Experimentální stanovení entropie českého textu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Experimentální stanovení entropie českého textu"

Transkript

1 Experimentální stanovení entropie českého textu Antonín Novák Tomáš Báča 4. dubna 2012 Abstrakt Práce se zabývá analýzou českého textu. Zkoumali jsme syntaktickou strukturu psaného jazyka pomocí nástrojů teorie informace, zejména entropie. Zjistili jsme, že český jazyk vykazuje velkou redundanci a tím silnou míru vnitřní struktury. Výsledkem práce je stanovení entropie češtiny a konstrukce prediktoru českého textu včetně implementace komunikačního kompresního kanálu založeného na znalosti pravděpodobnostního modelu českých znaků a slov. Motivace V roce 1950 C. E. Shannon [1] publikoval článek pojednávající o možnostech predikce anglického textu. Jeho experimenty byly založeny na myšlence, že anglický jazyk vykazuje velmi silná vnitřní pravidla syntaxe a při znalosti těchto pravidel není úplně náhodné, jaké písmeno či slovo bude následovat po tom, které už známe. Ukazuje se například, že pravděpodobnosti písmen následujících v souvislém anglickém textu po písmenu T nemají rovnoměrné rozdělení. Je to způsobeno např. tím, že v angličtině je nejčastějším slovem člen the tudíž je poměrně pravděpodobné, že po T bude následovat právě H a ne například Q. Tyto a jiné podněty dovedly Shannona k tomu zkoumat míru této vnitřní struktury syntaxe s využitím nástrojů teorie informace. Intuitivně lze očekávat, že méně entropický (později definujeme přesněji) text bude snadnější predikovat, jelikož je méně náhodný tudíž je svázán jistým množstvím pravidel, které jeho syntaktickou strukturu do jisté míry předurčují. Všechny používané logaritmy v této práci jsou dvojkového základu (pokud není uvedeno jinak). Definice Neformálně řečeno, rozumný způsob, jak definovat entropii textu, je nahlížet na konkrétní jazyk jako na informační zdroj ((X n ) n N ) nad abecedou χ, pro který existuje pojem rychlosti entropie (entropie na znak). Tento způsob definice se ukazuje být opodstatněný a přináší své výsledky [1]. Dle [2, s. 173] existuje několik způsobů, jak tuto rychlost entropie najít. Jedním z nich je například metoda stanovení horní a dolní hranice rychlost entropie pomocí sázek na následující písmena obdobně jako při sázkách na koně a výsledky interpretovat pomocí narůstajícího bohatství z případných výher. Tato partie teorie informace nazývána gambling je rozebrána v [2]. My jsme v naší práci postupovali podobně jako C. E. Shannon - výpočtem z definice. Pro to si nejprve musíme přesně zavést několik pojmů. Budeme tedy určovat entropii českého textu - jednou nad abecedou bez mezery a za využití pravděpodobností koncových a počátečních písmen a druhou pro abecedou obsahující mezeru. 1

2 Náhodné veličiny Písmeno Náhodná veličina X reprezentuje písmeno textu. Je to diskrétní náhodná veličina s rozdělením p X nad abecedou χ = {A,...,Ž, }. Písmeno CH, ačkoliv se jedná o dva znaky, uvažujeme jako jeden. Mezera je v abecedě χ přítomna při druhé variantě experimentu odhadování entropie. N-gram Náhodný vektor G N reprezentuje N-gram českého textu (N náhodných veličin X). Je definován pomocí p N, kde p N je pravděpodobnostní rozdělení N-gramu nad množinou všech N- gramů (uspořádaných n-tic písmen) χ N. Například množina 2-gramů (digramů) je χ 2 ={AA,...,ŽŽ} ve variantě abecedy bez mezer. Čeština je náhodný proces ((X n ) n N ) nad abecedou χ, který považujeme za stacio- Čeština nární. Střední podmíněná entropie písmena Střední podmíněná entropie písmena X podmíněná (N-1)-gramem je: H N = H(X G N 1 ) = = p N 1 (y)h(x G N 1 = y) = y χ N 1 = p N (yx)log p N(yx) p N 1 (y) a vyjadřuje průměrné množství informace, kterou se dozvíme při pozorování X při předcházející znalosti předchozích N-1 písmen. Mezní rychlost entropie Mezní rychlost entropie náhodného procesu ((X n ) n N ) je definována jako limita posloupnosti středních podmíněných entropií a tedy platí: Výpočet H((X n ) n N ) = lim N H N (2) Jak jsme již zmínili výše, experiment jsme provedli pro dvě různé abecedy χ - s mezerou a bez mezery. CH bylo považováno za jedno písmeno. Všechna data vycházejí z 700 MB českého textu s diakritikou pocházejícího z české a světové literatury, který byl vhodně zpracován počítačem. (1) Odhady pravděpodobnostních rozdělení X a G N Rozdělení p X Pravděpodobností rozdělení p X odhadneme pomocí relativní četnosti písmen nad zkoumanými daty. Pro ilustraci uvádíme v tabulce 1 prvních osm nejčetnějších písmen. Rozdělení digramu G 2 Podobným způsobem odhadneme pravděpodobnostního rozdělení veličiny G 2. Výsledkem je rozdělení p 2. Na obrázku 1 vidíme, že pravděpodobností rozdělení p 2 není rovnoměrné - z toho je zřejmé, že syntaxe češtiny vykazuje vnitřní strukturu a slova jazyka se negenerují ze všech n-tic písmen rovnoměrně. Důkaz nerovnoměrnosti tohoto rozdělení není pro nás klíčový, proto jej ponecháváme bez důkazu jen pro ilustraci. Abeceda má uspořádání: A-Z, Á-Ž, CH. 2

