PŘÍSPĚVEK K TEORII SEGREGAČNÍCH JEVŮ PŘI KRYSTALIZACI KOVŮ A SLITIN. Lumír Kuchař, Jaromír Drápala

Rozměr: px
Začít zobrazení ze stránky:

Download "PŘÍSPĚVEK K TEORII SEGREGAČNÍCH JEVŮ PŘI KRYSTALIZACI KOVŮ A SLITIN. Lumír Kuchař, Jaromír Drápala"

Transkript

1 PŘÍSPĚVEK K TEORII SEGREGČNÍCH JEVŮ PŘI KRYSTLIZCI KOVŮ SLITIN Lumír Kuchař, Jaromír Drápala VŠB - TU Ostrava,17.listopadu, Ostrava - Poruba, ČR, Jaromir.Drapala@vsb.cz bstrakt Krystalizace z tavenin je proces přechodu látek ze stavu likvidu L (tavenina) do stavu solidu S (krystal), jehož studiem se metalurgie od nepaměti zabývá. Šířka intervalu tuhnutí T I, spolu s rozdělovacím koeficientem k o, který je mírou segregačních schopností příměsí B v základní látce při tuhnutí se rozhodujícím způsobem podílejí na vzniku segregačních nehomogenit. Jsou prezentovány teoretické předpoklady segregačních koeficientů v korelačních závislostech na protonových číslech příměsí B pro 50 základních látek. Jsou uvedeny příklady efektivního rozdělování příměsi v kovech a možnost predikce intervalu tuhnutí pro řadu vybraných kovů. CONTRIBUTION TO THE THEORY OF SEGREGTION PHENOMEN T METL ND LLOY CRYSTLLIZTION Crystallization from melts is a process of substance transition from the liquid state L (melt) into the solid state S (crystal) whose study has been the subject matter of metallurgy from time immemorial. The solidification interval width T I together with the distribution coefficient k o, which is the measure of segregation ability of admixtures B in basic material at solidification, participate in creation of segregation non-homogeneities in a decisive way. In the present paper theoretical assumptions of segregation coefficients in their correlation dependencies on the admixture B atomic number are presented for 50 basic substances. Furthermore, some examples of effective distributing of admixtures in metals and a possibility of the solidification interval prediction for a number of selected metals are presented. 1. ÚVOD Krystalizace z tavenin je proces přechodu kovů a slitin ze stavu likvidu L (tavenina) do stavu solidu S (krystal). K současným teoriím struktury tavenin patří monoatomární koncepce, jejíž strukturní jednotkou je atom, resp. molekula a polyatomární koncepce, jejíž strukturní jednotkou je seskupení atomů (shluky atomů, klastry). Polyatomární koncepce umožňuje např. výpočet koeficientu samodifuze prvků v tavenině, hodnoty viskozity taveniny, změny objemu (přenos hmoty) při fázové transformaci L-S apod. Z hlediska polyatomární koncepce o struktuře tavenin lze krystalizaci chápat jako přechod systému z jednoho rovnovážného stavu (shluky atomů) do stavu druhého (krystalická mřížka). 2. TERMODYNMICKÉ KINETICKÉ PODMÍNKY KRYSTLIZCE Obecně se procesy krystalizace zabývá klasická termodynamika. Molární volnou entalpii G lze termodynamicky určit pomocí Gibbsovy - Helmholtzovy rovnice G = H - T S (1) Při fázových přeměnách dochází ke skokovým změnám termodynamických veličin molární entalpie transformace H a molární entropie S při konstantní teplotě transformace 1

2 T. Tyto veličiny jsou materiálovými parametry pro každou individuální látku. Např. pro změnu skupenství likvidus - solidus (resp. solidus - likvidus) látky lze určit entropii tání ze vztahu S m m m H Sm = (J.mol -1 K -1 ) (2) T kde H m je molární entalpie tání látky (J.mol -1 ) T m je teplota tání látky (K). Podle Richardsonova pravidla má většina kovů přibližnou hodnotu S m 9,6 J.mol -1 K -1 a pro typické elementární polovodiče Si a Ge i další polovodičové sloučeniny ( III B V, II B VI ) S m 29 J.mol -1 K -1. Takové hodnoty entropie tání jsou významné pro začleňování atomů při tvorbě a stabilitě fázového rozhraní tavenina - krystal, a to jak při monoatomární - Jacksonově, tak při polyatomární - Těmkinově koncepci zabudovávání atomů na krystalizačním rozhraní. U polovodičů se díky vysoké hodnotě S m přednostně vytváří rovinné rozhraní, kdežto o kovů vzhledem k nižší energetické bariéře ( S m ) přednostně zvrásněné rozhraní, což dále souvisí s vysokou koncentrací poruch v krystalech kovů a slitin. Pro procesy krystalizace jsou podmínky rovnováhy při teplotě změny skupenství dány rovností Gibbsových izobaricko - izotermických potenciálů pro taveninu G L a tuhou fázi G S. Změna volné entalpie G V = G L - G S při přechodu taveniny do tuhé fáze je hnací silou, která určuje směr změny skupenství. Výše zmíněné základní termodynamické podmínky změny skupenství však nejsou dostačující, protože o vlastním počátku fázových přeměn rozhodují kinetické faktory: - T, teplotní přechlazení, které představuje podkročení rovnovážné teploty likvidu T L o hodnotu T = T m - T pro čisté látky, resp. o hodnotu T = T L - T pro slitiny - C, koncentrační přesycení, což je u slitin odchylka koncentrace C v tavenině od rovnovážné koncentrace C L, tedy C = C L - C, což obecně znázorňují různé typy binárních diagramů slitin - B. Kinetika procesu krystalizace sestává ze tří na sobě nezávislých dějů: - nukleace, tj. vznik krystalizačních zárodků (homogenní či heterogenní nukleace) - proudění v tavenině, např. laminární, turbulentní (Reynoldsovo kritérium), vztlaková konvekce (Rayleighovo kritérium), termokapilární (Marangoniho číslo), nucené proudění (rotační), gravitační (Prandtlovo kritérium) apod. - růst krystalů, tj. rychlost přemísťování různých typů fázového rozhraní krystal - tavenina (rovinné, buněčné, dendritické, kašovité) v závislosti na teplotních a koncentračních gradientech v souladu s Chalmersovou teorií koncentračního přechlazení a Tillerovými podmínkami pro růst rovinného rozhraní. Každý z těchto dějů je souhrnem několika dílčích dějů, z nichž nejpomalejší limituje rychlost celého hlavního děje. Tak nukleace v sobě zahrnuje jak shromažďování přítomných druhů atomů difuzními nebo jinými pohyby (v likvidu), tak jejich vzájemné vnitřní uspořádání odpovídající nové fázi (solidu) na krystalizační frontě. Růst krystalů zahrnuje transport atomů starou fází (tavenina), jejich přeskok k různým typům fázových rozhraní, pro které platí kinetika stability rozhraní i transport atomů novou fází (solidus). Při tom je transportována jak vlastní hmota krystalizující látky s hmotnostními, koncentračními a difuzními změnami, tak energie (entalpie tání), která se při krystalizaci na rozhraní uvolňuje a musí být odvedena. Převážná většina těchto dílčích jevů je tepelně aktivovaným procesem, což znamená, že energetické bariéry jsou překonávány tepelným pohybem aktivovaných atomů nebo jejich skupin. 2

