mnoho lenu jedno lenem je t eb k dý len mnoho lenu d lit jedno lenem. ídíme se p i tom prvidlem pro d lení mocnin. m : n m n íkld: imn te si, e zápis d lení ve tvru zlomk je dleko p ehledn í ne zápis ve tvru klsického d lení. 5 5 ( 5 0 5: : 5 0 : : 5 ( b ( b b+ b ( k 8c ( 5c ( 9k c k + c c ( 5m m (,5 6m m m + m+ 5,5

5 d 5 t+ r + 5 r+ 0,t 5 6,t r+ e ( b c b ( c c ( c f ( b ( b c d ( b c d ( b b g. ( r 6r 0,. ( 0,5r r, + + h ( d ( d ( d d b c 5r r+ d i Ur ete výrz, který musíme p íst k výrzu 5n 0 + p, bchom dostli výrz, n+ 0 p., n+ 50 p 6 j Ur ete výrz, který musíme ode íst od výrzu ( 0,k 0,5k 6, +. k ( b( b b b 5 + l (,z z 0,.( z + m ( j ( 0,9 j n ( b ( 5 b + 0,6, bchom dostli výrz 0,k,5k + 6,9 5 k k b b b b 5,6z + 8z,z + j,9 j, b + b 0 + o p ( q ( b POZOR To je jko b+ b+ 9b + b+ b b. + 9b + b+ nebo: r ( 0, 0, + 0,0 Rozkld mnoho len n sou in: Jde o vjád ení mnoho lenu ve tvru sou inu n kolik mnoho len np. z d vodu krácení v lomeném výrzu. Provádí se nej st ji pomocí tzv. vtýkání nebo pou itím vhodných vzorc. Vtýkání: Je zlo eno n distributivním zákonu A. C B. C C. ( A B nejv ím problémem poznt spole ného d litele jednotlivých len. íkld: 5m 6m m 5m 6 8 z.. z z + + V konkrétních p ípdech bývá

6 Pou ití vzorc : + + ( + ; A AB+ B ( A B ; A B ( A+ B( A B A AB B A B i rozkldu n sou in lze sto pou ít vý e uvedených vzorc pro druhé mocnin dvoj lenu. íkld: (rozdíl tverc b b b b Pozor: stým omlem je pokus vtvo it i vzore ek pro rozkld sou tu tverc. Tento dvoj len nelze v mno in reálných ísel rozlo it. Sou et tverc lze rozlo it n sou in pouze v oboru kompleních ísel, který se n Z nevu uje. sto vede k cíli i postupné vtýkání, np.: c c c+ c c c kd vede k cíli dopln ní výrzu n druhou mocninu n jkého dvoj lenu se sou sným ode tením dopl ku následným pou itím vzorce pro rozdíl tverc viz p íkld: Výrz 6+ 5 nelze vtknutím zm nit v sou in výrz nelze ni rozlo it podle vzorce. Zkusíme to, co jsme doplnili vzáp tí ode íst. doplnit n druhou mocninu dvoj lenu ( ( + ( ( ( 5 Z p íkldu jsn vplývá, e tto cest vede k cíli jen tehd, je-li dopln k druhou mocninou z 9z z. v ( v 5. ( t 5 + t 6. b + b. r r r c k s u + u. 8 s b( s 8 +. ( m t ( m. ( b( v ( b. nz + k + kz + n 5. c + d d c k p 5d 5d, 5 + ( ( ( z( z+ + ( v ( t ( ( b ( r ( r + ( + c( + + c ( 5 ( s u( k ( 8( b ( m ( t ( b( v ( z ( n+ k ( ( c d ( k p( k+ p 5 5 5( d 0,5