3 písmeno pst. e o a n l t s i Tabulka 1: Nejčetnější písmena češtiny Obrázek 1: Pravděpodobnostní rozdělení digramů Rozdělení trigramu G 3 Odhad pravděpodobností trigramů p 3 pro případ abecedy χ obsahující mezeru je analogický s odhadem p 2. Pokud mezeru nepovažujeme za znak abecedy, postup stanovení rozdělení se mírně změní. Musíme vzít v úvahu i trigramy, které spojují dvě po sobě jdoucí slova. Například v sousloví hnijící koudel bychom rádi započítali výskyt trigramů cík a íko. Formule popsaná v [1], pomocí které upravíme odhadnuté pravděpodobnosti, vypadá následovně: p 3 (y 1 y 2 y 3 ) = ˆp 3(y 1 y 2 y 3 ) p T (y 1 )p 2 (y 2 y 3 ) p 2(y 1 y 2 )p S (y 3 ) (3) kde p S (y 1 ) je pst. že písmeno y 1 je začínajícím znakem slova, p T (y 3 ) je pst, že y 3 je koncovým znakem slova. Hodnota 5.83 je průměrná délka českého slova délky větší než 3 a vážena výskytem slova v textu je průměrný počet trigramů uvnitř českého slova. ˆp 3 je odhad na základě četnosti trojic písmen uvnitř slova. Tuto úpravu Shannon použil v [1] za předpokladu nezávislosti počátečního písmena jednoho slova a konečného písmena. Výpočtem s takto upraveným pravděpodobnostním rozdělením jsme dostali hodnotu H 3 větší než H 2, což indikuje chybu odhadu rozdělení. Proto soudíme, že tato metoda není pro češtinu 3

4 možná a dále pokračujeme s původními pravděpodobnostmi p relativni cetnost poradi cetnosti Obrázek 2: Sestupně seřazené pravděpodobnosti trigramů v log-log měřítku Četnosti slov 4-gramy a více již nebudeme konstruovat z podobných důvodů jako uvádí Shannon [1] - věrohodnost však takových dat je již daleko nižší než v případě trigramů. Lepším způsobem pro další aproximaci limity posloupnosti H N je použít četnosti slov. V [3] Zipf postuloval, že rovnice (4) platí pro mnoho různých jazyků. p n je relativní četnost n-tého nejčastějšího slova. My jsme pro češtinu určili tvar této rovnice (5). p n = k n (4) p n = { 0.03/n 0.6 n /n n > 10 Na obrázku 3 vidíme v log-log měřítku četnosti nejčastějších českých slov. Modře jsou vyznačena naše data, červeně aproximace k = 0.1 pro angličtinu dle Shannona [1]. Zeleně je naše aproximace (5) pro češtinu. Rychlost entropie Pro stacionární náhodné procesy (a češtinu za něj považujeme) platí věta, že rychlost entropie se rovná mezní rychlosti entropie: 1 H((X n ) n N ) = lim n n H(X 1,..., X n ) = H((X n ) n N ) Pro výpočet mezní rychlosti entropie použijeme vztah (2). Začneme postupně rozepisovat jednotlivé členy posloupnosti. Při prvním přiblížení uvažujeme jen počet písmen v abecedě (bez mezery): H 0 = log χ = 5.39 bits/znak (6) (5) 4

