VUT v Brně Fakulta strojního inženýrství

Rozměr: px
Začít zobrazení ze stránky:

Download "VUT v Brně Fakulta strojního inženýrství"

Transkript

1 VUT v Brně Fakulta strojního inženýrství Výstřel z malorážové zbraně a jeho charakteristiky Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 9. října 2012

2 Studijní literatura

3 Bezpečná manipulace se zbraněmi a střelivem jako proces Zdravotní způsobilost Střelecká způsobilost Znalost zbraní a střeliva Znalost provozního řádu střelnice Kontrola zbraně před střelbou Proces bezpečné manipulace Nabití zbraně Střelba na terč Kontrola zbraně po střelbě Znalost zbraní a střeliva: Znalost konstrukce a funkce zbraně Znalost konstrukce a funkce střeliva Vědomosti o základních částech Znalosti základů vnitřní, vnější a terminální balistiky Neohrožení sebe a ostatních osob Neohrožení okolí (majetku, životního prostředí,...)

4 Osnova Výstřel z hlavňové palné zbraně Základní vnitrobalistické charakteristiky Matematické modelování VB Modely založené na geometrické představě o hoření prachového zrna

5 Výstřel a funkční cyklus HPZ Aktivace zápalky Zážeh, vzplanutí a hoření PN v konstantním objemu Uvolnění střely z NC, zařezávání střely do drážek, postupný (a otáčivý) pohyb střely, hoření a dohoření PN v proměnném objemu Pohyb prachových plynů a neshořeného prachu v hlavni, další urychlování střely, konec pohybu střely v hlavni Pohyb střely za ústím, její urychlování vytékajícími plyny 1 Vytažení NC 2 Vyhození NC 3 Zasunutí náboje 4 Uzavření NK 5 Uzamknutí NK 6 Spuštění VÝSTŘEL Činnost č. 1 Činnost č. 6 FC Činnost č. 2 Činnost č. 5 Činnost č. 4 Činnost č. 3

6 Cyklogram pistole

7 Aktivace (iniciace) zápalky BERDAN BOXER 0,4-1,2 mm 1 kalíšek 2 kovadlinka 3 tenkostěnná fólie (vrstva laku) 4 zápalková slož citlivá k nárazu Zápalka - iniciátor, který vytváří plamen po aktivaci nárazem zápalníku (část úderníku) palné zbraně (tzv. zápalka s mechanickou aktivací).

8 Střelivo se středovým a okrajovým zápalem (iniciací) z. BERDAN z. BOXER STŘEDOVÝ ZÁPAL OKRAJOVÝ ZÁPAL

9 Zápalka W209 krytka kovadlinka vnější pouzdro krycí fólie kalíšek zápalková slož

10 Křivka citlivosti zápalky Maximální energie -vyloučená aktivace Minimální energie -zaručená aktivace

11 Zápalkové slože na bázi třaskavin výbušnina chemická látka nebo směs látek v tuhém nebo kapalném stavu, schopná vlivem roznětu rychlé a samočinně probíhající chemické přeměny s uvolněním velkého množství tepla a plynných zplodin výbuchu. Výbušniny se dělí na střeliviny, trhaviny, třaskaviny a pyrotechnické slože. explosive chemical substance or mixture of solid or liquid substances capable of fast and self-acting chemical reaction releasing large amount of heat and gaseous products. Explosives can be divided into propellants, secondary explosives, primary explosives and pyrotechnic compounds.

12 Zápalkové slože 1. generace Složení Typ zápalky, země původu (komponenty) [%] Náboj Flobert Německá rok 1888 Anglie Ruská pušková a pistolová Berdan 4,5 Berdan 5,5 Hg(ONC) 2 67,8 27,0 15,0 25,0 20,0 54,0 KClO 3 37,0 35,0 37,5 40,0 13,0 Sb 2 S 3 2,6 29,0 45,0 37,5 40,0 30,0 Sklo 7,0 Černý prach 2,5 Ba(NO 3 ) 2 29,6 3,0 S 2,5

13 Zápalkové slože 2. generace (NEREZ) Složení Typ zápalky (komponenty) [%] Berdan 4,5 Berdan 4,5 Boxer 5,3 Boxer 5,3 Boxer 4,4 W 209 W 209 TNRO 45,0 31,5 42,5 38,5 40,0 38,0 40,0 Tetrazen 7,0 5,5 5,0 6,5 4,0 3,5 3,5 Ba(NO 3 ) 2 35,0 37,5 39,0 36,0 38,5 32,0 Sb 2 S 3 13,0 31,5 4,0 8,0 10,0 5,0 Sklo 5,3 KClO 3 26,2 CaSi 11,0 8,0 10,0 10,0 Pentrit 5,0 5,0 PbO 2 5,0 5,0 4,5

