Matematická logika cvi ení 47

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematická logika cvi ení 47"

Transkript

1 Matematická logika cvi ení 47 Libor B hounek LS 2012/13, P F OU, Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky (a jejich pravdivostní hodnoty): 1. Knihovna je otev ená. 2. Úst ední knihovna MKO byla ve 14 hodin otev ená. 3. x > ! > je malé p irozené íslo. 6. Judea je hornatá. 7. Zítra vypukne námo ní bitva. 8. Ve vzdálenosti 45 miliard sv telných let existuje obydlená planeta. 9. Pro kaºdý systém neprázdných mnoºin existuje mnoºina mající jednoprvkový pr nik s kaºdou z nich. 10. Existuje nekone n mnoho prvo íselných dvoj at. 11. Existuje mnoºina reálných ísel, kterou nelze bijektivn zobrazit na mnoºinu v²ech p irozených ísel ani na mnoºinu v²ech reálných ísel. 12. Sou asný francouzský král je holohlavý. 13. S ítání innitesimáln malých veli in je komutativní. Cvi ení 2. Formalizujte následující výroky pomocí základních výrokových spojek. Pozorujte p ípadnou nejednozna nost formalizace a vyjasn te jejich pravdivostní podmínky: 1. Není pravda, ºe Jan není nezam stnaný. 2. Není horko ani zima. 3. Není ani ervený ani velký. Není ervený a velký. 4. Nenastává p ípad, ºe tekutina v e nebo mrzne. 5. Nem ºe být ervený a velký. Nem ºe být ervený a nem ºe být velký. 6. Je ervený nebo velký. Je bu ervený, nebo velký. 1

2 7. Sedím nebo pí²u. Sedím, nebo pí²u. 8. Jestliºe = 5, jsem papeº. Cvi ení 3. Posu te adekvátnost formalizace následujících výrok pomocí p íslu²ných výrokových spojek: 1. Není vysoký. Je nevysoký. Není nevysoký. 2. Vstal a upadl. Upadl a vstal. 3. Jana a Petra jely spolu na kole. Dámy a pánové se p ed tancem spárovali. Jablka a hru²ky byly promíchány. 4. Za stovku dostanu krabi ku Marlborek a za stovku dostanu krabi ku Camelek. Za stovku dostanu krabi ku Marlborek a krabi ku Camelek. 5. Nezabil jsem ji a nezabil jsem ji a nezabil jsem ji! 6. Jestliºe nezabil Kennedyho Oswald, zabil ho n kdo jiný. Kdyby nezabil Kennedyho Oswald, zabil by ho n kdo jiný. 7. Kdyby klokani nem li ocas, p epadávali by dop edu. 8. Pokud klesá po et pirát, dochází ke globálnímu oteplování. 9. New York je v USA, práv kdyº Titan je m sícem Saturnu. 10. Jestliºe 43 není d litelné 7, pak 43 je prvo íslo. Jestliºe 42 je d litelné 7, pak 43 je prvo islo. ƒislo 43 je prvo íslo, práv kdyº není d litelné 7. Cvi ení 4. Doloºte, ºe výroková spojka A nutn A není extenzionální: tj. najd te p íklady výrok : 1. nutn pravdivých, 2. pravdivých, ale nikoli nutn (tzv. kontingentn pravdivých), 3. nutn nepravdivých a 4. nepravdivých, ale nikoli nutn. (Jak z jejich existence plyne neextenzionalita?) Cvi ení 5. Nech atomický výrok p je pravdivý, q nepravdivý a r pravdivý. Vypo t te pravdivostní hodnotu výrok : 1. (p q) (r p) 2. p p 3. ((p q) q) p Cvi ení 6. Vypo ítejte pravdivostní tabulky formulí: 1. (p q) ( q r) 2. p p 3. (p q) (q p) Cvi ení 7. Porovnejte pravdivostní tabulky sloºených výrok (p q) r a p (q r), odpovídající dvojzna nému výroku p a q nebo r. Najd te matematický, p írodov decký nebo právní výrok, kde tato dvojzna nost hraje roli. Vymyslete jiné dvojzna nosti dané nevyzna ením závorek v p irozené e i a jejich (pokud moºno fatální) následky. 2

