Experimentální stanovení entropie českého textu

Rozměr: px
Začít zobrazení ze stránky:

Download "Experimentální stanovení entropie českého textu"

Transkript

1 Experimentální stanovení entropie českého textu Antonín Novák Tomáš Báča 4. dubna 2012 Abstrakt Práce se zabývá analýzou českého textu. Zkoumali jsme syntaktickou strukturu psaného jazyka pomocí nástrojů teorie informace, zejména entropie. Zjistili jsme, že český jazyk vykazuje velkou redundanci a tím silnou míru vnitřní struktury. Výsledkem práce je stanovení entropie češtiny a konstrukce prediktoru českého textu včetně implementace komunikačního kompresního kanálu založeného na znalosti pravděpodobnostního modelu českých znaků a slov. Motivace V roce 1950 C. E. Shannon [1] publikoval článek pojednávající o možnostech predikce anglického textu. Jeho experimenty byly založeny na myšlence, že anglický jazyk vykazuje velmi silná vnitřní pravidla syntaxe a při znalosti těchto pravidel není úplně náhodné, jaké písmeno či slovo bude následovat po tom, které už známe. Ukazuje se například, že pravděpodobnosti písmen následujících v souvislém anglickém textu po písmenu T nemají rovnoměrné rozdělení. Je to způsobeno např. tím, že v angličtině je nejčastějším slovem člen the tudíž je poměrně pravděpodobné, že po T bude následovat právě H a ne například Q. Tyto a jiné podněty dovedly Shannona k tomu zkoumat míru této vnitřní struktury syntaxe s využitím nástrojů teorie informace. Intuitivně lze očekávat, že méně entropický (později definujeme přesněji) text bude snadnější predikovat, jelikož je méně náhodný tudíž je svázán jistým množstvím pravidel, které jeho syntaktickou strukturu do jisté míry předurčují. Všechny používané logaritmy v této práci jsou dvojkového základu (pokud není uvedeno jinak). Definice Neformálně řečeno, rozumný způsob, jak definovat entropii textu, je nahlížet na konkrétní jazyk jako na informační zdroj ((X n ) n N ) nad abecedou χ, pro který existuje pojem rychlosti entropie (entropie na znak). Tento způsob definice se ukazuje být opodstatněný a přináší své výsledky [1]. Dle [2, s. 173] existuje několik způsobů, jak tuto rychlost entropie najít. Jedním z nich je například metoda stanovení horní a dolní hranice rychlost entropie pomocí sázek na následující písmena obdobně jako při sázkách na koně a výsledky interpretovat pomocí narůstajícího bohatství z případných výher. Tato partie teorie informace nazývána gambling je rozebrána v [2]. My jsme v naší práci postupovali podobně jako C. E. Shannon - výpočtem z definice. Pro to si nejprve musíme přesně zavést několik pojmů. Budeme tedy určovat entropii českého textu - jednou nad abecedou bez mezery a za využití pravděpodobností koncových a počátečních písmen a druhou pro abecedou obsahující mezeru. 1

2 Náhodné veličiny Písmeno Náhodná veličina X reprezentuje písmeno textu. Je to diskrétní náhodná veličina s rozdělením p X nad abecedou χ = {A,...,Ž, }. Písmeno CH, ačkoliv se jedná o dva znaky, uvažujeme jako jeden. Mezera je v abecedě χ přítomna při druhé variantě experimentu odhadování entropie. N-gram Náhodný vektor G N reprezentuje N-gram českého textu (N náhodných veličin X). Je definován pomocí p N, kde p N je pravděpodobnostní rozdělení N-gramu nad množinou všech N- gramů (uspořádaných n-tic písmen) χ N. Například množina 2-gramů (digramů) je χ 2 ={AA,...,ŽŽ} ve variantě abecedy bez mezer. Čeština je náhodný proces ((X n ) n N ) nad abecedou χ, který považujeme za stacio- Čeština nární. Střední podmíněná entropie písmena Střední podmíněná entropie písmena X podmíněná (N-1)-gramem je: H N = H(X G N 1 ) = = p N 1 (y)h(x G N 1 = y) = y χ N 1 = p N (yx)log p N(yx) p N 1 (y) a vyjadřuje průměrné množství informace, kterou se dozvíme při pozorování X při předcházející znalosti předchozích N-1 písmen. Mezní rychlost entropie Mezní rychlost entropie náhodného procesu ((X n ) n N ) je definována jako limita posloupnosti středních podmíněných entropií a tedy platí: Výpočet H((X n ) n N ) = lim N H N (2) Jak jsme již zmínili výše, experiment jsme provedli pro dvě různé abecedy χ - s mezerou a bez mezery. CH bylo považováno za jedno písmeno. Všechna data vycházejí z 700 MB českého textu s diakritikou pocházejícího z české a světové literatury, který byl vhodně zpracován počítačem. (1) Odhady pravděpodobnostních rozdělení X a G N Rozdělení p X Pravděpodobností rozdělení p X odhadneme pomocí relativní četnosti písmen nad zkoumanými daty. Pro ilustraci uvádíme v tabulce 1 prvních osm nejčetnějších písmen. Rozdělení digramu G 2 Podobným způsobem odhadneme pravděpodobnostního rozdělení veličiny G 2. Výsledkem je rozdělení p 2. Na obrázku 1 vidíme, že pravděpodobností rozdělení p 2 není rovnoměrné - z toho je zřejmé, že syntaxe češtiny vykazuje vnitřní strukturu a slova jazyka se negenerují ze všech n-tic písmen rovnoměrně. Důkaz nerovnoměrnosti tohoto rozdělení není pro nás klíčový, proto jej ponecháváme bez důkazu jen pro ilustraci. Abeceda má uspořádání: A-Z, Á-Ž, CH. 2