14 Zápalkové slože 3. generace NONTOX komponenta složení [%] Dinitrodiazofenol 35,0 29,8 40,0 (DINOL) tetrazen 8,0 19,8 20,0 CuO 29,8 MnO 2 10,0 sklo 9,8 28,0 Ba(NO 3 ) 2 38,0 Sb 2 O 3 12,0 Al 7,0 9,8 pojivo 1,0 2,0

15 Vnitřní balistika věda o pohybu střely ve vývrtu hlavně účinkem tlaku plynů vzniklých hořením náplně střeliviny zkoumá zákonitosti jevů a procesů probíhajících při výstřelu atd

16 Přechodová balistika T 10 věda o přechodových dějích mezi vnitřní a vnější balistikou asi 45 % energie uvolněné při hoření prachu je obsaženo v plynech, které vytečou z hlavně během několika milisekund Jejich energie ovlivňuje: Dynamiku zbraně Dynamiku střely

17 Vědní obor vnitřní balistika Vnitřní balistika hlavňových zbraní Bez výtoku plynů S výtokem plynů funkčním BzK,... škodlivým opotřebené hlavně minomety

18 Výstřel - ukázka BEZ VÝTOKU PLYNŮ S FUNKČNÍM VÝTOKEM PLYNŮ

19 Průběh výstřelu doba trvání výstřelu (0,1 15).10-3 [s], tlak v hlavni (až 500 MPa u děl i více), zrychlení střel ( )10 3 [ms -2 ] teplota K okamžitý výkon 0, MW

20 305 mm lodní kanon ŠKODA mm děla ve čtyřech věžích, střela 450 kg, v 0 =800m/s, tj. 144 MJ úsťové energie, t u = s, asi si 9600 MW okamžitého výkonu P W t ku u

21 Časové úseky výstřelu (periody) I. perioda od okamžiku zážehu prachové náplně do počátku pohybu střely: zažehnutí, vzplanutí a počátek hoření prachové náplně v konstantním objemu (pyrostatika) II. perioda od počátku pohybu střely do okamžiku dohoření prachové náplně: zaříznutí vodicích částí střely do přechodového kužele (u jednotného náboje) a postupný pohyb střely ve vodící části vývrtu hlavně, hoření prachové náplně v proměnném objemu (pyrodynamika) III. perioda od dohoření prachové náplně do okamžiku, kdy dno střely opouští ústí hlavně: urychlování střely silou expandujících prachových plynů v hlavni (expanze) IV. perioda od okamžiku, kdy dno střely opustí ústí hlavně do okamžiku ukončení urychlování střely: urychlování střely silou plynů vytékajících z hlavně (perioda dodatečného účinku plynů - přechodová balistika)

22 Charakteristiky p, T, v, l (t) počátek pohybu střely Dosažení max. tlaku PP Dohoření PN Dno střely opouští ústí hlavně

23 Charakteristiky p, T, v, t (l)

24 Matematické modelování matematické určení vnitrobalistických veličin (tlaku p a teploty T prachových plynů, rychlosti v a dráhy střely l) v závislosti nejčastěji na čase t nebo na dráze střely l ve vývrtu hlavně (tzv. přímá úloha vnitřní balistiky) Matematické modelování = odvození soustavy rovnic, které popisují děje probíhající ve vývrtu HPZ. Následným řešením těchto rovnic získáme hledané průběhy vnitrobalistických veličin.

25 Konstrukční parametry HPZ 1/3 Poř. č. P o j m e n o v á n í Ozn. Roz. P o z n á m k a 1. Ráže hlavně d m Průměr hlavně v polích 2. Průřez hlavně s m 2 Plocha příčného průřezu drážkované části hlavně 3. Objem počátečního spalovacího prostoru c o m 3 Objem prostoru, vymezeného vnitřkem nábojnice a zadní části 4. Délka počátečního spalovacího prostoru (délka komory) 5. Celková dráha střely v hlavni nabité střely l kom m Vzdálenost dna střely od opěrné plochy závěru l ú m Dráha dna střely až po ústí hlavně 6. Délka hlavně L HL m Délka hlavně i se závěrem 7. Vztažná délka počátečního spalovacího prostoru 8. Součinitel rozšíření spalovacího prostoru l 0 m 1 c0 l0 s l 0 l kom