3 Cvi ení 8. Ov te, zda jsou výroky ve dvojici logicky ekvivalentní: 1. Jestliºe 5 je liché íslo, pak 5 2 je liché íslo. Jestliºe 5 2 není liché íslo, pak 5 není liché íslo. 2. Jestliºe 5 je liché íslo, pak 5 2 je liché íslo. ƒíslo 5 2 je liché, práv kdyº íslo 5 je liché. Cvi ení 9. Ov te v²echny logické ekvivalence z p edná²ky, tj.: 1. A A A A A A A A 2. A B B A 3. A B B A 4. (A B) C A (B C) 5. (A B) C A (B C) 6. A (B C) (A B) (A C) 7. A (B C) (A B) (A C) 8. (A B) A B 9. (A B) A B 10. A B A B (A B) 11. A B ( A B) (A B) 12. A B ( A B) A B 13. A B (A B) (B A) (A B) ( A B) 14. A? B : C (A B) ( A C) 15. A NAND B (A B) 16. A A A A (A A) A A 17. A A Cvi ení 10. Dokaºte, ºe následující mnoºiny spojek jsou funk n úplné: 1. {, } 2. {, } 3. {NAND} 4. {NOR} Cvi ení 11. Dokaºte, ºe následující mnoºiny spojek nejsou funk n úplné: 1. {, } 2. { } 3

4 Cvi ení 12. Najd te disjunktivní normální formu následujících formulí (úplnou, pokud existuje): 1. (p q) 2. (p q) (r s) (t u) Cvi ení 13. Najd te konjunktivní normální formu následující formule (úplnou, pokud existuje): 1. (p q) Cvi ení 14. Sestavte obvod z NAND-hradel (tj. sou ástek s dv ma vstupy x, y a jedním výstupem z = F NAND (x, y)), který dává vstupu s hodnotami p, q, r výstup daný pravdivostní funkcí formulí: 1. p q, p q, p, p q, p q 2. Ud lejte totéº z NOR-hradel. (Vyuºijte výsledky cvi ení et ete hradla uvaºte, ºe výstup lze kopírovat.) Cvi ení 15. Sestavte z NAND-hradel obvod, který se te dv dvouciferná dvojková ísla. Cvi ení 16. Ov te tautologi nost tautologií z p edná²ky, tj.: 1. ((p q) p) p 2. A A 3. (A A) 4. A (A B) 5. (A A) B 6. A (B A) 7. (A B) (B A) Cvi ení 17. Rozhodn te tautologi nost následujících formulí. Uvaºte, která z metod rozhodování tautologi nosti probíraných na p edná²ce (pravdivostní tabulka, p evod na logicky ekvivalentní známou tautologii, zkrácené prohledávání pravdivostní tabulky i analytická tabla) je v daném p ípad nejrychlej²í. 1. (p q) (q r) 2. (p q) q 3. (p p) p 4. (p p) p 5. ((p q) q) p 6. (((p q) r) & ((q p) r)) r 4

5 7. ((p q) r) (p (q r)) 8. ((p q r) (s t)) ( p ( r q)) (s t) (t s) Cvi ení 18. Uvaºujme restrikci klasické výrokové logiky, kdy máme k dispozici jedinou výrokovou prom nnou. 1. Rozmyslete, jak bude vypadat její Lindenbaumova algebra. 2. Rozmyslete totéº pro dv výrokové prom nné. Cvi ení 19. Nech ϕ je formule (p q) ( r q) a ψ formule (s p) (s r). 1. Ov te ϕ = ψ. 2. Ov te tvrzení anglické Wikipedie (heslo Craig interpolation k ), ºe interpolantem ϕ = ψ je p r. 3. Najd te interpolant ϕ = ψ algoritmem z d kazu v ty o interpolaci. 5

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Kuželosečky a kvadriky ve škole i kolem

Kuželosečky a kvadriky ve škole i kolem Kuželosečky a kvadriky ve škole i kolem nás Bc. Aneta Mirová Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

P íklady k prvnímu testu - Pravd podobnost

P íklady k prvnímu testu - Pravd podobnost P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

Teorie kategorií. Libor B hounek Verze ke dni 12. b ezna 2013.