7 Lomený výrz Lomeným výrzem nzýváme výrz, který lze zpst ve tvru podílu dvou mnoho len. Pou íváme stejné termín jko u ísel zlomk ittel, jmenovtel, nejmen í spole ný násobek d litel, spole ný jmenovtel pod. Lomené výrz m eme podobn jko zlomk roz ovt, krátit, se ítt, od ítt, násobit, d lit umoc ovt podle stejných prvidel jko zlomk. V d v k uvádíme, kd mjí dné výrz smsl. íkld: + 6( ( ( +. ± k + k k + k; k s 9 s. s s + ; s ± m m t 5 5 t 8b+ u b + bu+ u 6. Se ítání od ítání lomených výrz íkld ; ; m ( t 5 + ; t 5 u ; b b+ u + Se me výrz + Nejprve posoudíme obor, ve kterém mjí ob výrz smsl. Dný výrz + má smsl pro ±. Jmenovtelé nejdou rozlo it n sou in nemjí spole né d litele spole ným jmenovtelem bude ted jejich sou in. ( + + ( ( /vlo ená poznámk: proti 6 lze krátit bez problém. v itteli proti ve jmenovteli v k pouze z p edpokldu, e se nerovná 0 ted e Pro? Proto e nulou nelze d lit / nebo ( smslu výrz, le tké podmínk krácení výrzem ± co je nejenom podmínk

8 8. b. 6 + b + + b ( ( 9 ; b + b ; ± c. d. z z z 5z z 9 + ; z ± ( ; 0, e. t+ u u+ t u t+ u f. b+ v v v 5v g. k k k + k k+ k 9 h. i. j. ( m + m + m b b + b k. + + t u ; u 0, t u ( b+ v 5 ; v 0 5v k ; k ± k 9 m + ; m 0 b m ; 0 ( + b ; 0 b ; 0, + l ; ± m ( ; 0, ± n o. ; 0, ;

9 9 Násobení d lení lomených výrz Lomené výrz násobíme stejným zp sobem jko zlomk. Dv lomené výrz násobíme tk, e násobíme mezi sebou ittele do jmenovtele výsledku zpí eme výsledek násobení jmenovtel. P i násobení s výhodou krátíme ittele proti jmenovteli. Sledujeme vhodnocujeme kd má dný výrz smsl. íkld +, 0 + lení lomených výrzu je vlstn jenom podmno inou násobení, proto e dv lomené výrz d líme tk, jko zlomk to znmená, e první zlomek násobíme p evrácenou hodnotou zlomku druhého. Trochu to e komplikovt zápis, kd se n kd pou ívá pro operátor d lení dl í zlomková ár. V postupu se k nic nem ní st í si uv domit, e zlomková ár ozn uje d lení. íkld c+ d c d c+ d :, c ± d, c c d c cd c d c d c d c d c d c d c cd c d c c d c :, 0 v v z ( 5 v z d c 6 c d m m m + 5m m t t+ 9 t t ( c ; z 0 ( d ( c d ; ( m c d ; m 0, m 5 t ( t ; t 0, t c + cd + d c d d c+ d 8 n n n + n ;, c d d n n + ; d 0, c d ; n 0, n 6 ;, ± 6 6

10 s 0 s 5 : s s+ s b :6 8v ; s, s 5 s ; v 0 v 0 c : + ( ; d + : b e : + b b ; 0, ± + b ; b, b 0 + b ± f g : k k + : k k ;, 0, k + ; k ±, k ± k + h m + + : + m m + i : + j k r s + m+ ; m ±, m 0 ; ±, 0, 0 ; r 0, s 0 6rs + ; ±, 0 Zprcovl: Leopold Kslinger Pou ité prmen: Algebrické výrz doc. PedDr. Dlibor Mrti ek, Ph.D Sbírk úloh z mtemtik pro Z PedDr. Frnti ek B loun kolektiv

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

1.2.7 Druhá odmocnina

1.2.7 Druhá odmocnina ..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

1. a) Přirozená čísla

1. a) Přirozená čísla jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

2.2.2 Zlomky I. Předpoklady: 020201

2.2.2 Zlomky I. Předpoklady: 020201 .. Zlomky I Předpoklady: 0001 Pedagogická poznámka: V hodině je třeba postupovat tak, aby se ještě před jejím koncem začala vyplňovat tabulka u posledního příkladu 9. V loňském roce jsme si zopakovali

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

5. Geometrické transformace

5. Geometrické transformace 5. Geometrické trnormce V této čáti předmětu 3D počítčová grik e budeme bývt geometrickými trnormcemi 3D objektů. Jedná e o operce pouvů otáčení měn měřítk koení těle vtvořených opercemi modelování. Stejnou

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

TIP: Pro vložení konce stránky můžete použít klávesovou zkratku CTRL + Enter.