3 Pro plynulý růst krystalů je nutno zabezpečit stálý odvod skupenského tepla, což však je možné pouze při určitém teplotním gradientu G L (K.cm -1 ) v oblasti přiléhající rozhraní likvidus - solidus, při kterém současně probíhá pohyb tohoto rozhraní. Z tohoto pohledu mohou na rozhraní vznikat dva typy odvodu tepla, které zásadně ovlivňují proces krystalizace: - Teplo je odváděno pouze tuhou fází, teplotní gradient G L 0. Při pomalé rychlosti růstu tavenina tuhne na planparalelním - rovinném - rozhraní a probíhá na něm usměrněná krystalizace. Reálný koncentrační gradient G R je strmý. - Krystalizační teplo je odváděno do taveniny, v tavenině je malý teplotní gradient (G L < 0). V blízkosti fázového rozhraní vzniká oblast zené taveniny. Reálný koncentrační gradient G R je plochý až negativní. Tento jev se podle Chalmerse nazývá koncentrační přechlazení. Zohlednění transportních poměrů v likvidu má pro rozdělování příměsí při tuhnutí fundamentální význam. Transport hmoty se při tom děje konvekcí nebo difuzí, obecně však působí oba faktory současně. ť už je proudění v tavenině laminární nebo turbulentní, existuje na rozhraní krystal - tavenina oblast, ve které je rychlost proudění velmi malá. Tato oblast se nazývá difuzní vrstva δ (cm) a její tloušťka se pohybuje od 10 µm (při rovinném rozhraní) do 1 až 10 mm (při dendritickém rozhraní). V souladu s Burton - Prim - Slichterovým vztahem mezi rovnovážným k o a efektivním rozdělovacím koeficientem závisí k ef na rychlosti pohybu taveniny vně difuzní vrstvy, koeficientu difuze příměsi v tavenině D L, viskozitě taveniny a méně na rychlosti růstu krystalu. Je třeba si uvědomit, že na každém rozhraní i v tzv. sublaminární difuzní vrstvičce δ dochází k výrazné skokové změně v hodnotách D L a D S - viz obr. 1. Hodnota koeficientu difuze v tavenině bývá často neznámá. Pro kovové taveniny leží mezi hodnotami D L 10-3 až 10-5 cm 2.s -1 oproti značně nižším hodnotám difuze D S v tuhé fázi, kde bývá zpravidla o tři až čtyři řády nižší D S 10-6 až 10-8 cm 2.s -1 při teplotách pod likvidem. Změna koeficientu difuze v pevném stavu je stroze teplotně závislá podle rheniova vztahu. Při zjednodušeném odvození Pfannovy (Scheilovy) rovnice pro směrovou krystalizaci a zonální tavení se proto difuze v solidu zanedbává. Rozsah dendritických koncentračních mikronehomogenit (na krátkou vzdálenost) existujících v tuhém stavu lze dlouhodobým difuzním žíháním pod teplotou solidu nejen podstatně snížit, ale i odžíhat. Poznamenáváme, že např. rozsah pásmových makronehomogenit (na dlouhou vzdálenost) v rámci objemu ingotu odžíhat nelze. Obr. 1. Skoková změna difuzních koeficientů D S a D L v sublaminární difuzní vrstvičce δ na rozhraní krystal - tavenina. Obr. 2. Schéma vztahů mezi koncentrací příměsí, teplotními gradienty a rychlostí tuhnutí a tvary růstových struktur (C o - koncentrace prvku ve slitině). 3

4 3. STBILIT FÁZOVÉHO ROZHRNÍ Při směrové krystalizaci musí být proces růstu řízen takovým způsobem, aby byl podporován růst jednoho zárodku a aby v krystalu vznikalo minimum chemických a strukturních nestejnorodostí (např. dislokací). bychom se vyhnuli vzniku dalších zárodků, nesmějí v blízkosti rozhraní vznikat větší oblasti zené taveniny. Chalmers charakterizuje vztahy při dendritické krystalizaci ve třech bodech: - dendrit vzniká pouze v přechlazené tavenině - směr růstu dendritů je vždy krystalograficky orientován - dendrity se rozvětvují v pravidelných intervalech. S vyšším stupněm uspořádanosti se rozvětvení snižuje. První kritérium se zdá být srozumitelné, protože růst krystalů probíhá v důsledku uvolňování skupenského tepla tání nutně nerovnovážně. Pro růst špiček dendritů je k tomu ještě nutno, aby přechlazení se stoupající vzdáleností od rozhraní tavenina - krystal směrem do taveniny přibývalo. Sklon k dendritickému růstu se pak zvyšuje, když rozdíl H mezi krystalizující taveninou a tuhou fází je kladný, zvyšuje se i se vzdáleností od fázového rozhraní. U čistých kovů může proto docházet k dendritickému tuhnutí jen tenkrát, když teplotní gradient G L na fázovém rozhraní je negativní. U slitin je možné, že dendritická morfologie růstu je utvářena i při pozitivním - plochém teplotním gradientu v tavenině. K tomu je však nutná koncentračně přesycená difuzní vrstva na krystalizační ploše rozhraní a s tím spojené koncentrační přechlazení. Údaje pro reálné přechlazení u technických slitin se pohybují v rozmezí od desetin do cca 15 K. Vyššího přechlazení lze dosáhnout např. intenzivním ochlazováním od stěny kokily (chladítky). K vysvětlení druhého kritéria lze uvést. Směr růstu dendritických os odpovídá u kovů přednostní orientaci, např. u hliníku KPC <100>, u δ-fe KSC <100>, u cínu tetragonální prostorově centrovaná mřížka <110>, u sněhu HTU < 1010 >, u Co 17 Sm 2 HTU <0001> aj. Vzhledem k rychlému růstu výrazně zakřivených ploch dendritických špiček, které jsou krystalograficky vysoce pravděpodobné, se při bočním růstu dendritů mohou vytvářet i různé krystalografické orientace. Třetí kritérium je technicky nejvýznamnější. Odchylky od rovinné fronty krystalizace závisí na koncentraci cizích příměsí, na rychlosti tuhnutí a na teplotních gradientech před frontou tuhnutí. Se stoupajícím přechlazením se morfologie krystalizačního rozhraní mění - obr. 2, kde C o je koncentrace příměsového prvku ve slitině. Podle Tillera lze mezní podmínku stability rovinného fázového rozhraní vyjádřit vztahem: G v L ml X LB D k ( 1 k) L (3) kde G L - teplotní gradient na křivce likvidu na frontě krystalizace ve směru do taveniny v - rychlost pohybu fronty tuhnutí (cm.s -1 ) m L - směrnice ke křivce likvidu při koncentraci X LB D L - difuzní koeficient příměsi v tavenině (cm 2.s -1 ) k - rozdělovací koeficient příměsi v základním kovu Vznik a velikost oblasti přechlazené taveniny způsobuje nestabilitu krystalizace a je u reálných slitin podmínkou vzniku rozvětvených struktur buněčného a dendritického typu - viz obr. 3: - Rovinný (hladký, planparalelní) povrch rozhraní se může vyskytovat pouze při krystalizaci velmi čistých kovů a při izotropní atomární kinetice růstu - obr. 3a. - Vrstevnatý (stupňovitý) povrch se objevuje při anizotropní atomární kinetice růstu, která se vyskytuje u kovů s rozdílnou polohou atomů v různých krystalografických směrech nebo za přítomnosti cizích atomů s přednostní absorpcí na některých rovinách krystalů. 4

5 - Buněčný (difuzní) povrch rozhraní vzniká při koncentračním přechlazení vyvolaném nahromaděním atomů cizích příměsí před čelem krystalizační fronty. Na fázovém rozhraní vznikají ojedinělé nepravidelné výstupky, které již při malém koncentračním přechlazení vedou ke vzniku buněk nepravidelného tvaru. Dalším zvětšením koncentračního přechlazení se na krystalizační frontě tvoří buňky pravidelného hexagonálního tvaru - obr. 3b. - Dendritický povrch fázového rozhraní vzniká při dostatečně vysokých koncentračních rozdílech v obsahu příměsí v krystalizující látce, při plochém teplotním gradientu. Na krystalizační frontě se objevují výstupky s přednostní orientací růstu a s malým poloměrem zakřivení, které pronikají jako dendritické buňky do taveniny - obr. 3c. Se zvyšujícím se koncentračním přechlazením vznikají sférické, rovnoosé a dlouhoosé dendrity - obr. 3d a kašovité dendrity dvoufázového pásma - obr. 3e. Mezi těmito výstupky rostoucích dendritických os do taveniny zůstává uzavřen poměrně značný podíl odmíšené matečné taveniny (segregát) obohacené o příměsi s k ef < 1. Kromě čelního růstu se uplatňuje i boční růst, při čemž dochází ke známému větvení dendritů prorůstajících taveninou. Nedojde-li k výraznějšímu bočnímu větvení, vznikají na rozhraní rostoucím proti směru odvodu tepla, tedy směrem od ochlazující stěny kokily do taveniny dlouhoosé kolumnární dendrity. T R a. rovinné rozhraní T TL b. hexagonální buňky c. dendritické buňky d. dendrity dlouhoosé, rovnoosé, globulitické e. kašovité dendrity dvoufázového pásma Obr. 3. Vztah velikosti koncentračního přechlazení (oblast mezi T R a T L ) k morfologii růstových struktur, T R - průběh reálné teploty v tavenině, T L - průběh rovnovážné teploty likvidu, x - vzdálenost od fázového rozhraní směrem do taveniny. Výsledkem buněčného, ale zejména dendritického růstu je vznik nehomogenit chemického složení, které jsou v metalurgii známy jako dendritická mikrosegregace. V 5