Teorie kategorií. Libor B hounek Verze ke dni 12. b ezna 2013. Teorie kategorií Studijní materiál pro kurs ALGV00051 na FF UK v LS 2012/13 Dal²í informace: www.cs.cas.cz/behounek/teaching/cat12 Libor B hounek behounek@cs.cas.cz Verze ke dni 12. b ezna 2013. Organiza

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Sémantika výrokové logiky

Sémantika výrokové logiky Sémantika výrokové logiky Matematická logika, LS 2012/13, přednáška 4 7 Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 4. 25. 3. 2013 Osnova 1 Pravdivostní hodnoty v klasické výrokové logice

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží

Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží Úvod do TI - logika Výroková logika (2.přednáška) Marie Duží marie.duzi@vsb.cz Výroková logika Analyzuje způsoby skládání jednoduchých výroků do výroků složených pomocí logických spojek. Co je to výrok?

Více

Normální formy. (provizorní text)

Normální formy. (provizorní text) Normální formy (provizorní text) Výrokový počet Definice. Jazyk výrokového počtu obsahuje výrokové proměnné p, q, r, s,..., spojky,,,.. a závorky (,). Výrokové proměnné jsou formule. Jestliže a jsou formule,

Více

Jevy, nezávislost, Bayesova v ta

Jevy, nezávislost, Bayesova v ta Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

ST1 - Úkol 1. [Minimáln 74 K /láhev]

ST1 - Úkol 1. [Minimáln 74 K /láhev] ST1 - Úkol 1 P íklad 1 Myslivecký spolek po ádá sv j tradi ní ples. Mimo jiné bylo nakoupeno lahvové víno podle rozpisu v Tabulce 1.1. P edpokládá se (podle historických zku²eností), ºe v²echny láhve budou

Více

Úvod. Matematická ekonomie 1. Jan Zouhar. 20. zá í 2011

Úvod. Matematická ekonomie 1. Jan Zouhar. 20. zá í 2011 Úvod Matematická ekonomie 1 Jan Zouhar 20. zá í 2011 Obsah 1 Organizace kurzu 2 Nápl kurzu 3 Motiva ní p íklad na úvod 4 Úvod do matematického programování 5 Úvod do lineárního programování 6 Základní

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU

TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU TROJFÁZOVÝ OBVOD E POT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU Návod do m ení Ing. Vít zslav týskala, Ing. Václav Kolá Únor 2000 poslední úprava leden 2014 1 M ení v trojázových obvodech Cíl m ení:

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

CZ.1.07/1.1.14/01.0032 Inovace výuky v Písku a okolí 2012-2014. Pracovní list. Automatizační cvičení. Elektropneumatická ruka _LD

CZ.1.07/1.1.14/01.0032 Inovace výuky v Písku a okolí 2012-2014. Pracovní list. Automatizační cvičení. Elektropneumatická ruka _LD Pracovní list Automatizační cvičení Elektropneumatická ruka _LD Vypracoval žák Jméno, příjmení Datum vypracování Datum odevzdání SPŠ a VOŠ Písek, Karla Čapka 402, 397 11 Písek 1 Úkol projektu 1. Vytvořte

Více

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: p edná²ka 1 Prom nné, indexování a operátory Zbyn k Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx. VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými

Více

Teorie her. Klasikace. Pomocný text

Teorie her. Klasikace. Pomocný text Pomocný text Teorie her Milí e²itelé, první ty i úlohy kaºdé série spojuje jisté téma a vám bude poskytnut text, který vás tímto tématem mírn provede a pom ºe vám p i e²ení t chto úloh. Teorie her, jiº