3 písmeno pst. e o a n l t s i Tabulka 1: Nejčetnější písmena češtiny Obrázek 1: Pravděpodobnostní rozdělení digramů Rozdělení trigramu G 3 Odhad pravděpodobností trigramů p 3 pro případ abecedy χ obsahující mezeru je analogický s odhadem p 2. Pokud mezeru nepovažujeme za znak abecedy, postup stanovení rozdělení se mírně změní. Musíme vzít v úvahu i trigramy, které spojují dvě po sobě jdoucí slova. Například v sousloví hnijící koudel bychom rádi započítali výskyt trigramů cík a íko. Formule popsaná v [1], pomocí které upravíme odhadnuté pravděpodobnosti, vypadá následovně: p 3 (y 1 y 2 y 3 ) = ˆp 3(y 1 y 2 y 3 ) p T (y 1 )p 2 (y 2 y 3 ) p 2(y 1 y 2 )p S (y 3 ) (3) kde p S (y 1 ) je pst. že písmeno y 1 je začínajícím znakem slova, p T (y 3 ) je pst, že y 3 je koncovým znakem slova. Hodnota 5.83 je průměrná délka českého slova délky větší než 3 a vážena výskytem slova v textu je průměrný počet trigramů uvnitř českého slova. ˆp 3 je odhad na základě četnosti trojic písmen uvnitř slova. Tuto úpravu Shannon použil v [1] za předpokladu nezávislosti počátečního písmena jednoho slova a konečného písmena. Výpočtem s takto upraveným pravděpodobnostním rozdělením jsme dostali hodnotu H 3 větší než H 2, což indikuje chybu odhadu rozdělení. Proto soudíme, že tato metoda není pro češtinu 3

4 možná a dále pokračujeme s původními pravděpodobnostmi p relativni cetnost poradi cetnosti Obrázek 2: Sestupně seřazené pravděpodobnosti trigramů v log-log měřítku Četnosti slov 4-gramy a více již nebudeme konstruovat z podobných důvodů jako uvádí Shannon [1] - věrohodnost však takových dat je již daleko nižší než v případě trigramů. Lepším způsobem pro další aproximaci limity posloupnosti H N je použít četnosti slov. V [3] Zipf postuloval, že rovnice (4) platí pro mnoho různých jazyků. p n je relativní četnost n-tého nejčastějšího slova. My jsme pro češtinu určili tvar této rovnice (5). p n = k n (4) p n = { 0.03/n 0.6 n /n n > 10 Na obrázku 3 vidíme v log-log měřítku četnosti nejčastějších českých slov. Modře jsou vyznačena naše data, červeně aproximace k = 0.1 pro angličtinu dle Shannona [1]. Zeleně je naše aproximace (5) pro češtinu. Rychlost entropie Pro stacionární náhodné procesy (a češtinu za něj považujeme) platí věta, že rychlost entropie se rovná mezní rychlosti entropie: 1 H((X n ) n N ) = lim n n H(X 1,..., X n ) = H((X n ) n N ) Pro výpočet mezní rychlosti entropie použijeme vztah (2). Začneme postupně rozepisovat jednotlivé členy posloupnosti. Při prvním přiblížení uvažujeme jen počet písmen v abecedě (bez mezery): H 0 = log χ = 5.39 bits/znak (6) (5) 4