5 10 2 a data aproximace 2. radu aproximace 1. radu 10 3 kde pst. slova v textu dobre zarizení 10 6 nevydrzel 10 7 vtipnou poradi cetnosti slova Obrázek 3: Sestupně seřazené pravděpodobnosti slov v log-log měřítku Ve druhém uvažujeme jejich samotné četnosti: H 1 = x χ p X (x)log(p X (x)) = bits/znak (7) Pro výpočet dalších středních podmíněných entropií si výraz (1) přepíšeme do vhodnější formy: H N = H(X G N 1 ) = Čili bude platit: = = = = p N (yx)log p N(yx) p N 1 (y) p N (yx)[log(p N (yx)) log(p N 1 (y))] p N (yx)log(p N (yx)) p N (yx)log(p N 1 (y)) p N (yx)log(p N (yx)) + p N (yx)log(p N (yx)) + log(p N 1 (y)) p N (yx) } {{ } =p N 1 (y) y χ N 1 log(p N 1 (y))p N 1 (y) (8) 5

6 H 2 = H(X G 1 ) = p 2 (yx)log(p 2 (yx)) + log(p 1 (y))p 1 (y) y χ 1 y χ 1 x χ } {{ } = H 1 = = bits/znak a velmi podobně také pro trigramy: H 3 = H(X G 2 ) = p 3 (yx)log(p 3 (yx)) + log(p 2 (y))p 2 (y) (10) y χ 2 y χ 2 x χ = = bits/znak Při odhadu pravděpodobnostních rozdělení jsme diskutovali, že dále budeme postupovat podle aproximace pomocí četnosti slov rovnicí (5). Aby p n byla pravděpodobnost, musí pro ní platit: (9) p n = 1 (11) n=1 Je zřejmé že suma z rovnice (11) diverguje a tudíž součet nemůže být až do nekonečna. Hodnota n, pro kterou se p n = 1 je Bez jakéhokoliv nároku na lepší odhad entropie slova ji stanovujeme jako: H w = p n log(p n ) = bits/slovo = 2.07 bits/znak (12) n=1 Otázkou zůstává, s jakou hodnotou H N toto číslo ztotožnit. Ačkoliv je průměrná délka českého slova 5.83 znaků, tak entropie slova na znak je nižší než hodnota H Důvodem, který zmiňuje i Shannon v [1], je, že slovo jazyka vykazuje silnější vnitřní strukturu než uspořádaná 6tice písmen, což vyústí v menší entropii bloku písmen poskládaného do slova, jakožto jazykové jednotky se silnou strukturou. Lze soudit, že entropie slova přísluší hodnotě přibližně H 7 či H 8. abeceda H 0 H 1 H 2 H 3 H w 42 p p Tabulka 2: Posloupnost podmíněných entropií Vidíme, že jsou v podstatě zanedbatelné rozdíly mezi abecedou obsahující mezeru a abecedou bez mezery. Pokud češtinu modelujeme 2-Markovským modelem písmen, pak je její entropie rovna přibližně 3.17 bitů na písmeno. Pokud přistoupíme k modelování pomocí N-Markovského řetězce slov (kde N není příliš velké), pak lze očekávat, že entropie bude menší než námi zjištěná hodnota 2.07 bitů na písmeno. Ze znalosti českého jazyka je zřejmé, že věrnějším odhadem bude N-Markovský řetězec slov, kde N není příliš velké. Proto definujeme-li redundanci českého jazyka procentuální poměr entropie na znak mezi nezávislým náhodným zdrojem a N-Markovským řetězcem slov, pak redundance bude přibližně 40%. Výsledky Entropie českého textu Zjistili jsme, že rozdíly v rychlosti entropie procesu nad abecedou obsahující mezeru a and abecedou bez mezery jsou zanedbatelné. Pokud češtinu modelujeme jako N-Markovkský řetězec 6