Více

Seminář III. Základy logiky a matematiky. Martin Štrobl // Vojtěch Fučík ISS FSV UK

Seminář III. Základy logiky a matematiky. Martin Štrobl // Vojtěch Fučík ISS FSV UK Seminář III. Základy logiky a matematiky Martin Štrobl // Vojtěch Fučík ISS FSV UK 24.10.2016 Základy logiky a matematiky (ISS FSV UK) Seminář III. 24.10.2016 1 / 12 Téma výroková logika Základy logiky

Více

JEB007 Mikroekonomie I

JEB007 Mikroekonomie I JEB007 Mikroekonomie I Seminá 2 Petr Polák Institute of Economic Studies Faculty of Social Sciences Charles University 26. února 2014 Petr Polák (IES) JEB007 Mikroekonomie I 26. února 2014 1 / 12 Rekapitulace

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

Matice a e²ení soustav lineárních rovnic

Matice a e²ení soustav lineárních rovnic Úvod Tato sbírka úloh z lineární algebry je ur ena student m Fakulty elektrotechniky a informatiky V B - Technické univerzity Ostrava T mto student m je p edev²ím ur eno skriptum profesora Zde ka Dostála

Více

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární

Více

VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá..

VÝROKOVÁ LOGIKA. Výrok srozumitelná oznamovací věta (výraz, sdělení), která může být buď jen pravdivá nebo jen nepravdivá.. VÝROKOVÁ LOGIKA Teorie: Logika je vědní obor zabývající se studiem různých forem vyjadřování a pravidel správného posuzování. (Matematická logika je součástí tohoto vědního oboru a ve velké míře užívá

Více

VZD LÁVACÍ MATERIÁL. Ing. Lenka Havlíková. Po adové íslo: 9. Ro ník: 5. Datum vytvo ení: Datum ov ení:

VZD LÁVACÍ MATERIÁL. Ing. Lenka Havlíková. Po adové íslo: 9. Ro ník: 5. Datum vytvo ení: Datum ov ení: VZD LÁVACÍ MATERIÁL Název: Autor: Sada: Testové úkoly Ing. Lenka Havlíková III/2/M Po adové íslo: 9. Ro ník: 5. Datum vytvo ení: 5.1.2012 Datum ov ení: 20.1.2012 Vzd lávací oblast (p edm t): Matematika

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1. Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán

Více

Post ehy a materiály k výuce celku Funkce

Post ehy a materiály k výuce celku Funkce Post ehy a materiály k výuce celku Funkce 1) Grafy funkcí Je p edloºeno mnoºství výukových materiál v programu Graph - tvary graf základních i posunutých funkcí, jejich vzájemné polohy, Precizní zápis

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Obsah 1. Úvod 2. Kontaktní logické řízení 3. Logické řízení bezkontaktní Leden 2006 Ing.

Více

λογος - LOGOS slovo, smysluplná řeč )

λογος - LOGOS slovo, smysluplná řeč ) MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho

Více

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B

Více

PŘÍLOHA č. 2C PŘÍRUČKA IS KP14+ PRO OPTP - ZPRÁVA O REALIZACI

PŘÍLOHA č. 2C PŘÍRUČKA IS KP14+ PRO OPTP - ZPRÁVA O REALIZACI PŘÍLOHA č. 2C PRAVIDEL PRO ŽADATELE A PŘÍJEMCE PŘÍRUČKA IS KP14+ PRO OPTP - ZPRÁVA O REALIZACI OPERAČNÍ PROGRAM TECHNICKÁ POMOC Vydání 1/7, platnost a účinnost od 04. 04. 2016 Obsah 1 Zprávy o realizaci...