5 10 2 a data aproximace 2. radu aproximace 1. radu 10 3 kde pst. slova v textu dobre zarizení 10 6 nevydrzel 10 7 vtipnou poradi cetnosti slova Obrázek 3: Sestupně seřazené pravděpodobnosti slov v log-log měřítku Ve druhém uvažujeme jejich samotné četnosti: H 1 = x χ p X (x)log(p X (x)) = bits/znak (7) Pro výpočet dalších středních podmíněných entropií si výraz (1) přepíšeme do vhodnější formy: H N = H(X G N 1 ) = Čili bude platit: = = = = p N (yx)log p N(yx) p N 1 (y) p N (yx)[log(p N (yx)) log(p N 1 (y))] p N (yx)log(p N (yx)) p N (yx)log(p N 1 (y)) p N (yx)log(p N (yx)) + p N (yx)log(p N (yx)) + log(p N 1 (y)) p N (yx) } {{ } =p N 1 (y) y χ N 1 log(p N 1 (y))p N 1 (y) (8) 5

6 H 2 = H(X G 1 ) = p 2 (yx)log(p 2 (yx)) + log(p 1 (y))p 1 (y) y χ 1 y χ 1 x χ } {{ } = H 1 = = bits/znak a velmi podobně také pro trigramy: H 3 = H(X G 2 ) = p 3 (yx)log(p 3 (yx)) + log(p 2 (y))p 2 (y) (10) y χ 2 y χ 2 x χ = = bits/znak Při odhadu pravděpodobnostních rozdělení jsme diskutovali, že dále budeme postupovat podle aproximace pomocí četnosti slov rovnicí (5). Aby p n byla pravděpodobnost, musí pro ní platit: (9) p n = 1 (11) n=1 Je zřejmé že suma z rovnice (11) diverguje a tudíž součet nemůže být až do nekonečna. Hodnota n, pro kterou se p n = 1 je Bez jakéhokoliv nároku na lepší odhad entropie slova ji stanovujeme jako: H w = p n log(p n ) = bits/slovo = 2.07 bits/znak (12) n=1 Otázkou zůstává, s jakou hodnotou H N toto číslo ztotožnit. Ačkoliv je průměrná délka českého slova 5.83 znaků, tak entropie slova na znak je nižší než hodnota H Důvodem, který zmiňuje i Shannon v [1], je, že slovo jazyka vykazuje silnější vnitřní strukturu než uspořádaná 6tice písmen, což vyústí v menší entropii bloku písmen poskládaného do slova, jakožto jazykové jednotky se silnou strukturou. Lze soudit, že entropie slova přísluší hodnotě přibližně H 7 či H 8. abeceda H 0 H 1 H 2 H 3 H w 42 p p Tabulka 2: Posloupnost podmíněných entropií Vidíme, že jsou v podstatě zanedbatelné rozdíly mezi abecedou obsahující mezeru a abecedou bez mezery. Pokud češtinu modelujeme 2-Markovským modelem písmen, pak je její entropie rovna přibližně 3.17 bitů na písmeno. Pokud přistoupíme k modelování pomocí N-Markovského řetězce slov (kde N není příliš velké), pak lze očekávat, že entropie bude menší než námi zjištěná hodnota 2.07 bitů na písmeno. Ze znalosti českého jazyka je zřejmé, že věrnějším odhadem bude N-Markovský řetězec slov, kde N není příliš velké. Proto definujeme-li redundanci českého jazyka procentuální poměr entropie na znak mezi nezávislým náhodným zdrojem a N-Markovským řetězcem slov, pak redundance bude přibližně 40%. Výsledky Entropie českého textu Zjistili jsme, že rozdíly v rychlosti entropie procesu nad abecedou obsahující mezeru a and abecedou bez mezery jsou zanedbatelné. Pokud češtinu modelujeme jako N-Markovkský řetězec 6