7 slov, kde N není příliš velké (jednotky), pak je rychlost entropie takového zdroje přibližně: Tabulky četnosti slov a písmen češtiny H(((X n ) n N )) = 2.07 bits/znak (13) Pro výpočet entropie bylo třeba zkonstruovat tabulky četností písmen, digramů, trigramů a četnosti slov. Tyto tabulky jsou součástí práce a uvolňujeme je pod licencí Creative Commons Attribution-NonComercial-ShareAlike 3.0 Unported. Prediktor textu 2-Markovský řetězec znaků Tento popis modeluje češtinu tak, že pravděpodobnost výskytu písmena je podmíněna dvěma předcházejícími. Tento popis přirozeně neposkytuje kvalitní predikci celých slov, avšak slouží dobře na predikci předložek, spojek či obecně kratších stavebních prvků češtiny. Následuje ukázka textu, který takový prediktor dokáže vygenerovat: jed_doostval_st_ja_př_sesi_e_dvalka řejake_sen měo_so_spro a_pjede_v_mustoabyto_a_pe_mne_přie_z_prby_ku_a_d_pako mijí_ ohou_pby_i_skte_žeale_stle_ný_kola_dbyl_veprol_nter_v_e_m_mu 2-Markovský řetězec slov Podobně jako se znaky můžeme zacházet i se slovy. Za pomocí předchozí analýzy jsme byli schopni zkonstruovat prediktor, který maximalizuje pravděpodobnost podmíněnou dvěma předchozími slovy. Jeho výstup pro představu je možné vidět zde: jednoho_dne_se_vrátí_do_své_kanceláře_a_zavřel_oči_a_pak_se_ otočil_a_zamířil_k_němu_a_řekl_jsem_a_on_se_na_něj_a_jeho_hlas _zněl_trochu_drsně_díky_žaludečním_šťávám_a_projít_se_po_něm Komunikační predikční kanál Ve své práci [1] Shannon popsal model komunikačního kanálu založeného na umístění identických prediktorů na vstupu a výstupu. Tento kanál přenáší prázdné kódové slovo, pokud prediktor správně na první pokus určí slovo na vstupu. Toto rozhodování provádí na základě znalosti předchozích znaků zprávy. Pokud se nepodaří správně určit znak napoprvé, tak se pokračuje sestupně přes všechny pravděpodobnosti a odešle se číslo iterace, kdy nastala shoda. Za předpokladu identičnosti prediktorů je pak možno odeslanou zprávu bezchybně rekonstruovat. Prázdné kódové slovo, jenž indikuje správnou predikci, je příhodné kódovat nejkratším možným kódovým slovem (např. nulovým bitem). Ostatní přenášená kódová můžeme kódovat běžným způsobem (např. Huffmanovým kódem). original text reduced text original text comparison comparison predictor predictor Obrázek 4: Shannonův model komunikačního kanálu dle [1] Čím bude lepší predikce, tím méně bitů je třeba přenášet. V extrémních případech lze předpokládat, že z jednoho počátečního písmena budu schopen na druhém konci rekonstruovat celou 7

8 zprávu. Naše implementace využívá 2-Markovského řetězce slov vytvořeného z cca. 200 MB českého textu. Při větší velikosti dat jsme se již potýkali s výkonovými problémy. Lze předpokládat, že lepší implementací by bylo možné dosáhnout lepších výsledků. Naše implementace pracuje jen s celými slovy. Proto když predikce není vůbec možná (z nedostatku dat), tak se odešle celé slovo najednou. Jednou námi navrhovaných změn je začlenění 2-Markovského řetězce znaků do predikce. Pro ilustraci uvádíme zprávu včetně jejího přenosu naší implementací kanálu: vstup: ahoj_tondo_píšu_ti_protože_bych_se_rád_zeptal_jak_se_máš_jakpak_se_má_tvůj_kocour _už_jsem_ho_dlouho_neviděl poslaná zpráva: ahoj_tondo_píšu_ti 1 bych jakpak_se kocour_už_jsem výstup: ahoj_tondo_píšu_ti_protože_bych_se_rád_zeptal_jak_se_máš_jakpak_se_má_tvůj_kocour _už_jsem_ho_dlouho_neviděl Závěr Podařilo se nám ověřit předpoklad, že syntaxe českého jazyka vykazuje vnitřní strukturu, která redukuje jeho entropii. Rychlost entropie češtiny za předpokladu, že je modelována N-Markovským řetězcem slov, kde N je přiměřeně malé (jednotky) je menší než 2.07 bits/znak. Tato poměrně malá míra entropie implikuje větší předurčenost textu a tím jeho snadnější predikovatelnost. Se znalostí pravděpodobnostího rozdělení písmen a slov českého jazyka jsme byli schopni zkonstruovat komunikační kanál popsaný v [1]. Vzhledem k zajímavým výsledkům této práce věříme, že si problematika entropie textů zaslouží další zkoumání. Reference [1] SHANNON, C. E. Prediction and Entropy of Printed English [2] THOMAS M. COVER, JOY A. THOMAS, Elements of Information Theory. 2nd editon, 2006 [3] ZIPF, G. K., Human Behavior and the Principle of Least Effort, Addison-Wesley Press,

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma

Seznam funkcí pro kurz EXCEL I. Jaroslav Nedoma Seznam funkcí pro kurz EXCEL I Jaroslav Nedoma 2010 Obsah ÚVOD... 3 SUMA... 4 PRŮMĚR... 6 MIN... 8 MAX... 10 POČET... 12 POČET2... 14 ZAOKROUHLIT... 16 COUNTIF... 18 SVYHLEDAT... 22 2 ÚVOD Autor zpracoval