TIP: Pro vložení konce stránky můžete použít klávesovou zkratku CTRL + Enter. Dialogové okno Sloupce Vložení nového oddílu Pokud chcete mít oddělené jednotlivé části dokumentu (například kapitoly), musíte roz dělit dokument na více oddílů. To mimo jiné umožňuje jinak formátovat

Více

Aritmetika s didaktikou II.

Aritmetika s didaktikou II. Katedra matematiky PF UJEP Aritmetika s didaktikou II. KM / 0026 Přednáška 0 Desetinnáčísla O čem budeme hovořit: Budeme definovat desetinnáčísla jako speciální racionálníčísla. Naučíme se poznávat různé

Více

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR 1. DÁIČNÍ A SIIČNÍ SÍŤ V OKRESE ČR Pro dopravu nákladů, osob a informací jsou nutné podmínky pro její realizaci, jako je kupříkladu vhodná dopravní infrastruktura. V případě pozemní silniční dopravy to

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

Návrh rozměrů plošného základu

Návrh rozměrů plošného základu Inženýrský manuál č. 9 Aktualizace: 02/2016 Návrh rozměrů plošného základu Program: Soubor: Patk Demo_manual_09.gpa V tomto inženýrském manuálu je představeno, jak lze jednoduše a ektivně navrhnout železobetonovou

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

Výzva k podání nabídek

Výzva k podání nabídek Výzva k podání nabídek Číslo zakázky (bude doplněno MPSV při uveřejnění): Název zakázky: Předmět zakázky (služba, dodávka nebo stavební práce): Tisk výukových materiálů (skripta, sylaby) Služba Datum vyhlášení

Více

S_5_Spisový a skartační řád

S_5_Spisový a skartační řád Základní škola a mateřská škola Staré Město, okres Frýdek-Místek, příspěvková organizace S_5_Spisový a skartační řád Č.j.:ZS6/2006-3 Účinnost od: 1. 5. 2011 Spisový znak: C19 Skartační znak: S10 Změny:

Více

Věc: Výzva pro předložení nabídek k veřejné zakázce s názvem: VÚ a ŠJ PŠOV, Nákup nového osmimístného vozidla

Věc: Výzva pro předložení nabídek k veřejné zakázce s názvem: VÚ a ŠJ PŠOV, Nákup nového osmimístného vozidla VÝCHOVNÝ ÚSTAV A ŠKOLNÍ JÍDELNA PŠOV PŠOV 1 Podbořany 441 01 Tel. ředit: 415 211 297, Mobil ředit.: 736 633 595, Tel. ústředna: 415 214 615, e - mail: a.sava@seznam.cz, Fax: 415 211529, www.vupsov.cz Věc:

Více

Řešení: 20. ročník, 2. série

Řešení: 20. ročník, 2. série Řešení: 20. ročník, 2. série.úloha Předpokládejme, že hledaná cesta existuje. Pak je možné vyrazit z bodu A do bodu D po žluté cestě (obvodu obdélníka). Abychom splnili všechny podmínky zadání, musíme

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

Dodatečné informace č. 2

Dodatečné informace č. 2 Dodatečné informace č. 2 VEŘEJNÁ ZAKÁZKA Rekonstrukce sníženého přízemí a 1.PP budovy na adrese Žerotínovo náměstí 1, Brno, PSČ 601 82 evidenční číslo zakázky ve Věstníku veřejných zakázek: 521280 (dále