6 METL 2002 uzlových bodech hexagonálních buněk, stejně jako v mezidendritických prostorách se výrazně koncentrují příměsi s rozdělovacími koeficienty kef < 1. Příměsi s kef > 1 přednostně obohacují osy dendritů (příp. buněk). 4. SEGREGCE PŘI PRIMÁRNÍ KRYSTLIZCI Rozhodujícími faktory při primární krystalizace z tavenin jsou šířka intervalu tuhnutí TI a rozdělovací koeficient k, který je mírou segregační schopností každé jednotlivé příměsi B v základní látce. Oba se podílejí na všech běžných typech krystalizačních procesů, ale i výběrových procesů tuhnutí, a to jak při přípravě monokrystalů z tavenin, tak při rafinaci látek zonálním tavením i směrovou krystalizací. Obr. 4. Definice intervalu tuhnutí. Obr. 5. Charakter dendritických os, lokálních distribučních křivek a ploch dendritů. Dendrit z hlavy ingotu nízkolegované oceli. Šířka intervalu tuhnutí TI = TL - TS, tj. teplotní rozdíl mezi likvidem TL a solidem TS pro dané složení XB tuhého roztoku α a svědčí o tom, že při každé teplotě v tomto intervalu existuje dvoufázová krystalizační oblast v termodynamické rovnováze s odlišným chemickým složením v rozsahu XB min až XB max (obr. 4). Čím širší je tento interval tuhnutí, tím větší bude chemická a strukturní nehomogenita daného tuhého roztoku α. Čisté kovy, eutektické směsi, řada chemických sloučenin i vybraných intermetalických fází tuhnou při konstantní teplotě Tm, resp TE a pod. Slitiny typu tuhých roztoků tuhnou v určitém teplotním intervalu TI. Z hlediska šířky tohoto intervalu je lze rozdělit na: - slitiny s úzkým intervalem tuhnutí (mosazi, hliníkové bronzy, eutektické siluminy apod.) - slitiny se širokým intervalem tuhnutí (cínové, beryliové a olověně bronzy, podeutektické i nadeutektické siluminy, hliníkové slitiny typu l - Mg, l - Cu, zejména duraly l - Cu Mg, slitiny Mg - l - Zn, většina ocelí apod.). V intervalu tuhnutí se v závislosti na kinetice procesu formují velikost a vzdálenost primárních, sekundárních, terciárních i kvaternárních dendritických os, jejich chemická mikronestejnorodost - mikrosegregace a vznikají různé morfologické typy dendritů - obr. 5 až 8. Obr. 6. Podpovrchový dendrit v hliníku o čistotě 4N a usměrněné buňky. 6

7 Mezi typy mikrosegregace lze zařadit: Krystalová mikrosegregace v rámci jednotlivých krystalů (střed, povrch) Mikrosegregace v rámci jednotlivých růstových struktur, např. při buněčném růstu Dendritická mikrosegregace a) při různých tvarech dendritů v závislosti na velikosti přechlazení T- obr. 9a b) při různých typech dendritů - kolumnární - dlouhoosé, - rovnoosé, - globulitické, sférické - kašovité atp. a. b. Obr. 7a. utoradiogram rozložení 10-3 % radionuklidu 59 l Fe v l o čistotě 4N (k o Fe 0,03). Zvýšená koncentrace Fe je v mezidendritických prostorách (bílé plošky) dendritické i buněčné struktury. Obr. 7b. Podpovrchový dendrit v buněčné struktuře v hliníku o čistotě 4N. a. okraj vzorku - příčný řez b. střed vzorku - příčný řez Obr. 8. Mikrostruktura slitiny Fe31,5Ni1Si po elektronovém tavení s výrazně uspořádanou orientací ve směru postupu krystalizační fronty, matrice (světlá fáze) - 30,6 % Ni, 1,6 % Si, dendritické útvary (tmavá fáze) - 28 % Ni, 1 % Si, zvětšení 100x. V mezidendritických prostorách dochází v důsledku selektivity tuhnutí k hromadění (k < 1) nebo ochuzování (k > 1) matečné taveniny (segregátu) ke vzniku koncentračních gradientů, 7

8 známých jako dendritická segregace, které jsou v tuhém stavu měřitelné jako lokální distribuční křivky. Segregát je obohacená nebo ochuzená matečná tavenina s rozdílným chemickým složením lišícím se od složení lokálních distribučních křivek. Při krystalizaci se segregát v důsledku kapilárních sil či v důsledku smršťovacích pnutí filtrací pohybuje v mezidendritických nebo vnitrodendritických pórech - viz obr. 9b v rozmezí nikoliv jednoho, ale mnoha dendritů. Při tom vytváří v celém objemu ingotu chemické makronehomogenity - makrosegregace. Podchlazení T ι T krit 2 Obr. 9a. Tvary dendritů v závislosti na velikosti přechlazení T. Obr. 9b. Schéma pohybu segregátu a. v mezidendritických pórech (1), b. vnitrodendritických pórech (2) uzavřené ostrůvky taveniny. Makronehomogenity vznikají většinou jako sekundární jevy v makroobjemu ingotu, které navazují na prvotní selektivní rozdělovací schopnost příměsí a nečistot. V důsledku přenosu hmoty dochází v průběhu krystalizace ke změnám objemu. Zmenšováním objemu vznikají soustředěné staženiny - lunkry a smršťovací porezity u většiny kovů a slitin jako důsledek nižší hustoty taveniny oproti krystalu. Ke zvětšování objemu krystalu dochází např. u polovodičů nebo na rozhraní voda - led. Nejběžnějším typem makrosegregace je pásmová segregace. Přímá pásmová segregace vzniká v ingotu proti směru odvodu tepla směrem ke středu ingotu. Nepřímá neboli obrácená pásmová segregace vzniká přemísťováním segregátu ve směru odvodu tepla k povrchu ingotu. Mezi typy makrosegregace lze zařadit: Segregace v důsledku přenosu tepla: - pásmová segregace pozitivní, přímá - pásmová segregace negativní, obrácená Segregace v důsledku gravitačních sil - vznik gravitačního kužele v patě ingotu - vyplouvání vměstků pod hlavu ingotu - působení ostředivých sil - mikrogravitace - růst krystalů v kosmu Lokální makrosegregace, vycezeniny - obr makrosegregace typu (směrem k hlavě ingotu) - makrosegregace typu V (středové segregace v důsledku smršťování) - bodová segregace, bublinové vycezeniny do dutin po reakčních plynech (CO 2, H 2, N 2 ) - mezerové vycezeniny, stvolové vycezeniny, kanálkové vycezeniny - povrchové vycezeniny, výpotky na povrchu ingotu při obrácené segregaci Obr. 10. Schéma vycezenin ve velkých ingotech. 8