Více

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou:

Model pro simulaci staví na výpočtu hrubého domácího produktu výdajovou metodou: Model vývoje HDP ČR Definice problému Očekávaný vývoj hrubého domácího produktu jakožto základní makroekonomické veličiny ovlivňuje chování tržních subjektů, které v důsledku očekávání modulují své chování

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Propenzitní modelování. Veronika Počerová 10. 4. 2015

Propenzitní modelování. Veronika Počerová 10. 4. 2015 Propenzitní modelování Veronika Počerová 10. 4. 2015 motivace 2 definice Prediktivní analytika je disciplína, která využívá metod Data Miningu k tomu, aby na základě historického chování sledovaného jevu

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Lokální definice (1) plocha-kruhu

Lokální definice (1) plocha-kruhu Lokální definice (1) syntaxe: (local (seznam definic) výraz) definice jsou dostupné pouze uvnitř příkazu local příklad: (local ( (define Pi 3.1415926) (define (plocha-kruhu r) (* Pi r r)) ) (plocha-kruhu

Více

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání

Čtvrtek 3. listopadu. Makra v Excelu. Obecná definice makra: Spouštění makra: Druhy maker, způsoby tvorby a jejich ukládání Čtvrtek 3. listopadu Makra v Excelu Obecná definice makra: Podle definice je makro strukturovanou definicí jedné nebo několika akcí, které chceme, aby MS Excel vykonal jako odezvu na nějakou námi definovanou

Více

Pokyny pro vypracování maturitního projektu

Pokyny pro vypracování maturitního projektu Pokyny pro vypracování maturitního projektu Prostudujte si prosím pečlivě následující pokyny k vypracování maturitního projektu. Maturitní projekt musí obsahovat: 1. Titulní strana (nečísluje se) Obsahuje:

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková

CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel. Michaela Ševečková CODEWEEK 2014 Rozvoj algoritmického myšlení nejen pomocí programu MS Excel Michaela Ševečková Rozvoj technického myšlení nejmenších dětí práce s předměty charakteristika, diferenciace (hledání rozdílů),

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

Substituční šifry a frekvenční analýza. Mgr. Radim Janča ijanca@fit.vutbr.cz

Substituční šifry a frekvenční analýza. Mgr. Radim Janča ijanca@fit.vutbr.cz Substituční šifry a frekvenční analýza Mgr. Radim Janča ijanca@fit.vutbr.cz Harmonogram Celkově 4 cvičení v P256 Prezentace z cvičení budou zveřejňovány na http://buslab.fit.vutbr.cz/kib/ 3 samostatné

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Integrovaný informační systém Státní pokladny (IISSP) Dokumentace API - integrační dokumentace

Integrovaný informační systém Státní pokladny (IISSP) Dokumentace API - integrační dokumentace Česká republika Vlastník: Logica Czech Republic s.r.o. Page 1 of 10 Česká republika Obsah 1. Úvod...3 2. Východiska a postupy...4 2.1 Způsob dešifrování a ověření sady přístupových údajů...4 2.2 Způsob

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Podpora výuky a vzd lávání na GVN J. Hradec Kružnice

Podpora výuky a vzd lávání na GVN J. Hradec Kružnice Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: IV/2 Číslo dokumentu: VY_42_INOVACE_M.S2.01 Typ výukového materiálu: Pracovní list pro žáka Název

Více

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu.

2. Určete frakční objem dendritických částic v eutektické slitině Mg-Cu-Zn. Použijte specializované programové vybavení pro obrazovou analýzu. 1 Pracovní úkoly 1. Změřte střední velikost zrna připraveného výbrusu polykrystalického vzorku. K vyhodnocení snímku ze skenovacího elektronového mikroskopu použijte kruhovou metodu. 2. Určete frakční

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Deset přednášek z teorie statistického a strukturního rozpoznávání

Deset přednášek z teorie statistického a strukturního rozpoznávání Monografie Deset přednášek teorie statistického a strukturního roponávání Michail I. Schlesinger, Václav Hlaváč Praha 1999 Vydavatelství ČVUT 1. přednáška Bayesovská úloha statistického rohodování 1.1

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech 7 Formátovaný výstup, třídy, objekty, pole, chyby v programech Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost formátovanému výstupu,

Více

25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie

25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie 25. Přenosová a modulační rychlost, Informační rychlost, Shannon Hartleyův zákon, Propustnost kanálů, Entropie Tuto otázku jsem pojal trochu dvěma směry. V podtitulu To, co by vám mělo stačit ke státnicím

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více