26 Konstrukční parametry 2/3 Ráže hlavně d [m] je průměr vývrtu hlavně v polích Plocha průřezu vývrtu hlavně s [m 2 ] s k. d Počáteční objem spalovacího prostoru c 0 [m 3 ] s d objem nábojové komory za zadní částí astřely, b d zmenšený o objem nábojnice k k s s 4 4 a b

27 Konstrukční parametry 3/3 Vztažná délka počátečního spalovacího prostoru l 0 [m] Součinitel rozšíření spalovacího prostoru [1] l 0 l kom l 0 c 0 s

28 Nabíjecí podmínky Poř. č. P o j m e n o v á n í Ozn. Roz. P o z n á m k a 9. Hmotnost střely m q kg 10. Hmotnost prachové náplně kg 11. Hustota prachové náplně kg.m -3 c Vlastnosti prachové náplně (PN) a rozměry prachových zrn (PZ) - -

29 Prachová náplň (PN) - střelivina Mechanické směsy Černý prach směs: KNO 3 75% (okysličovadlo), práškové dřevěné uhlí 15% S (pojivo) -10% - tuhé zbytky až 56% Bezdýmné prachy (Nc prachy, Ng prachy, Dg prachy, G prachy) C a H b O c N d - tuhé zbytky až 0%

30 Hoření prachové náplně Geometrická představa hoření prachové náplně: všechna zrna prachové náplně mají stejný geometrický tvar, stejné rozměry a jsou stejnorodá, při zážehu prachové náplně vzplanou všechna zrna náplně okamžitě a na celém povrchu, zrna se při hoření vzájemně nedotýkají a neovlivňují, hoření všech zrn probíhá stejnou rychlostí ve všech směrech kolmo k povrchu zrna. při popisu hoření náplně stačí sledovat hoření pouze jednoho zrna prachové náplně.

31 Charakteristiky PN Poř. č. N á z e v Ozn. Rozměr P o z n á m k a 1. Výbuchové teplo Q v J.kg -1 Uvažujeme vodu jako páru 2. Výbuchová teplota T v K - 3. Měrný objem plynu w 0 m 3.kg -1 Uvažujeme vodu jako páru 4. Hustota prachové masy kg.m Měrné teplo plynu za stálého objemu 6. Poměr měrných tepel plynu (adiabatický exponent) 7. Jednotková rychlost hoření prachu 8. c v J.kg -1.K -1 - c 1 u 1 m.s -1.Pa -1 Měrná energie prachu f J.kg Kovolum prachových plynů m 3.kg -1 c c c p v Rychlost hoření prachu při tlaku 1Pa (za předpokladu lineárního zákona hoření) f = r.t v, kde je r měrná plynová konstanta V rovnici ideálního plynu

32 Charakteristiky PN Poř. č. N á z e v Ozn. Roz. P o z n á m k a 10. Charakteristická tloušťka prachového zrna 2e 1 m Nejmenší lineární rozměr zrna před začátkem hoření

33 Char. Druh Q v (v.v.) [MJ.kg -1 ] Hodnoty charakteristik střelivin Q v (v.p.) [MJ.kg -1 ] [K] (2380) 0,24 0,28 0,89 0,94 0,84 1,01 0,95 1,08 [m 3.kg -1 ] (0,279) T v w o c v c u f [kg.m -3 ] (1600) (1600) (1570) [J.kg -1.K -1 ] ,26 1,28 1,23 1,29 1,26 1,30 [1] 2) 6,9 9,6 5,2 14,6 3,1 9,4 [m.s -1.Pa -1 ] 0,24 0,40 0,97 1,06 0,96 1,20 0,85 1,15 [MJ.kg -1 ] (0,244) 0,48 0,56 0,892 0,974 0,740 0,865 [m 3.kg -1 ] 1,002 1,057 (0,488) ČP 2,8 3,2 3,5 4,0 3,1 3,7 Nc Ng 3,3 5,2 2,9 4,8 Dg 2,8 4,3 2,5 3,9

34 Modely založené na geometrické představě o hoření prachového zrna prachová náplň obsahuje známý počet zrn všechna zrna prachové náplně mají stejný geometrický tvar, stejné rozměry a jsou stejnorodá při zážehu prachové náplně vzplanou všechna zrna náplně okamžitě a na celém povrchu zrna se při hoření vzájemně nedotýkají a neovlivňují hoření všech zrn probíhá stejnou rychlostí ve všech směrech kolmo k povrchu zrna