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

O JEDNOTCE INTEGRACE MINIATURIZACE

O JEDNOTCE INTEGRACE MINIATURIZACE O JEDNOTCE V odvětví pneumtiky, které povžuje z plně vyvinuté, zřídk tkáte s úplně novými odlišnými produkty. ONE je jednotk pro úprvu stlčeného vzduchu s vysokým stupněm integrce, která zhrnuje četné

Více

Pravidla pro poskytování informací podle zákona č. 106/1999 Sb., v platném znění

Pravidla pro poskytování informací podle zákona č. 106/1999 Sb., v platném znění Město Blovice VNITŘNÍ SMĚRNICE č. 2 /2012 Pravidla pro poskytování informací podle zákona č. 106/1999 Sb., v platném znění Článek 1 Úvodní ustanovení Tato směrnice stanoví pravidla pro poskytování informací

Více

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů. Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je

Více

Evidence dat v prostředí MS Excelu Kontingenční tabulka a kontingenční graf

Evidence dat v prostředí MS Excelu Kontingenční tabulka a kontingenční graf Evidence dat v prostředí MS Excelu Kontingenční tabulka a kontingenční graf Základní charakteristiky sumarizační tabulka narozdíl od souhrnu je samostatná (tzn., že je vytvářena mimo seznam) nabízí širší

Více

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků

Výchovné a vzdělávací strategie pro rozvoj klíčových kompetencí žáků CVIČENÍ Z MATEMATIKY Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Předmět je realizován od 6. ročníku až po 9. ročník po 1 hodině týdně. Výuka probíhá v kmenové učebně nebo

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé

1.4.1 Výroky. Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pravdivé 1.4.1 Výroky Předpoklady: Výrok je sdělení, u něhož má smysl otázka, zda je či není pradié Číslo π je iracionální. pradiý ýrok Ach jo, zase matika. není ýrok V rozrhu máme deset hodin matematiky týdně.

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Obsah 1. Úvod 2. Kontaktní logické řízení 3. Logické řízení bezkontaktní Leden 2006 Ing.

Více

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0

Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0 PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván

Více

Zadávací dokumentace

Zadávací dokumentace Zadávací dokumentace Název veřejné zakázky: Fotovoltaická elektrárna Cítov Identifikační údaje zadavatele: Obec Cítov Cítov 203 277 04 Cítov IČ: 00236764 Osoba oprávněná jednat za zadavatele: Ing. Marie

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Teoretické řešení střech Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Teoretické řešení střech Vypracoval: Michal Drašnar Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že

Více

Věc: VEŘEJNÁ ZAKÁZKA MALÉHO ROZSAHU NA STAVEBNÍ PRÁCE PRO AKCI: dodavatele k předložení nejvhodnější nabídky na výše uvedenou zakázku.

Věc: VEŘEJNÁ ZAKÁZKA MALÉHO ROZSAHU NA STAVEBNÍ PRÁCE PRO AKCI: dodavatele k předložení nejvhodnější nabídky na výše uvedenou zakázku. Tišnov dne 5. 8. 2015 Věc: VEŘEJNÁ ZAKÁZKA MALÉHO ROZSAHU NA STAVEBNÍ PRÁCE PRO AKCI: NÁZEV AKCE: RENOVACE PODLAHY SPORTOVNÍ HALY SSK TIŠNOV Zadavatel: Název: se sídlem: zástupce: IČO: 18565409 bankovní

Více

Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina

Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina VÝCHOVNÝ ÚSTAV A ŠKOLNÍ JÍDELNA NOVÁ ROLE Školní 9, Nová Role, PSČ: 362 25, Tel: 353 851 179 Dodavatel: Výzva pro předložení nabídek k veřejné zakázce malého rozsahu s názvem Výměna lina 1. Zadavatel Výchovný

Více

Předmětem zakázky je dodávka a instalace výpočetní techniky včetně software.