7 slov, kde N není příliš velké (jednotky), pak je rychlost entropie takového zdroje přibližně: Tabulky četnosti slov a písmen češtiny H(((X n ) n N )) = 2.07 bits/znak (13) Pro výpočet entropie bylo třeba zkonstruovat tabulky četností písmen, digramů, trigramů a četnosti slov. Tyto tabulky jsou součástí práce a uvolňujeme je pod licencí Creative Commons Attribution-NonComercial-ShareAlike 3.0 Unported. Prediktor textu 2-Markovský řetězec znaků Tento popis modeluje češtinu tak, že pravděpodobnost výskytu písmena je podmíněna dvěma předcházejícími. Tento popis přirozeně neposkytuje kvalitní predikci celých slov, avšak slouží dobře na predikci předložek, spojek či obecně kratších stavebních prvků češtiny. Následuje ukázka textu, který takový prediktor dokáže vygenerovat: jed_doostval_st_ja_př_sesi_e_dvalka řejake_sen měo_so_spro a_pjede_v_mustoabyto_a_pe_mne_přie_z_prby_ku_a_d_pako mijí_ ohou_pby_i_skte_žeale_stle_ný_kola_dbyl_veprol_nter_v_e_m_mu 2-Markovský řetězec slov Podobně jako se znaky můžeme zacházet i se slovy. Za pomocí předchozí analýzy jsme byli schopni zkonstruovat prediktor, který maximalizuje pravděpodobnost podmíněnou dvěma předchozími slovy. Jeho výstup pro představu je možné vidět zde: jednoho_dne_se_vrátí_do_své_kanceláře_a_zavřel_oči_a_pak_se_ otočil_a_zamířil_k_němu_a_řekl_jsem_a_on_se_na_něj_a_jeho_hlas _zněl_trochu_drsně_díky_žaludečním_šťávám_a_projít_se_po_něm Komunikační predikční kanál Ve své práci [1] Shannon popsal model komunikačního kanálu založeného na umístění identických prediktorů na vstupu a výstupu. Tento kanál přenáší prázdné kódové slovo, pokud prediktor správně na první pokus určí slovo na vstupu. Toto rozhodování provádí na základě znalosti předchozích znaků zprávy. Pokud se nepodaří správně určit znak napoprvé, tak se pokračuje sestupně přes všechny pravděpodobnosti a odešle se číslo iterace, kdy nastala shoda. Za předpokladu identičnosti prediktorů je pak možno odeslanou zprávu bezchybně rekonstruovat. Prázdné kódové slovo, jenž indikuje správnou predikci, je příhodné kódovat nejkratším možným kódovým slovem (např. nulovým bitem). Ostatní přenášená kódová můžeme kódovat běžným způsobem (např. Huffmanovým kódem). original text reduced text original text comparison comparison predictor predictor Obrázek 4: Shannonův model komunikačního kanálu dle [1] Čím bude lepší predikce, tím méně bitů je třeba přenášet. V extrémních případech lze předpokládat, že z jednoho počátečního písmena budu schopen na druhém konci rekonstruovat celou 7

8 zprávu. Naše implementace využívá 2-Markovského řetězce slov vytvořeného z cca. 200 MB českého textu. Při větší velikosti dat jsme se již potýkali s výkonovými problémy. Lze předpokládat, že lepší implementací by bylo možné dosáhnout lepších výsledků. Naše implementace pracuje jen s celými slovy. Proto když predikce není vůbec možná (z nedostatku dat), tak se odešle celé slovo najednou. Jednou námi navrhovaných změn je začlenění 2-Markovského řetězce znaků do predikce. Pro ilustraci uvádíme zprávu včetně jejího přenosu naší implementací kanálu: vstup: ahoj_tondo_píšu_ti_protože_bych_se_rád_zeptal_jak_se_máš_jakpak_se_má_tvůj_kocour _už_jsem_ho_dlouho_neviděl poslaná zpráva: ahoj_tondo_píšu_ti 1 bych jakpak_se kocour_už_jsem výstup: ahoj_tondo_píšu_ti_protože_bych_se_rád_zeptal_jak_se_máš_jakpak_se_má_tvůj_kocour _už_jsem_ho_dlouho_neviděl Závěr Podařilo se nám ověřit předpoklad, že syntaxe českého jazyka vykazuje vnitřní strukturu, která redukuje jeho entropii. Rychlost entropie češtiny za předpokladu, že je modelována N-Markovským řetězcem slov, kde N je přiměřeně malé (jednotky) je menší než 2.07 bits/znak. Tato poměrně malá míra entropie implikuje větší předurčenost textu a tím jeho snadnější predikovatelnost. Se znalostí pravděpodobnostího rozdělení písmen a slov českého jazyka jsme byli schopni zkonstruovat komunikační kanál popsaný v [1]. Vzhledem k zajímavým výsledkům této práce věříme, že si problematika entropie textů zaslouží další zkoumání. Reference [1] SHANNON, C. E. Prediction and Entropy of Printed English [2] THOMAS M. COVER, JOY A. THOMAS, Elements of Information Theory. 2nd editon, 2006 [3] ZIPF, G. K., Human Behavior and the Principle of Least Effort, Addison-Wesley Press,