9 Z výše uvedeného je patrné, že koncentrační profily jsou při různých typech makro- i mikrosegregací rozdílné. Rozsah pásmové segregace i makrovycezenin je při kontinuálním lití podstatně menší. 5. ROZDĚLOVCÍ KOEFICIENTY PŘI KRYSTLIZCI Koncentrační poměry v procesu tuhnutí slitin lze vyjádřit pomocí příslušných rovnovážných stavových diagramů. Existence teplotního rozdílu mezi likvidem a solidem - viz obr svědčí o tom, že při každé teplotě v tomto intervalu jsou v termodynamické rovnováze tuhá a tekutá fáze s odlišným chemickým složením. Za předpokladu, že příměs je rozpustná v tavenině i tuhé fázi, mění se v procesu tuhnutí nepřetržitě složení obou fází, při čemž rovnováhu mezi nimi představují křivky solidu a likvidu v binárních systémech - B nebo příslušné plochy v polykomponentních systémech. Mírou rozdělování příměsí mezi tuhou a tekutou fází je rovnovážný rozdělovací koeficient k o příměsi B v základní látce, definovaný jako izotermní poměr (T=T S =T L ) koncentrace příměsového prvku B v tuhé fázi X SB (solidu) a v kapalné fázi X LB (likvidu): k o = X SB / X LB (T = konst.) (4) kde koncentrace jsou udávány v mol. zlomcích, příp. vyjádřeny procentuálně. Rovnovážný rozdělovací koeficient nabývá hodnot menších než jedna (k o < 1), pro systémy, v nichž příměsový prvek B snižuje teplotu tání T m základní složky, viz obr. 11a. - eutektické soustavy. Pro systémy, u nichž příměsový prvek B zvyšuje teplotu tání, bude mít rozdělovací koeficient hodnotu větší než jedna (k o > 1) - obr. 11b. - peritektické typy binárních diagramů. Obr. 11. Definice rozdělovacího koeficientu k o a. příměs B snižuje teplotu tání látky (k o < 1) a. b. b. příměs B zvyšuje teplotu tání látky (k o > 1) Pro určení hodnot rovnovážných rozdělovacích koeficientů je nutno termodynamicky nebo matematicky vyjádřit průběh křivek solidu a likvidu. Pro tento účel byla na VŠB - TU Ostrava vypracována metodika, podle níž lze s dostatečnou přesností vyjádřit jejich funkční průběh polynomem druhého nebo vyššího stupně, a to zejména v oblasti přilehlé k základní složce v závislostech T S =f(x SB ), T L =f(x LB ) tak, aby odpovídaly realitě. Z toho vyplývá, že i rozdělovací koeficient k o je funkcí jak teploty, tak i složení. Rozdílná rozpustnost příměsí a nečistot v tavenině a krystalu vede v souvislosti s přenosovými jevy k přerozdělování prvků příměsí a nečistot B v matrici. Tím vznikají při každé primární krystalizaci různé segregační mikro- i makronehomogenity, které negativně ovlivňují vlastnosti tuhých látek. Nestačí se však zabývat rozdělovací schopností několika vybraných příměsí přítomných v segregátu (v ocelářské praxi např. příměsemi S, P, C, Si, Mn, Cr, Ni, Ti, V, Mo, W aj.). Z hlediska možné přítomnosti všech příměsových prvků a nečistot B podle Mendělejevovy tabulky prvků v základní látce je nutno komplexně prověřit všechny dosud známé binární diagramy - B a stanovit příslušné hodnoty k o. 9

10 Rozdělovací koeficient představuje celý komplex vlastností příměsového prvku, které se projevují při jeho začleňování do mřížky základní látky. Nejvýznamnější funkcí hodnot k o je periodická korelační závislost rozdělovacích koeficientů příměsí v základní látce na protonovém čísle příměsí. Takto autory sestavené korelační závislosti pro 50 základních prvků jsou původním přínosem k teorii segregace. Na VŠB - TU Ostrava byla vytvořena databáze studovaných binárních systémů, která obsahuje v současné době informace o více než 1200 binárních systémech a je u autorů k dispozici. Periodické korelační závislosti rovnovážných rozdělovacích koeficientů příměsí v základních kovech na protonovém čísle příměsí obecně umožňují: - stanovení neznámých hodnot k o a předpověď rozdělování příměsí jak při výběrových, tak při obecných krystalizačních procesech, - peredikci vhodnosti provádění zonálního tavení či směrové krystalizace pro přípravu vysoce čistých látek, - výběr vhodných vstupních materiálů pro tyto procesy, - předem hodnotit dosažitelný stupeň rafinace, - objektivní řízení krystalizačních procesů v rafinační metalurgii, - řízené mikrolegování a dotování příměsí při pěstování monokrystalů i z technických slitin, u nichž tím zvyšují fyzikálně metalurgické vlastnosti, - výpočet koncentračního přechlazení v tuhnoucích materiálech na rozhraní krystal - tavenina a tím prognózu růstových struktur, - předpověď základních typů binárních diagramů, - prognózu rozdělovací schopnosti a obohacování cizích příměsí s k o > 1 v osách dendritů, hromadění příměsí s k o < 1 v mezidendritických prostorách, v matečné tavenině při dendritické segregaci, která téměř vždy provází reálné tuhnutí látek, - výpočet snížení či zvýšení teploty tání základní složky při dané koncentraci příměsi, - stanovení šířky intervalu krystalizace, který je nutno znát pro řízení výrobních procesů technických slitin při klasickém nebo nepřetržitém lití. Výše definovaný rozdělovací koeficient k o představuje hlavní materiálový parametr pro rafinaci látek krystalizačními procesy, jakými jsou zonální tavení a směrová krystalizace jako výběrové krystalizační procesy, při nichž dochází k pásmové makrosegregaci v rámci celého objemu krystalizující látky. Vzdálenost x, na které dochází ke vzniku koncentračních profilů, je při makrosegregaci několik desítek centimetrů. Při dendritické mikrosegregaci je vzdálenost x omezena délkami jednotlivých dendritických os. Pro oba typy platí následující rovnice. Pro směrovou krystalizaci uvádí Pfann vztah mezi rozdělovacím koeficientem, množstvím utuhlé látky a koncentrací příměsí v krystalu ve tvaru: C(x) = C o k (1 - g) k-1 (5) kde C(x) - koncentrace příměsi v krystalu v místě x C o - výchozí koncentrace příměsi v celém objemu taveniny k - rozdělovací koeficient prvku B v základní látce g - poměrná část utuhlého krystalu (g = x/l o ) L o - celková délka ingotku x - vzdálenost od počátku ingotku a při zonálním tavení platí pro první průchod zóny vzorkem rovnice ve tvaru: kx C = ( ) b 1 ( x) C o 1 1 k exp (6) kde b - šířka roztavené zóny 10

11 Směrová krystalizace je jednorázový proces. Při zonálním tavení dochází k n-násobnému průchodu jen úzké roztavené zóny ingotkem. Opakování zonálního tavení se provádí s cílem zvýšení stupně rafinace látky, až se v počáteční části ingotku (viz obr. 12) dosáhne zvýšení čistoty (~ k n.c o ) i o několik řádů. Po té se ingotek obvykle sekcionuje. Z porovnání koncentračních profilů - viz obr. 12 po jednom průchodu tavení ingotkem (příměs s k<1) vyplývá vyšší účinnost jednorázového procesu směrové krystalizace. Obr. 12. Porovnání koncentračních profilů po jednom průchodu tavení ingotkem pro příměs s k < 1. SK - směrová krystalizace ZT - zonální tavení (po n průchodech zóny lze dosáhnout vyššího rafinačního efektu) V těchto rovnicích je nutno v praxi pro vyhodnocování koncentračních profilů použít efektivní rozdělovací koeficient k ef podle Burton - Prim - Slichterovy rovnice: k ef = k o + vδ ρ. S D ( ) L ρ 1 k exp L o k o (7) kde v makroskopická rychlost pohybu fázového rozhraní (cm.s -1 ) δ tloušťka sublaminární difuzní vrstvy (cm) D L difuzní koeficient příměsi v tavenině (cm 2.s -1 ) ρ S, ρ L - hustoty solidu a likvidu (kg.m -3 ) 7. ZÁVĚR Byly diskutovány podmínky a faktory, které se rozhodujícím způsobem podílejí na vzniku segregačních mikro- a makronehomogenit v krystalizujících útvarech. Jsou diskutovány příklady efektivního rozdělování příměsí v kovech v souvislosti s různou morfologií fázového rozhraní krystal - tavenina. Hlavním materiálovým parametrem rozdělování příměsí mezi tekutou a tuhou fází je rozdělovací koeficient k. Jako původní přínos autorů k segregačním jevům lze považovat periodickou korelační závislost rozdělovacích koeficientů příměsí v základních kovech na protonovém čísle příměsi včetně jejich praktického významu. Tato práce byla řešena s finanční podporou GČR v rámci vědecko výzkumného projektu No. 106/99/0905 Interakce prvků ve složených kovových systémech za vysokých teplot. POUŽITÁ LITERTUR: [1] KUCHŘ, L. a DRÁPL, J. Metalurgie čistých kovů. Nadace R. Kammela, Košice, 2000, 185 s. [2] KUCHŘ, L. Metalurgie čistých kovů. Část 1. Krystalizační procesy. Skripta VŠB Ostrava, 2. vyd., 1992, 338 s. 11