Předmětem zakázky je dodávka a instalace výpočetní techniky včetně software. ZADÁVACÍ DOKUMENTACE K VEŘEJNÉ ZAKÁZCE 1. NÁZEV VEŘEJNÉ ZAKÁZKY Název veřejné zakázky na služby: Dodávka a instalace výpočetní techniky pro SOŠ SE Velešín 2. IDENTIFIKAČNÍ ÚDAJE ZADAVATELE Obchodní firma

Více

1 Matematické základy teorie obvodů

1 Matematické základy teorie obvodů Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení

Více

Město Mariánské Lázně

Město Mariánské Lázně Město Mariánské Lázně Městský úřad, odbor investic a dotací adresa: Městský úřad Mariánské Lázně, Ruská 155, 353 01 Mariánské Lázně telefon 354 922 111, fax 354 623 186, e-mail muml@marianskelazne.cz,

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování V algoritmizaci a programování je důležitá schopnost analyzovat a myslet. Všeobecně jsou odrazovým můstkem pro řešení neobvyklých, ale i každodenních problémů. Naučí nás rozdělit

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Směrnice pro přijímání a vyřizování žádostí o poskytnutí informací podle zákona č. 106/1999 Sb. o svobodném přístupu k informacím

Směrnice pro přijímání a vyřizování žádostí o poskytnutí informací podle zákona č. 106/1999 Sb. o svobodném přístupu k informacím Směrnice pro přijímání a vyřizování žádostí o poskytnutí informací podle zákona č. 106/1999 Sb. o svobodném přístupu k informacím Rada města v Dobřanech schválila svým usnesením č. 2195 ze dne 29.05.2012

Více

M Ě S T O I V A N Č I C E Palackého náměstí 196/6, 664 91 Ivančice

M Ě S T O I V A N Č I C E Palackého náměstí 196/6, 664 91 Ivančice M Ě S T O I V A N Č I C E Palackého náměstí 196/6, 664 91 Ivančice Vaše značka/dopis ze dne: Č.j.: Vyřizuje/linka: V Ivančicích dne: OTI Ing. Josef Janíček 4. 6. 2010 Věc: Výzva k podání nabídky-veřejná

Více

2. Vymezení předmětu veřejné zakázky

2. Vymezení předmětu veřejné zakázky K čj :372-4/2012/DP - ÚVN V Praze dne: 19.07.2012 Výtisk číslo: 1 Počet listů: 11 Počet příloh: 2 ZADÁVACÍ DOKUMENTACE pro otevřené, podlimitní zadávací řízení na zakázku zadávanou dle zákona č. 137/2006

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

VÝZVA K PODÁNÍ NABÍDKY A PROKÁZÁNÍ SPLN NÍ KVALIFIKACE ZADÁVACÍ DOKUMENTACE ZADÁVACÍ DOKUMENTACE

VÝZVA K PODÁNÍ NABÍDKY A PROKÁZÁNÍ SPLN NÍ KVALIFIKACE ZADÁVACÍ DOKUMENTACE ZADÁVACÍ DOKUMENTACE VÝZVA K PODÁNÍ NABÍDKY A PROKÁZÁNÍ SPLN NÍ KVALIFIKACE ZADÁVACÍ DOKUMENTACE ve smyslu 38 zákona. 137/2006 Sb., o ve ejných zakázkách, v platném zn ní (dále jen zákon) a ZADÁVACÍ DOKUMENTACE ve smyslu 44

Více

1.3 Druhy a metody měření

1.3 Druhy a metody měření Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1.3 Druhy a metody měření Měření je soubor činností, jejichž cílem je stanovit hodnotu měřené fyzikální veličiny.

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

Měření změny objemu vody při tuhnutí

Měření změny objemu vody při tuhnutí Měření změny objemu vody při tuhnutí VÁCLAVA KOPECKÁ Katedra didaktiky fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Anotace Od prosince 2012 jsou na webovém portálu Alik.cz publikovány

Více

Obchodní podmínky PRESPLAST s.r.o.