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Poznámky k předmětu Aplikovaná statistika, 11. téma

Poznámky k předmětu Aplikovaná statistika, 11. téma Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou

Více

Zadání druhého zápočtového projektu Základy algoritmizace, 2005

Zadání druhého zápočtového projektu Základy algoritmizace, 2005 Zadání druhého zápočtového projektu Základy algoritmizace, 2005 Jiří Dvorský 2 května 2006 Obecné pokyny Celkem je k dispozici 8 zadání příkladů Každý student obdrží jedno zadání Vzhledem k tomu, že odpadly

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.S... náhodná 10 bodů; průměr 7,04; řešilo 45 studentů a) Zkuste vlastními slovy popsat, co je to náhodná veličina a jaké má vlastnosti (postačí vlastními slovy objasnit následující pojmy: náhodná

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27.

Uvod Modely n-tic Vyhodnocov an ı Vyhlazov an ı a stahov an ı Rozˇ s ıˇ ren ı model u n-tic Jazykov e modelov an ı Pavel Smrˇ z 27. Jazykové modelování Pavel Smrž 27. listopadu 2006 Osnova 1 Úvod motivace, základní pojmy 2 Modely n-tic 3 Způsob vyhodnocování 4 Vyhlazování a stahování 5 Rozšíření modelů n-tic 6 Lingvisticky motivované

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Automatizační technika. Obsah

Automatizační technika. Obsah 7.09.016 Akademický rok 016/017 Připravil: Radim Farana Automatizační technika Základy teorie Obsah Informace Jednotka Zdroj Kód Přenosový řetězec Prostředky sběru, zobrazování, přenosu, zpracování a úschovy

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky Komprese dat Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Statistické metody Jan Outrata (Univerzita Palackého v Olomouci) Komprese dat Olomouc, únor březen 2016 1 / 23 Tunstallův

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

DOE (Design of Experiments)

DOE (Design of Experiments) DOE - DOE () DOE je experimentální strategie, při které najednou studujeme účinky několika faktorů, prostřednictvím jejich testování na různých úrovních. Charakteristika jakosti,y je veličina, pomocí které

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD

South Bohemia Mathematical Letters Volume 23, (2015), No. 1, DĚLENÍ KRUHU NA OBLASTI ÚVOD South Bohemia Mathematical Letters Volume 23, (2015), No. 1, 113-122. DĚLENÍ KRUHU NA OBLASTI MAREK VEJSADA ABSTRAKT. V textu se zabývám řešením následujícího problému: Zvolíme na kružnici určitý počet

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha I.E... Pechschnitte 12 bodů; (chybí statistiky) Padá krajíc namazanou stranou dolů? Zkoumejte experimentálně tento Murphyho zákon s důrazem na statistiku! Záleží na rozměrech krajíce, složení a typu

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

KMA Písemná část přijímací zkoušky - MFS 2o16

KMA Písemná část přijímací zkoušky - MFS 2o16 JMÉNO a PŘÍJMENÍ KMA Písemná část přijímací zkoušky - MFS 2o16 verze 1 / 28. 6. 2016 Pokyny k vypracování: Za každý správně vyřešený příklad lze získat 2 body. U zaškrtávacích otázek, je vždy správná právě

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

Příloha č. 3. Obchodních podmínek OTE, a.s. pro elektroenergetiku. Revize 19 srpen 2015

Příloha č. 3. Obchodních podmínek OTE, a.s. pro elektroenergetiku. Revize 19 srpen 2015 Příloha č. 3 Obchodních podmínek OTE, a.s. pro elektroenergetiku Revize 19 srpen 2015 ALGORITMUS VYHODNOCENÍ DENNÍHO TRHU Příloha č. 3 OPE OBSAH 1 POUŽITÉ POJMY... 3 2 ALGORITMUS VYHODNOCENÍ DENNÍHO TRHU...

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více