12 [3] BRTHEL, J., BUHRIG, E., HEIN, K. und KUCHŘ, L. Kristallisation aus Schmelzen. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1983, 344 s.; Spravočnik Kristallizacija iz rasplavov. Metallurgija, 1987, 319 s. [4] PFNN, W.G. Zone melting, New York, London, 1958, 366 s. Pásmové tavení. SNTL Praha, 1963, 233 s. [5] Massalski, T.B. Binary lloy Phase Diagrams. SM Metals Park, Ohio, second Ed., 1987, third Ed. 1993, 2224 p. [6] ŠMRH, L.Tuhnutí a krystalizace ocelových ingotů. SNTL Praha, 1983, 305 s., [7] CHVORINOV, N. Krystalizace a nestejnorodost oceli. Nakl. ČSV Praha, 1954, 381 s. [8] FEUERBCHER, B., HMCHER, H. and NUMNN, R.J. Materials Sciences in Space. Springer-Verlag, Berlin, 1986, 480 s. [9] SCHWERDTTFEGER, K. Metallurgie des Stranggießens. Verlag Stahleisen, Düsseldorf, 1992, 656 s. [10] GRÍGEROVÁ, T., LUKÁČ, I. a KOŘENÝ, R. Zlievarenstvo neželezných kovov. lfa Bratislava, 1998, 421 s. [11] CHLMERS, B. Physical metallurgy. New York, London. Překlad do ruštiny, Moskva, Metallurgija, 1963, 455 s. [12] BURTON, J.., PRIM, R.C. and SLICHTER, W.R. Journ. Chem. Phys., 1953, 21, p [13] TILLER, W.. and RUTTER, J.W. Canad. Journ. Phys., 1956, 34, p. 96. [14] KUCHŘ, L. a DRÁPL, J. Experimentální stanovení rozdělovacích koeficientů příměsí v kovech. Kovové materiály, 2001, vol. 39, no. 1, s [15] DRÁPL, J., KUCHŘ, L. and BURCHNOV, G.S.: Distribution coefficients of impurities in metals: Periodic dependence on the atomic number of impurity. Inorganic Materials, 1998, vol. 34, no. 2, pp [16] KUCHŘ, L., DRÁPL, J. a KUCHŘ, L. jr. Rozdělování příměsí ve slitinách hliníku a výpočet intervalu tuhnutí. Transaction of the Universities of Košice, 1999, no. 3, s [17] DRÁPL, J. a KUCHŘ, L. Křivky solidu a likvidu a rozdělovací koeficienty příměsí v železe a predikce intervalu tuhnutí v nízkolegovaných ocelích. Hutnické listy, 2000, no. 4-7, s [18] DRÁPL, J. a KUCHŘ, L. K voprosu ob opredělenii koefficientov raspredělenija priměsej v metallach pri zonnoj plavke. Metally, 2001, no.1, s [19] DRÁPL, J. a KUCHŘ, L. Stanovení efektivních rozdělovacích koeficientů příměsí při zonální rafinaci. In Metal , Ostrava, Tanger, s.r.o., Ostrava, Sborník abstraktů, s. 86 a text na CD ROM (7 s.). 12

KONCENTRAČNÍ A TEPLOTNÍ ZÁVISLOSTI ROZDĚLOVACÍCH KOEFICIENTŮ. Lumír Kuchař, Jaromír Drápala

KONCENTRAČNÍ A TEPLOTNÍ ZÁVISLOSTI ROZDĚLOVACÍCH KOEFICIENTŮ. Lumír Kuchař, Jaromír Drápala KONCENTRČNÍ TEPLOTNÍ ZÁVISLOSTI ROZDĚLOVCÍCH KOEFICIENTŮ Lumír Kuchař, Jaromír Drápala Vysoká škola báňská - Technická Univerzita,708 33 Ostrava, E-mail: Jaromir.Drapala@vsb.cz bstrakt Jsou předloženy

Více

SEGREGAČNÍ JEVY PŘI KRYSTALIZACI A JEJICH VLIV NA STRUKTURNÍ CHARAKTERISTIKY KRYSTALŮ

SEGREGAČNÍ JEVY PŘI KRYSTALIZACI A JEJICH VLIV NA STRUKTURNÍ CHARAKTERISTIKY KRYSTALŮ SEGREGAČNÍ JEVY PŘI KRYSAIZACI A JEJICH VIV NA SRUKURNÍ CHARAKERISIKY KRYSAŮ. Kuchař, J. Drápala, Vysoká škola báňská - U Ostrava 1 Úvod Krystalizace z tavenin je proces přechodu látek ze stavu likvidu

Více

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací

Více

INTERAKCE PRVKŮ V TERNÁRNÍM SYSTÉMU WOLFRAM - MOLYBDEN - RHENIUM INTERACTIONS OF ELEMENTS IN THE TERNARY SYSTEM TUNGSTEN- MOLYBDENUM-RHENIUM

INTERAKCE PRVKŮ V TERNÁRNÍM SYSTÉMU WOLFRAM - MOLYBDEN - RHENIUM INTERACTIONS OF ELEMENTS IN THE TERNARY SYSTEM TUNGSTEN- MOLYBDENUM-RHENIUM INTERAKCE PRVKŮ V TERNÁRNÍM YTÉMU OFRAM - MOYBDEN - RHENIUM INTERACTION OF EEMENT IN THE TERNARY YTEM TUNGTEN- MOYBDENUM-RHENIUM Kateřina Bujnošková, Jaromír Drápala VŠB Technická Univerzita Ostrava, 7.listopadu

Více

FÁZOVÉ DIAGRAMY A JEJICH VÝZNAM PŘI KRYSTALIZACI

FÁZOVÉ DIAGRAMY A JEJICH VÝZNAM PŘI KRYSTALIZACI FÁZOVÉ DIAGRAMY A JEJICH VÝZNAM PŘI KRYSTALIZACI Lumír KUCHAŘ, Jaromír DRÁPALA, Vysoká škola báňská - TU Ostrava 1 Úvod V současné technice se užívá velké množství nejrůznějších kovových i nekovových materiálů,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor

Více

STANOVENÍ EFEKTIVNÍCH ROZDĚLOVACÍCH KOEFICIENTŮ PŘÍMĚSÍ PŘI ZONÁLNÍ RAFINACI. Vysoká škola báňská Technická univerzita Ostrava, 708 33 Ostrava 4, ČR

STANOVENÍ EFEKTIVNÍCH ROZDĚLOVACÍCH KOEFICIENTŮ PŘÍMĚSÍ PŘI ZONÁLNÍ RAFINACI. Vysoká škola báňská Technická univerzita Ostrava, 708 33 Ostrava 4, ČR STANOVENÍ EFEKTIVNÍCH ROZDĚLOVACÍCH KOEFICIENTŮ PŘÍMĚSÍ PŘI ZONÁLNÍ RAFINACI Jaromír Drápala, Lumír Kuchař Vysoká škola báňská Technická univerzita Ostrava, 708 33 Ostrava 4, ČR Abstrakt EVALUATION OF