Obchodní podmínky PRESPLAST s.r.o. Obchodní podmínky PRESPLAST s.r.o. I. ÚVODNÍ USTANOVENÍ Obchodní podmínky. Obchodní společnost PRESPLAST s.r.o., se sídlem Česká Třebová, Kubelkova 497, PSČ 560 02, IČ 27502317, společnost zapsaná v obchodním

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE

VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE VYUŽITÍ NEURONOVÝCH SÍTÍ PROSTŘEDÍ MATLAB K PREDIKCI HODNOT NÁKLADŮ PRO ELEKTRICKÉ OBLOUKOVÉ PECE V. Hon VŠB TU Ostrava, FEI, K455, 17. Listopadu 15, Ostrava Poruba, 70833 Abstrakt Neuronová síť (dále

Více

Nařizování exekuce a pověření exekutora

Nařizování exekuce a pověření exekutora POZMĚŇOVACÍ NÁVRH k vládnímu návrhu zákona, kterým se mění zákon č. 99/1963 Sb., občanský soudní řád, ve znění pozdějších předpisů, a další související zákony (tisk 537) Nařizování exekuce a pověření exekutora

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl

Více

1. kolo soutěže probíhá: od 19. 11. 2014 07:00:00 hod do 24. 12.2014 23:59:59 hod

1. kolo soutěže probíhá: od 19. 11. 2014 07:00:00 hod do 24. 12.2014 23:59:59 hod Pravidla soutěže Vyhrajte sadu DVD Disney Účelem tohoto dokumentu je úplná a jasná úprava pravidel soutěže Vyhrajte sadu DVD Disney (dále jen soutěž ). Tato pravidla jsou jediným dokumentem, který závazně

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

VÝZVA K PODÁNÍ NABÍDKY. Veřejná zakázka malého rozsahu na Grafické práce a DTP služby

VÝZVA K PODÁNÍ NABÍDKY. Veřejná zakázka malého rozsahu na Grafické práce a DTP služby ZOOLOGICKÁ ZAHRADA HL. M. PRAHY U TROJSKÉHO ZÁMKU 120/3 171 00 PRAHA 7 IČO: 00064459 DIČ: CZ00064459 WWW.ZOOPRAHA.CZ č.j. ÚKV/0174/15 V Praze dne 21. 1. 2015 Počet listů: 6 VÝZVA K PODÁNÍ NABÍDKY Veřejná

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

VÝZVA K PODÁNÍ NABÍDKY JIŘICE DODÁVKA KOVOVÝCH KONSTRUKCÍ POSTELÍ

VÝZVA K PODÁNÍ NABÍDKY JIŘICE DODÁVKA KOVOVÝCH KONSTRUKCÍ POSTELÍ VĚZEŇSKÁ SLUŽBA ČESKÉ REPUBLIKY Věznice Jiřice Ruská cesta 404, poštovní přihrádka 8, 289 22 Jiřice Tel.: 325 558 111, Fax: 325 558 208, ISDS: vfsd3n6 Č.j. VS 88/007/001/2014-24/LOG/503 V Jiřicích dne

Více

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Regresní analýza. Statistika II. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Statistika II Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu) této závislosti pomocí vhodné funkce

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

POKYNY. k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012

POKYNY. k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012 dz_12dpfo5405_19_pok.pdf - Adobe Acrobat Professional POKYNY k vyplnění přiznání k dani z příjmů fyzických osob za zdaňovací období (kalendářní rok) 2012 Pokyny k vyplnění přiznání k dani z příjmů fyzických

Více

371/2002 Sb. VYHLÁŠKA

371/2002 Sb. VYHLÁŠKA 371/2002 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 26. července 2002, kterou se stanoví postup při znehodnocování a ničení zbraně, střeliva a výrobě jejich řezů ve znění vyhlášky č. 632/2004

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_145 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméno TUREČEK Daniel Datum měření 3..6 Stud. rok 6/7 Ročník. Datum odevzdání 3..7 Stud. skupina 3 Lab.