Více

Úplný systém m logických spojek. 3.přednáška

Úplný systém m logických spojek. 3.přednáška Úplný sstém m logických spojek 3.přednáška Definice Úplný sstém m logických spojek Řekneme, že množina logických spojek S tvoří úplný sstém logických spojek, jestliže pro každou formuli A eistuje formule

Více

Název: O co nejvyšší věž

Název: O co nejvyšší věž Název: O co nejvyšší věž Výukové materiály Téma: Pevnost, stabilita, síly Úroveň: 1. stupeň ZŠ Tematický celek: Jak se co dělá Věci a jejich původ (Suroviny a jejich zdroje) Předmět (obor): prvouka a přírodopis

Více

Základní praktikum laserové techniky

Základní praktikum laserové techniky Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 4: Zna kování TEA CO 2 laserem a m ení jeho charakteristik Datum m ení: 1.4.2015 Skupina: G Zpracoval: David Roesel Kruh:

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

Ergodické Markovské et zce

Ergodické Markovské et zce 1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme

Více

e²ení 5. série Binární kódy autor: Vlá a

e²ení 5. série Binární kódy autor: Vlá a e²ení 5. série Binární kódy autor: Vlá a Úloha 4.1. Na zah átí si dáme snadn j²í p íklad. Ur it zná² hru Myslím si íslo a to má vlastnost, je to velice podobné. Tedy mám binární lineární kód délky 5, který

Více

BOZP - akcepta ní testy

BOZP - akcepta ní testy BOZP - akcepta ní testy Kristýna Streitová Zadavatel: Ing. Ji í Chludil 13. prosince 2011 Obsah 1 Úvod 2 1.1 Popis test....................................... 2 2 Testy 3 2.1 ID - 1 P ihlá²ení do systému.............................

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

2C06028-00-Tisk-ePROJEKTY

2C06028-00-Tisk-ePROJEKTY Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických

Více

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak

Více

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 5. Odvození z jiných doc. PhDr. Jiří Raclavský,

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

NÁVOD A ÚDRŽBA - KULOVÉ VENTILY

NÁVOD A ÚDRŽBA - KULOVÉ VENTILY str. 1 kompletní ventil kompletní ruční ovládání kompletní pneumatické ovládání Rozbalení: zkontrolujte obsah balení: vyjměte veškerý balící materiál vyčistěte kohout, všechny jeho části a odstraňte veškerý

Více

2.2.10 Slovní úlohy vedoucí na lineární rovnice I

2.2.10 Slovní úlohy vedoucí na lineární rovnice I Slovní úlohy vedoucí na lineární rovnice I Předpoklady: 0, 06 Pedagogická poznámka: Řešení slovních úloh představuje pro značnou část studentů nejobtížnější část matematiky Důvod je jednoduchý Po celou

Více

p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního

p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního charakterizuje p sobení životního prost edí na lov ka a jeho zdraví; charakterizuje p írodní zdroje surovin a energie z hlediska jejich obnovitelnosti, posoudí vliv jejich využívání na prost edí; popíše

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

VZD LÁVACÍ MATERIÁL. Ing. Lenka Havlíková. Po adové íslo: 13. Ro ník: 3. Datum vytvo ení: Datum ov ení:

VZD LÁVACÍ MATERIÁL. Ing. Lenka Havlíková. Po adové íslo: 13. Ro ník: 3. Datum vytvo ení: Datum ov ení: VZD LÁVACÍ MATERIÁL Název: Autor: Sada: Testové úkoly Ing. Lenka Havlíková III/2/M Po adové íslo: 13. Ro ník: 3. Datum vytvo ení: 25.2.2012 Datum ov ení: 8.3.2012 Vzd lávací oblast (p edm t): Matematika

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

e²ení 1. série Úvodní gulá²

e²ení 1. série Úvodní gulá² e²ení. série Úvodní gulá² Úloha.. Gulá²gvhevmnjdfs!!, ozvalo se uº o n co hlasit ji hladové monstrum dychtící po Lib n in specialit. Henry! Ví² moc dob e, ºe ti nedám, dokud neuhodne², na co myslím! Malinko