35 1. Rovnice vývinu prachových plynů 2. Tlak prachových plynů 3. Pohybová rovnice střely 4. Kinematický člen spojující veličiny l, v, t 5. Rychlost hoření prachu, tj. rovnice 6. Rovnice pro redukovanou délku volného objemu spalovací komory 7. Rovnice po teplotu plynů p 2 3. z.. z.. z ) dv. mq s. p dt dl dt v dz p dt I l K 1 l0 1. T T.. mq. v f.. 2 s( l l) v 1.. mq. v 1 2. f. 2 2

36 Ukázka otázek do testu z T4 Složení střeliviny bezdýmného prachu lze obecně zapsat vzorcem: a) KNO 3 +C+S b) C 2 H 5 OH + CH 3 OH c) C a H b O c N d Výbuchové teplo (Energie výbuchu) bezdýmných prachů je řádově a) 2,5-5 MJ/kg b) MJ/kg c) 2,5-5 kj/kg

5 FUNKČNÍ CYKLUS ZBRANĚ

5 FUNKČNÍ CYKLUS ZBRANĚ VUT v Brně Fakulta strojního inženýrství 5 FUNKČNÍ CYKLUS ZBRANĚ VÝSTŘEL Činnost č. 1 Činnost č. 6 FC Činnost č. 2 Činnost č. 5 Činnost č. 4 Činnost č. 3 Róbert Jankových (jankovych@fme.vutbr.cz ) Brno,

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství Výška dráhy střely y [m] VUT v Brně Fakulta strojního inženýrství 0.03 10 Přechodová a vnější balistika HPZ 0.025 0.02 0.015 0.01 0.005 0 1 0.5 60 0 40 Stranová odchylka z [m] -0.5-1 0 20 Dráha střely

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství VUT v Brně Fakulta strojního inženýrství Základy konstrukce hlavňových palných zbraní Róbert Jankových (robert.jankovych@seznam.cz ) Brno, 18. září 2012 Osnova 1. Definice hlavňových palných zbraní 2.

Více

Otázky k přijímací zkoušce do navazujícího magisterského studia Obor: Zbraně a munice pro AR 2015/2016

Otázky k přijímací zkoušce do navazujícího magisterského studia Obor: Zbraně a munice pro AR 2015/2016 Otázky k přijímací zkoušce do navazujícího magisterského studia Obor: Zbraně a munice pro AR 2015/2016 SKUPINA A 1. Zbraně: Vysvětlete postup sestrojení konstrukčního tlaku při návrhu hlavně palné zbraně.

Více

6 Hlavně palných zbraní

6 Hlavně palných zbraní VUT v Brně Fakulta strojního inženýrství 6 Hlavně palných zbraní Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 23. října 2012 Studijní literatura Osnova Hlavně palných zbraní, základní pojmy Vývrt hlavní

Více

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky Autor: Mgr. Martin Fryauf Název materiálu: Balistika Označení

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky Autor: Mgr. Martin Fryauf Název materiálu: Balistika Označení Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Martin Fryauf Název materiálu: Balistika Označení materiálu:vy_32_inovace_fry13 Datum vytvoření: 27. 10.

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství VUT v Brně Fakulta strojního inženýrství T7 Závěry malorážových zbraní Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 30. října 2012 Studijní literatura Osnova 1. Definice závěru HPZ 2. Klasifikace závěrů

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství 09 Zamiřování HPZ a ZAMĚŘOVAČE VUT v Brně Fakulta strojního inženýrství Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 13. listopadu 2012 Studijní literatura Osnova Princip zamiřování zbraní Klasifikace

Více

Zobrazený rozněcovač se používá u. a. Glass mine 43 b. T Mi-35 c. Topf mine A 4531

Zobrazený rozněcovač se používá u. a. Glass mine 43 b. T Mi-35 c. Topf mine A 4531 301 Zobrazený rozněcovač se používá u 302 a. Glass mine 43 b. T Mi-35 c. Topf mine A 4531 Zobrazený rozněcovač T. Mi.Z.43 má stav součástek 303 a. po úplné adjustaci do miny b. při nájezdu na minu c. po

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

ZÁKLADY LOMAŘSTVÍ 3.4.2008

ZÁKLADY LOMAŘSTVÍ 3.4.2008 ZÁKLADY LOMAŘSTVÍ 3.4.2008 Základní složky trhavin Látky výbušné estery kyseliny dusičné, aromatické nitrolátky Nytroglycerin olej. Kapalina, těkavá, tuhne při 10 C, citlivá, detonační rychlost 8500m/sec