Více

poslanců Petra Nečase, Aleny Páralové a Davida Kafky

poslanců Petra Nečase, Aleny Páralové a Davida Kafky P a r l a m e n t Č e s k é r e p u b l i k y POSLANECKÁ SNĚMOVNA 2007 V. volební období 172 N á v r h poslanců Petra Nečase, Aleny Páralové a Davida Kafky na vydání zákona, kterým se mění zákon č. 117/1995

Více

METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA SYSTÉMU VZDUCH-VODA

METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA SYSTÉMU VZDUCH-VODA METODIKA PRO NÁVRH TEPELNÉHO ČERPADLA SYSTÉMU VZDUCH-VODA Získávání tepla ze vzduchu Tepelná čerpadla odebírající teplo ze vzduchu jsou označovaná jako vzduch-voda" případně vzduch-vzduch". Teplo obsažené

Více

DODATEČNÉ INFORMACE K ZADÁVACÍ DOKUMENTACI I.

DODATEČNÉ INFORMACE K ZADÁVACÍ DOKUMENTACI I. DODATEČNÉ INFORMACE K ZADÁVACÍ DOKUMENTACI I. Zajištění telekomunikačních služeb pro město Lovosice ZADAVATEL: Město Lovosice sídlem: ul. Školní 407/2, 410 30 Lovosice IČ: 002 63 991 osoba oprávněná za

Více

RÁMCOVÁ SMLOUVA Dodávka renovovaných tonerů

RÁMCOVÁ SMLOUVA Dodávka renovovaných tonerů RÁMCOVÁ SMLOUVA Dodávka renovovaných tonerů uzavřená níže uvedeného dne, měsíce roku dle ustanovení 1746 odst. 2, 2079 a násl. zákona č. 89/2012 Sb., občanský zákoník, v platném znění mezi: František Skácel,

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb

I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb I. Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb 1 VŠEOBECNĚ ČSN EN 1991-1-1 poskytuje pokyny pro stanovení objemové tíhy stavebních a skladovaných materiálů nebo výrobků, pro vlastní

Více

Zadání zakázky. Obec Borová Lada. Borová Lada 38, 384 92 Borová Lada, Česká republika. Ing. Jana Hrazánková starostka obce

Zadání zakázky. Obec Borová Lada. Borová Lada 38, 384 92 Borová Lada, Česká republika. Ing. Jana Hrazánková starostka obce Zadání zakázky poptávkové řízení Výzva k předložení nabídky k veřejné zakázce malého rozsahu Název zakázky: Borová Lada - ČOV - zpracování projektové dokumentace. Zadavatel Název / obchodní firma : Obec

Více

č.5/2011 ~ VElATlCE mluvní strany: Obec Velatice IČ: 00488364

č.5/2011 ~ VElATlCE mluvní strany: Obec Velatice IČ: 00488364 I SMĚNNÁ SMLOUVA č.5/2011 OBECNí ÚŘAD ~ VElATlCE 90510 dne' 11 s. ~M C.j.:,..jf.i. Příloh:....... mluvní strny: Obec Veltice se sídlem Veltice 35, PSČ 66405 Tvrožná IČ: 00488364 zstoupená Mgr. Jnem Grolichem,

Více

DRAŽEBNÍ ŘÁD PRO DRAŽBU NEMOVITOSTÍ

DRAŽEBNÍ ŘÁD PRO DRAŽBU NEMOVITOSTÍ DRAŽEBNÍ ŘÁD PRO DRAŽBU NEMOVITOSTÍ Článek 1. Základní ustanovení Tento Dražební řád stanoví organizaci a průběh dražby nemovitostí (dále jen dražba) realizované soudním exekutorem při provádění exekucí

Více

Vydání občanského průkazu

Vydání občanského průkazu Vydání občanského průkazu 01. Identifikační kód 02. Kód 03. Pojmenování (název) životní situace Vydání občanského průkazu 04. Základní informace k životní situaci Občanský průkaz je povinen mít občan,