Více

P r a V I d l a. C Esk A Pr Av i dla

P r a V I d l a. C Esk A Pr Av i dla Cˇ e s k á P r a V I d l a C Esk A Pr Av i dla Obsah 20 figurek průzkumníků ve 4 různých barvách 1 zeď s hieroglyfy 1 herní deska 7 destiček podlahy ``kámen a písek`` 16 skarabů 6 malých karet prokletí

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

48. Pro RC oscilátor na obrázku určete hodnotu R tak, aby kmitočet oscilací byl 200Hz

48. Pro RC oscilátor na obrázku určete hodnotu R tak, aby kmitočet oscilací byl 200Hz 1. Který ideální obvodový prvek lze použít jako základ modelu napěťového zesilovače? 2. Jaké obvodové prvky tvoří reprezentaci nesetrvačných vlastností reálného zesilovače? 3. Jak lze uspořádat sčítací

Více

EHN a datové rozhraní MIDI

EHN a datové rozhraní MIDI Prostředky Datové Komunikace Úloha 8A EHN a datové rozhraní MIDI Ondřej Zub (ozub81@seznam.cz) 29. listopadu 24 zadání 1. Sestavte pracoviště podle obrázku 1. Pro tři zadané rejstříky (zvukové barvy) se

Více

1 Základní pojmy. 1.1 Množiny

1 Základní pojmy. 1.1 Množiny 1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVU v Praze Zkou²ková písemná práce. 1 z p edm tu 1MAB4 25/5/216, 9: 11: ➊ (11 bod ) Vypo ítejte abstraktní plo²nou míru mnoºiny M = (x, y) R 2

Více

4. V p íprav odvo te vzorce (14) a (17) ze zadání [1].

4. V p íprav odvo te vzorce (14) a (17) ze zadání [1]. FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #4 Balmerova série Datum m ení: 28.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1.

Více

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.

Řešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat. KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

Logický čtverec. Tradiční logický čtverec

Logický čtverec. Tradiční logický čtverec Logický čtverec Tradiční logický čtverec Logický čtverec je schéma, do kterého lze poměrně přehledně znázornit následující vztahy mezi tvrzeními: Kontradikce je vztah mezi dvěma tvrzeními s přesně opačnými

Více

Používání klávesnice. Zobrazit vše. V tomto článku

Používání klávesnice. Zobrazit vše. V tomto článku Stránka č. 1 z 7 Zobrazit vše Používání klávesnice V tomto článku Jak jsou klávesy uspořádány? Psaní textu Použití klávesových zkratek Používání navigačních kláves Použití numerické klávesnice Tři zvláštní

Více

Cesta kolem světa za 80 dní. Cesta kolem světa pro 2-6 hráčů od 10 let od Michaela Rienecka, Kosmos 2004

Cesta kolem světa za 80 dní. Cesta kolem světa pro 2-6 hráčů od 10 let od Michaela Rienecka, Kosmos 2004 Cesta kolem světa za 80 dní. Cesta kolem světa pro 2-6 hráčů od 10 let od Michaela Rienecka, Kosmos 2004 Hra je nejlépe hratelná ve 3-5 hráčích, při 6 hráčích se neúměrně prodlužuje. Speciální pravidla

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov

ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov ZÁKLADNÍ ŠKOLA a MATE SKÁ ŠKOLA STRUP ICE, okres Chomutov Autor výukového Materiálu Datum (období) vytvo ení materiálu Ro ník, pro který je materiál ur en Vzd lávací obor tématický okruh Název materiálu,

Více

PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY CHEMIE CHEMIE. Struktura vyu ovací hodiny. Záznamový Záznamový arch. P edm tový metodik: Ing.

PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY CHEMIE CHEMIE. Struktura vyu ovací hodiny. Záznamový Záznamový arch. P edm tový metodik: Ing. PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY CHEMIE CHEMIE Struktura vyu ovací hodiny Plán Struktura vyu ovací vyu ovací hodiny hodiny Plán Metodický vyu ovací list aplikace hodiny Záznamový Metodický list arch

Více

Návod k používání registračního systému ČSLH www.hokejovaregistrace.cz

Návod k používání registračního systému ČSLH www.hokejovaregistrace.cz Návod k používání registračního systému ČSLH www.hokejovaregistrace.cz Osnova Přihlášení do systému Základní obrazovka Správa hráčů Přihlášky hráčů k registraci Žádosti o prodloužení registrace Žádosti

Více

Dělitelnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace

Dělitelnost. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace Dělitelnost pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka Němetzová Datum vytvoření:

Více

Polovodi e. Petr Ba ina. 16. ledna 2017

Polovodi e. Petr Ba ina. 16. ledna 2017 16. ledna 2017 jsou materiály, které za normálních podmínek nevedou elektrický proud. Za n kterých podmínek v²ak vedou elektrický proud (nap. p i zm n teploty, p i osv tlení atd... ). P íklady polovodi

Více

EXCEL Pracovní listy

EXCEL Pracovní listy EXCEL Pracovní listy 6., 7. třída 1 6. třída úkol: seznámení s programem a jeho ovládáním pomocné soubory: PS_excel 2013 / 6. Třída (sdílení / informatika) překopírovat do Office 365 Office: 2013 online

Více

HLAVA III PODROBNOSTI O VEDENÍ ÚST EDNÍHO SEZNAMU OCHRANY P ÍRODY

HLAVA III PODROBNOSTI O VEDENÍ ÚST EDNÍHO SEZNAMU OCHRANY P ÍRODY HLAVA III PODROBNOSTI O VEDENÍ ÚST EDNÍHO SEZNAMU OCHRANY P ÍRODY (K 42 odst. 2 zákona) 5 (1) Úst ední seznam ochrany p írody (dále jen "úst ední seznam") zahrnuje soupis, popis, geometrické a polohové

Více

Adresa p íslušného ú adu. Ú ad:... Ulice:... PS, obec:...

Adresa p íslušného ú adu. Ú ad:... Ulice:... PS, obec:... P íloha. 2 k vyhlášce. 503/2006 Sb. Adresa p íslušného ú adu Ú ad:... Ulice:... PS, obec:... V c: ŽÁDOST O VYDÁNÍ ROZHODNUTÍ O ZM N VYUŽITÍ ÚZEMÍ v územním ízení ve zjednodušeném územním ízení podle ustanovení

Více

Zapojení horního spína e pro dlouhé doby sepnutí

Zapojení horního spína e pro dlouhé doby sepnutí - 1 - Zapojení horního spína e pro dlouhé doby sepnutí (c) Ing. Ladislav Kopecký, ervenec 2015 Pro krátké doby sepnutí horního spína e se asto používá zapojení s nábojovou pumpou. P íklad takového zapojení

Více

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce Matematická analýza KMA/MAI 3. p edná²ka Primitivní funkce Denice a základní vlastnosti P íklad Uvaºujme následující úlohu: Najd te funkci F : R R takovou, ºe F () R. Kdo zná vzorce pro výpo et derivací

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Kód uchazeče ID:... Varianta: 15

Kód uchazeče ID:... Varianta: 15 Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2013 Kód uchazeče ID:.................. Varianta: 15 1. V únoru byla zaměstnancům zvýšena mzda o 15 % lednové mzdy. Následně

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

Úvod do kombinatorické teorie her

Úvod do kombinatorické teorie her Úvod do kombinatorické teorie her Lucie Mohelníková Lucka.Mohelnikova@gmail.com Lucie Mohelníková Úvod do kombinatorické teorie her 1 / 21 P ehled 1 Úvod 2 Základní typy her 3 Teorie okolo pi²kvorek 4

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 6 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury Pravd podobnost Pravd

Více

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky 1 Učební osnovy 1.1 Matematika a její aplikace Vzdělávací oblast Matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické pro práci s matematickými

Více