Více

K ROZDĚLOVÁNÍ SKANDIA V HLINÍKU. Vysoká škola báňská - TU Ostrava, 708 33 Ostrava, ČR. Lumír Kuchař, Jaromír Drápala

K ROZDĚLOVÁNÍ SKANDIA V HLINÍKU. Vysoká škola báňská - TU Ostrava, 708 33 Ostrava, ČR. Lumír Kuchař, Jaromír Drápala K ROZDĚLOVÁNÍ SKANDIA V HLINÍKU Lumír Kuchař, Jaromír Drápala Vysoká škola báňská - TU Ostrava, 708 33 Ostrava, ČR Abstrakt Distribution of Scandium in Aluminium Scandium is very frequently used as the

Více

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn

Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10

Více

STUDIUM MIKROSEGREGACNÍCH JEVU PRI DENDRITICKÉ KRYSTALIZACI SLITIN NEŽELEZNÝCH KOVU

STUDIUM MIKROSEGREGACNÍCH JEVU PRI DENDRITICKÉ KRYSTALIZACI SLITIN NEŽELEZNÝCH KOVU STUDIUM MIKROSEGREGACNÍCH JEVU PRI DENDRITICKÉ KRYSTALIZACI SLITIN NEŽELEZNÝCH KOVU MICRO-SEGREGATION PHENOMENA AT THE DENDRITIC CRYSTALLIZATION IN ALLOYS OF NON-FERROUS METALS Jaromír Drápala a Petr Václavík

Více

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin 2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách

Více

BINÁRNÍ SYSTÉMY HORCÍK PRÍMES A ROZDELOVACÍ KOEFICIENTY PRÍMESÍ V HORCÍKOVÝCH SLITINÁCH. Lumír Kuchar, Jaromír Drápala, Kamil Krybus

BINÁRNÍ SYSTÉMY HORCÍK PRÍMES A ROZDELOVACÍ KOEFICIENTY PRÍMESÍ V HORCÍKOVÝCH SLITINÁCH. Lumír Kuchar, Jaromír Drápala, Kamil Krybus BINÁRNÍ SYSTÉMY HORCÍK PRÍMES A ROZDELOVACÍ KOEFICIENTY PRÍMESÍ V HORCÍKOVÝCH SLITINÁCH Lumír Kuchar, Jaromír Drápala, Kamil Krybus Vysoká škola bánská - Technická Univerzita, katedra neželezných kovu,

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

TEORETICKÉ STUDIUM ROVNOVÁŽNÝCH DIAGRAMŮ BINÁRNÍCH SYSTÉMŮ MĚDI, STŘÍBRA, ZLATA A PALADIA

TEORETICKÉ STUDIUM ROVNOVÁŽNÝCH DIAGRAMŮ BINÁRNÍCH SYSTÉMŮ MĚDI, STŘÍBRA, ZLATA A PALADIA TEORETICKÉ STUDIUM ROVNOVÁŽNÝCH DIAGRAMŮ BINÁRNÍCH SYSTÉMŮ MĚDI, STŘÍBRA, ZLATA A PALADIA THEORETICAL STUDY OF EQUILIBRIUM PHASE DIAGRAMS OF COPPER, SILVER, GOLD AND PALLADIUM BINARY SYSTEMS Kozelvá Renata,

Více

HLINÍK A JEHO SLITINY

HLINÍK A JEHO SLITINY HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření

Více

TEORETICKÉ STUDIUM BINÁRNÍCH FÁZOVÝCH DIAGRAMŮ NÍZKOTAVITELNÝCH KOVŮ THEORETICAL STUDY OF BINARY PHASE DIAGRAMS OF LOW-FUSING METALS

TEORETICKÉ STUDIUM BINÁRNÍCH FÁZOVÝCH DIAGRAMŮ NÍZKOTAVITELNÝCH KOVŮ THEORETICAL STUDY OF BINARY PHASE DIAGRAMS OF LOW-FUSING METALS TEORETICKÉ STUDIUM BINÁRNÍCH FÁZOVÝCH DIAGRAMŮ NÍZKOTAVITELNÝCH KOVŮ THEORETICAL STUDY OF BINARY PHASE DIAGRAMS OF LOW-FUSING METALS Jaromír Drápala, Žaneta Urbanívá Vysoká šla báňská chnická Univerzita

Více

Fázové diagramy a krystalizace slitin

Fázové diagramy a krystalizace slitin Fázové diagramy a krystalizace slitin KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Základní pojmy Izotropní látka má ve všech krystalografických směrech stejné vlastnosti (plyn, kapalina). Anizotropní látka má v

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

PŘÍSPĚVEK K STANOVENÍ ROZDĚLOVACÍCH KOEFICIENTŮ V TERNÁRNÍCH SYSTÉMECH CONTRIBUTION TO DETERMINATION OF DISTRIBUTING COEFFICIENTS IN TERNARY SYSTEMS

PŘÍSPĚVEK K STANOVENÍ ROZDĚLOVACÍCH KOEFICIENTŮ V TERNÁRNÍCH SYSTÉMECH CONTRIBUTION TO DETERMINATION OF DISTRIBUTING COEFFICIENTS IN TERNARY SYSTEMS METL 2001 PŘÍSPĚVEK K STNOVENÍ ROZDĚLOVÍH KOEFIIENTŮ V TERNÁRNÍH SYSTÉMEH ONTRIUTION TO DETERMINTION OF DISTRIUTING OEFFIIENTS IN TERNRY SYSTEMS Jaromír Drápala a, Petr Pacholek a, Lumír Kuchař a, Igor

Více

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1

Více

METALOGRAFIE II. Oceli a litiny

METALOGRAFIE II. Oceli a litiny METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.

Více

VODIVOST x REZISTIVITA

VODIVOST x REZISTIVITA VODIVOST x REZISTIVITA Ohmův v zákon: z U = I.R = ρ.l.i / S napětí je přímo úměrné proudu, který vodičem prochází drát délky l a průřezu S, mezi jehož konci je napětí U ρ převrácená hodnota měrné ele.

Více

Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky.

Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky. Otázky ke zkoušce BUM LS 2006/07 Požaduji pouze tučně zvýrazněné otázky. 1. Stavba atomu a čísla charakterizující strukturu atomu 2. Valenční elektrony co to je, proč jsou důležité, maximální počet a proč

Více

MODELOVÁNÍ ROVNOVÁŽNÝCH PLOCH SOLIDU A LIKVIDU A STANOVENÍ ROVNOVÁŽNÝCH ROZDĚLOVACÍCH KOEFICIENTŮ RHENIA A MOLYBDENU V TERNÁRNÍM SYSTÉMU W-Mo-Re

MODELOVÁNÍ ROVNOVÁŽNÝCH PLOCH SOLIDU A LIKVIDU A STANOVENÍ ROVNOVÁŽNÝCH ROZDĚLOVACÍCH KOEFICIENTŮ RHENIA A MOLYBDENU V TERNÁRNÍM SYSTÉMU W-Mo-Re METAL 005 4.-6.5.005, Hradec nad Moravicí MODELOVÁNÍ ROVNOVÁŽNÝCH PLOCH SOLIDU A LIKVIDU A STANOVENÍ ROVNOVÁŽNÝCH ROZDĚLOVACÍCH KOEFICIENTŮ RHENIA A MOLYBDENU V TERNÁRNÍM SYSTÉMU W-Mo-Re MODELLING OF EQUILIBRIUM

Více

NĚKTERÉ ZKUŠENOSTI S MODIFIKACÍ SLITIN Mg. SOME OF OUR EXPERIENCE OF MODIFYING THE Mg ALLOYS. Luděk Ptáček, Ladislav Zemčík