Více

HERNÍ PLÁN pro provozování okamžité loterie POMÁHÁME NAŠÍ ZOO - DŽUNGLE

HERNÍ PLÁN pro provozování okamžité loterie POMÁHÁME NAŠÍ ZOO - DŽUNGLE HERNÍ PLÁN pro provozování okamžité loterie POMÁHÁME NAŠÍ ZOO - DŽUNGLE 1. ÚVODNÍ USTANOVENÍ 1.1. Společnost Play games a.s., se sídlem V Holešovičkách 1443/4, 180 00 Praha 8, IČO: 247 73 255, zapsaná

Více

Microsoft Office Project 2003 Úkoly projektu 1. Začátek práce na projektu 1.1 Nastavení data projektu Plánovat od Datum zahájení Datum dokončení

Microsoft Office Project 2003 Úkoly projektu 1. Začátek práce na projektu 1.1 Nastavení data projektu Plánovat od Datum zahájení Datum dokončení 1. Začátek práce na projektu Nejprve je třeba pečlivě promyslet všechny detaily projektu. Pouze bezchybné zadání úkolů a ovládání aplikace nezaručuje úspěch projektu jako takového, proto je přípravná fáze,

Více

DRAŽEBNÍ VYHLÁŠKU PRO ELEKTRONICKOU DRAŽBU

DRAŽEBNÍ VYHLÁŠKU PRO ELEKTRONICKOU DRAŽBU Č.j. 094 EX 11456/06 U S N E S E N Í Soudní exekutor Mgr. Martin Tunkl, Exekutorský úřad Plzeň - město, se sídlem Palackého nám. 28, 301 00 Plzeň, pověřený provedením exekuce na základě usnesení o nařízení

Více

N á v r h ZÁKON. kterým se mění zákon č. 40/1964 Sb., občanský zákoník, ve znění pozdějších předpisů, a další související zákony ČÁST PRVNÍ

N á v r h ZÁKON. kterým se mění zákon č. 40/1964 Sb., občanský zákoník, ve znění pozdějších předpisů, a další související zákony ČÁST PRVNÍ N á v r h III ZÁKON ze dne 2010, kterým se mění zákon č. 40/1964 Sb., občanský zákoník, ve znění pozdějších předpisů, a další související zákony Parlament se usnesl na tomto zákoně České republiky: ČÁST

Více

Příklad 1.3: Mocnina matice

Příklad 1.3: Mocnina matice Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních

Více

METODICKÉ DOPORUČENÍ Ministerstva vnitra. ze dne 17. prosince 2015

METODICKÉ DOPORUČENÍ Ministerstva vnitra. ze dne 17. prosince 2015 METODICKÉ DOPORUČENÍ Ministerstva vnitra ze dne 17. prosince 2015 1. Jaký zákon upravuje číslování stavebních objektů? Označování/číslování budov upravuje 31 zákona č. 128/2000 Sb., o obcích (obecní zřízení),

Více

Pokud se vám tyto otázky zdají jednoduché a nemáte problém je správně zodpovědět, budete mít velkou šanci v této hře zvítězit.

Pokud se vám tyto otázky zdají jednoduché a nemáte problém je správně zodpovědět, budete mít velkou šanci v této hře zvítězit. Pro 2 až 6 hráčů od 10 let Určitě víte, kde leží Sněžka, Snad také víte, kde pramení Vltava, kde leží Pravčická brána, Černé jezero nebo Prachovské skály. Ale co třeba Nesyt, jeskyně Šipka, Pokličky nebo

Více

Kočí, R.: Účelové pozemní komunikace a jejich právní ochrana Leges Praha, 2011

Kočí, R.: Účelové pozemní komunikace a jejich právní ochrana Leges Praha, 2011 Kočí, R.: Účelové pozemní komunikace a jejich právní ochrana Leges Praha, 2011 Účelové komunikace jsou důležitou a rozsáhlou částí sítě pozemních komunikací v České republice. Na rozdíl od ostatních kategorií

Více