NĚKTERÉ ZKUŠENOSTI S MODIFIKACÍ SLITIN Mg. SOME OF OUR EXPERIENCE OF MODIFYING THE Mg ALLOYS. Luděk Ptáček, Ladislav Zemčík NĚKTERÉ ZKUŠENOSTI S MODIFIKACÍ SLITIN Mg SOME OF OUR EXPERIENCE OF MODIFYING THE Mg ALLOYS Luděk Ptáček, Ladislav Zemčík Vysoké učení technické v Brně, Fakulta strojního inženýrství SUMMARY In our earlier

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

TEORETICKÉ ASPEKTY KRYSTALIZACE TERNÁRNÍCH SLITIN A CHARAKTER SEGREGAČNÍCH DĚJŮ PŘI ROVNOVÁŽNÉ A NEROVNOVÁŽNÉ KRYSTALIZACI

TEORETICKÉ ASPEKTY KRYSTALIZACE TERNÁRNÍCH SLITIN A CHARAKTER SEGREGAČNÍCH DĚJŮ PŘI ROVNOVÁŽNÉ A NEROVNOVÁŽNÉ KRYSTALIZACI Acta Metallurgica Slovaca, 13, 2007, 1 (76-84) 76 TEORETICKÉ ASPEKTY KRYSTALIZACE TERNÁRNÍCH SLITIN A CHARAKTER SEGREGAČNÍCH DĚJŮ PŘI ROVNOVÁŽNÉ A NEROVNOVÁŽNÉ KRYSTALIZACI Drápala J. 1, Morávková Z. 2,

Více

GRAFICKÉ ZNÁZORNĚNÍ NONVARIANTNÍCH FÁZOVÝCH PŘEMĚN V BINÁRNÍCH SLITINÁCH V PRŮBĚHU OCHLAZOVÁNÍ

GRAFICKÉ ZNÁZORNĚNÍ NONVARIANTNÍCH FÁZOVÝCH PŘEMĚN V BINÁRNÍCH SLITINÁCH V PRŮBĚHU OCHLAZOVÁNÍ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LIV 17 Číslo 1, 2006 GRAFICKÉ ZNÁZORNĚNÍ NONVARIANTNÍCH FÁZOVÝCH

Více

Metalografie ocelí a litin

Metalografie ocelí a litin Metalografie ocelí a litin Metalografie se zabývá pozorováním a zkoumáním vnitřní stavby neboli struktury kovů a slitin. Dále také stanoví, jak tato struktura souvisí s chemickým složením, teplotou a tepelným

Více

TECHNOLOGIE I (slévání a svařování)

TECHNOLOGIE I (slévání a svařování) TECHNOLOGIE I (slévání a svařování) Přednáška č. 3: Slévárenské slitiny pro výrobu odlitků, vlastnosti slévárenských slitin, faktory ovlivňující slévárenské vlastnosti, rovnovážné diagramy. Autoři přednášky:

Více

ŽELEZO A JEHO SLITINY

ŽELEZO A JEHO SLITINY ŽELEZO A JEHO SLITINY Ing. V. Kraus, CSc. Opakování z Nauky o materiálu 1 ČISTÉ ŽELEZO Atomové číslo 26 hmotnost 55,874 hustota 7,87 g.cm-3 vodivé, houževnaté, měkké A 50 %, Z 90 % pevnost 180 až 250 MPa,

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Krystalizace ocelí a litin

Krystalizace ocelí a litin Moderní technologie ve studiu aplikované fyziky reg. č.: CZ.1.07/2.2.00/07.0018. Krystalizace ocelí a litin Hana Šebestová,, Petr Schovánek Společná laboratoř optiky Univerzity Palackého a Fyzikáln lního

Více

Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces

Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces Precipitace Čisté kovy s ohledem na své mechanické parametry nemají většinou pro praktická použití vhodné užitné vlastnosti. Je proto snaha využít všech možností ke zlepší těchto parametrů, zejména pak

Více

STUDIUM FÁZOVÝCH ZMĚN V OCELI BĚHEM JEJÍHO TUHNUTÍ

STUDIUM FÁZOVÝCH ZMĚN V OCELI BĚHEM JEJÍHO TUHNUTÍ Vysoká škola báňská Technická univerzita Ostrava Fakulta materiálově-technologická STUDIUM FÁZOVÝCH ZMĚN V OCELI BĚHEM JEJÍHO TUHNUTÍ Disertační práce Ing. Michaela STROUHALOVÁ doktorandka kombinované

Více

Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje

Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Pavel Svoboda, Silvie Mašková Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných

Více

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN

KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN KRYSTALICKÁ STAVBA KOVOVÝCH SLITIN Krystalická stavba kovových slitin 1. MECHANICKÉ SMĚSI SI Mech. směs s dvou a více v fází f (složek) vzniká tehdy, jestliže e složky se vzájemn jemně nerozpouští ani

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Fe Fe 3 C. Metastabilní soustava

Fe Fe 3 C. Metastabilní soustava Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více

Základy termodynamiky a popisu rovnováh

Základy termodynamiky a popisu rovnováh Základy termodynamiky a popisu rovnováh Termodynamika Termodynamická soustava druhy, složky, fáze, fázové pravidlo Termodynamický stav rovnovážný, nerovnovážný; stabilní, metastabilní, nestabilní Termodynamický

Více

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ

Více

Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91.

Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Hubáčková Jiřina a), Čížek Lubomír a), Konečná Radomila b) a) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERSITA OSTRAVA, Fakulta

Více

Energie v chemických reakcích

Energie v chemických reakcích Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

PROVĚŘENÍ VLIVU SMĚROVÉ KRYSTALIZACE NA VLASTNOSTI Ni 3 Al. VŠB TU Ostrava, třída 17. listopadu, Ostrava Poruba

PROVĚŘENÍ VLIVU SMĚROVÉ KRYSTALIZACE NA VLASTNOSTI Ni 3 Al. VŠB TU Ostrava, třída 17. listopadu, Ostrava Poruba PROVĚŘENÍ VLIVU SMĚROVÉ KRYSTALIZACE NA VLASTNOSTI Ni 3 Al Jitka Malcharcziková Miroslav Kursa VŠB TU Ostrava, třída 17. listopadu, 78 33 Ostrava Poruba Abstract The paper concentrates on verification

Více

Krása fázových diagramů jak je sestrojit a číst Silvie Mašková

Krása fázových diagramů jak je sestrojit a číst Silvie Mašková Krása fázových diagramů jak je sestrojit a číst Silvie Mašková Katedra fyziky kondenzovaných látek Matematicko-fyzikální fakulta Univerzita Karlova Praha Pár základích pojmů na začátek Co jsou fázové diagramy?

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Rovnováha tuhá látka-kapalina

Rovnováha tuhá látka-kapalina Krystalizace kovů Rovnováha tuhá látka-kapalina Výpočty fázových rovnováh a základní typy fázových diagramů Způsoby přípravy a vlastnosti monokrystalů Whiskery a jejich pevnost Růst nové fáze, difúze,

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla

Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma fázemi První ucelená teorie respektující uvedenou skutečnost byla Teorie chromatografie - III Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 4.3.3 Teorie dynamická Při reálném chromatografickém ději nikdy nedojde k ustavení rovnováhy mezi oběma

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán

Více

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN 5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

Látkové množství n poznámky 6.A GVN

Látkové množství n poznámky 6.A GVN Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové

Více

MŘÍŽKY A VADY. Vnitřní stavba materiálu

MŘÍŽKY A VADY. Vnitřní stavba materiálu Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

Nultá věta termodynamická

Nultá věta termodynamická TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický

Více

ZONÁLNÍ TAVENÍ JAKO KRYSTALIZAČNÍ A RAFINAČNÍ METODA

ZONÁLNÍ TAVENÍ JAKO KRYSTALIZAČNÍ A RAFINAČNÍ METODA ZONÁLNÍ TAVENÍ JAKO KRYSTALIZAČNÍ A RAFINAČNÍ METODA Jaromír Drápala, Lumír Kuchař, Vysoká škola báňská - TU Ostrava 1 Úvod Zonální tavení patří mezi výběrové metody krystalizace. Metoda zonálního tavení

Více

PLYNOVÁ CHROMATOGRAFIE (GC)

PLYNOVÁ CHROMATOGRAFIE (GC) PLYNOVÁ CHROMATOGRAFIE (GC) Dělení látek mezi stacionární a mobilní fázi na základě rozdílů v těkavosti a struktuře (separované látky vykazují rozdílnou chromatografickou afinitu) Metoda vhodná pro látky:

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.

Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu. Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV

KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV KOROZE A TECHNOLOGIE POVRCHOVÝCH ÚPRAV Přednáška č. 04: Druhy koroze podle vzhledu Autor přednášky: Ing. Vladimír NOSEK Pracoviště: TUL FS, Katedra materiálu Koroze podle vzhledu (habitus koroze) 2 Přehled

Více

NOVÉ POZNATKY O STRUKTUŘE TVÁŘENÉ SLITINY AlSi12CuMgNi (AA 4032) Katedra náuky o materiáloch, Slovenská republika

NOVÉ POZNATKY O STRUKTUŘE TVÁŘENÉ SLITINY AlSi12CuMgNi (AA 4032) Katedra náuky o materiáloch, Slovenská republika 19/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 NOVÉ POZNATKY O STRUKTUŘE TVÁŘENÉ SLITINY AlSi12CuMgNi (AA

Více

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava

Více

1. Fázové rozhraní 1-1

1. Fázové rozhraní 1-1 1. Fázové rozhraní 1.1 Charakteristika fázového rozhraní Velmi často se setkáváme s řadou fyzikálních či chemických procesů, které probíhají na rozhraní mezi sousedícími objemovými fázemi (fáze - určitá

Více

Rovnováha Tepelná - T všude stejná

Rovnováha Tepelná - T všude stejná Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Zkouška u Foreta. Varianty 2. 4,30,64,100,108,116,134,150,153,163. Varianty 3. 20,21,51,100,113,119,126,136,149,160,171

Zkouška u Foreta. Varianty 2. 4,30,64,100,108,116,134,150,153,163. Varianty 3. 20,21,51,100,113,119,126,136,149,160,171 Zkouška u Foreta Dobrá rad uměj 80 % otázek, a pokud ti nejde o A nebo B, tak toho tam napiš tak přiměřeně když budeš chtít dobrou známku tak ti dá třeba odvodit pákové pravidlo přes rovnice :). Dalším

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Předmět: Vícefázové reaktory Jméno: Veronika Sedláková Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Předmět: Vícefázové reaktory Jméno: Veronika Sedláková 3-fázové reakce Autoklávy (diskontinuální) Trubkové reaktory (kontinuální) Probublávané

Více

MONOKRYSTALY NA BÁZI WOLFRAM - MOLYBDEN - RHENIUM

MONOKRYSTALY NA BÁZI WOLFRAM - MOLYBDEN - RHENIUM MONOKRYSTALY NA BÁZI WOLFRAM - MOLYBDEN - RHENIUM Kateřina Máchová a, Jaromír Drápala a, Gennadij Sergejevič Burchanov b a) VŠB-TU Ostrava, 17.listopadu 15, 708 33 Ostrava Poruba, ČR, Katerina.Machova.fmmi@vsb.cz,

Více

Fyzikální chemie Úvod do studia, základní pojmy

Fyzikální chemie Úvod do studia, základní pojmy Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty

Více

Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_14

Více

MODELOVÁNÍ TERNÁRNÍCH SYSTÉMŮ POMOCÍ PROGRAMU MATLAB NA PŘÍKLADU SLITINY Al-Cu-Si

MODELOVÁNÍ TERNÁRNÍCH SYSTÉMŮ POMOCÍ PROGRAMU MATLAB NA PŘÍKLADU SLITINY Al-Cu-Si MODELOVÁNÍ TERNÁRNÍCH SYSTÉMŮ POMOCÍ PROGRAMU MATLAB NA PŘÍKLADU SLITINY Al-Cu-Si MODELLING OF TERNARY SYSTEMS USING THE MATLAB COMPUTER PROGRAM (THE Al-Cu-Si ALLOYS AS AN EXAMPLE) Vojtěch Pešat, Jaromír

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

difúze běží ve směru záporného koncentračního gradientu. Dále vše pro jednoduchost jednorozměrně, samozřejmě platí i pro 3-D.

difúze běží ve směru záporného koncentračního gradientu. Dále vše pro jednoduchost jednorozměrně, samozřejmě platí i pro 3-D. Fázové transformace Difúze Hnací síla jako jinde - snížení celkové energie systému, zde obvykle zvýšením entropie (tj., dosažením pravděpodobnějšího rozdělení částic, tj., postupné vyrovnání koncentračních

Více

Vnitřní stavba pevných látek přednáška č.1

Vnitřní stavba pevných látek přednáška č.1 1 2 3 Nauka o materiálu I Vnitřní stavba pevných látek přednáška č.1 Ing. Daniela Odehnalová 4 Pevné látky - rozdělení NMI Z hlediska vnitřní stavby PL dělíme na: Krystalické všechny kovy za normální teploty

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

K CHEMICKÉ MIKROHETEROGENITĚ NIKLOVÉ SUPERSLITINY ON CHEMICAL MICROHETEROGENEITY OF A NICKEL SUPERALLOY

K CHEMICKÉ MIKROHETEROGENITĚ NIKLOVÉ SUPERSLITINY ON CHEMICAL MICROHETEROGENEITY OF A NICKEL SUPERALLOY K CHEMICKÉ MIKROHETEROGENITĚ NIKLOVÉ SUPERSLITINY ON CHEMICAL MICROHETEROGENEITY OF A NICKEL SUPERALLOY Jana Dobrovská a Věra Dobrovská a Karel Stránský b a VŠB-TU, 7.listopadu 5, 708 33 Ostrava - Poruba,

Více

Základy chemických technologií

Základy chemických technologií 4. Přednáška Mísení a míchání MÍCHÁNÍ patří mezi nejvíc používané operace v chemickém průmyslu ( resp. příbuzných oborech, potravinářský, výroba kosmetiky, farmaceutických přípravků, ) hlavní cíle: odstranění

Více

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop

Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru. Roman Snop Třífázové trubkové reaktory se zkrápěným ložem katalyzátoru Roman Snop Charakteristika Zkrápěné reaktory jsou nejvhodněji aplikovatelné na provoz heterogenně katalyzovaných reakcí. Nacházejí uplatnění

Více

Metody studia mechanických vlastností kovů

Metody studia mechanických vlastností kovů Metody studia mechanických vlastností kovů 1. Zkouška tahem Zkouška tahem při pomalém zatěžování a za tzv. okolní teploty (10 C 35 C) je zcela základní a nejběžněji prováděnou zkouškou mechanických vlastností

Více

Speciální analytické metody pro léčiva

Speciální analytické metody pro léčiva Speciální analytické metody pro léčiva doc. RNDr. Ing. Pavel Řezanka, Ph.D. E-mail: pavel.rezanka@vscht.cz Místnost: A234 Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 1 Harmonogram

Více

Osnova pro předmět Fyzikální chemie II magisterský kurz

Osnova pro předmět Fyzikální chemie II magisterský kurz Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství Teplotní vlastnosti Student: Ondřej Rozinek květen 2009 1 Teplotní vlastnosti Vlastnosti materiálu závisí na skupenství. Skupenství

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

TE1 slévání 1 /u12133

TE1 slévání 1 /u12133 TE1 slévání 1 /u12133 Ing. Aleš HERMAN, Ph.D. Obsah přednášek: 1. Teoretická příprava, fyzikální, chemické a další aspekty technologie slévání 2. Vybrané metody výroby forem a odlévání, slitiny neželezných

Více

Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení

Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení Stanovení křivky rozpustnosti fenol-voda 3. laboratorní cvičení Mgr. Sylvie Pavloková Letní semestr 2016/2017 Cíl pochopení základních principů fázové rovnováhy heterogenních soustav základní principy

Více

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti Cíl práce: Cílem laboratorní úlohy Elektrochemické metody stanovení korozní rychlosti je stanovení korozní rychlosti oceli v prostředí

Více