Více

ZBRANĚ A ZÁKON. Projekt: Vzdělávání pro bezpečnostní systém státu. Operační program Vzdělávání pro konkurenceschopnost

ZBRANĚ A ZÁKON. Projekt: Vzdělávání pro bezpečnostní systém státu. Operační program Vzdělávání pro konkurenceschopnost ZBRANĚ A ZÁKON 1/3 ZÁKLADY KONSTRUKCE RUČNÍCH PALNÝCH ZBRANÍ Ing. Hubert ŠTOFKO Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail: hubert.stofko@unob.cz

Více

Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky

Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Číslo projektu: CZ.1.07/1.5.00/34.0036 Název projektu: Inovace a individualizace výuky Autor: Mgr. Martin Fryauf Název materiálu: Kriminalistická pyrotechnika Označení materiálu:vy_32_inovace_fry15 Datum

Více

NAUKA O MUNICI, STŘELIVU A VÝBUŠNINÁCH obrazová část

NAUKA O MUNICI, STŘELIVU A VÝBUŠNINÁCH obrazová část Soubor testových otázek ke zkouškám odborné způsobilosti žadatelů o vydání vyššího muničního průkazu NUK O MUNII, STŘELIVU VÝUŠNINÁH obrazová část 1 Střela 122 mm ED obsahuje účinnou dýmovou náplň fosfor

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 GEOMETRICKÉ TRYSKY (GT) RAKETOVÝCH MOTORŮ (RM) PRO POTŘEBY KOSMONAUTIKY A JEJICH VLIV NA NOSNOU

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

Aktuální otázky současných technologií pro regulaci početnosti zvěře

Aktuální otázky současných technologií pro regulaci početnosti zvěře Aktuální otázky současných technologií pro regulaci početnosti zvěře František Matyšek Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Trocha

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

Dřevěné konstrukce podle ČSN EN : Petr Kuklík

Dřevěné konstrukce podle ČSN EN : Petr Kuklík Dřevěné konstrukce podle ČSN EN 1995-1-2: 2006 Petr Kuklík 1 Obsah prezentace Úvod Návrhová hloubka zuhelnatění Návrhová rychlost zuhelnatění Plášť požární ochrany Analytické výpočetní metody Metoda redukovaného

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování

Západočeská univerzita v Plzni Fakulta strojní. Semestrální práce z Matematického Modelování Západočeská univerzita v Plzni Fakulta strojní Semestrální práce z Matematického Modelování Dynamika pohybu rakety v 1D Vypracoval: Pavel Roud Obor: Technologie obrábění e mail:stu85@seznam.cz 1 1.Úvod...

Více

Přehled základních postupů k prokázání znalostí bezpečné manipulace se zbraní a střelivem

Přehled základních postupů k prokázání znalostí bezpečné manipulace se zbraní a střelivem Přehled základních postupů k prokázání znalostí bezpečné manipulace se zbraní a střelivem Přepis přílohy nařízení vlády 315/2011, které stanoví průběh zkoušky žadatele o zbrojní průkaz 1. Základní pravidla

Více

G. STŘELNÉ ZBRANĚ A STŘELIVO zkušební otázky z ústní části. Střelné zbraně a střelivo

G. STŘELNÉ ZBRANĚ A STŘELIVO zkušební otázky z ústní části. Střelné zbraně a střelivo G. Střelné zbraně a střelivo 95 1. Jaké znáte kategorie zbraní a střeliva podle zákona o střelných zbraních a střelivu. KATEGORIE A zbraně (zakázané pro veřejnost) vojenské, včetně odpalovacích zařízení,

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství 08 Mechanismy HPZ VUT v Brně Fakulta strojního inženýrství Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 6. listopadu 2012 Studijní literatura Osnova Zopakování příkladů typu hlavní a závěrů Systémy

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

LOVECKÉ STŘELECTVÍ TEORIE STŘELBY

LOVECKÉ STŘELECTVÍ TEORIE STŘELBY MYSLIVOST Balistika zkoumá děje, které vzniknou po iniciaci výstřelu. Zkoumá pohyb střely hlavní, pohyb střely po opuštění hlavně a po dopadu na cíl a dále zkoumá vlivy, které na střelu působí. Balistiku

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

a) Jaká je hodnota polytropického exponentu? ( 1,5257 )

a) Jaká je hodnota polytropického exponentu? ( 1,5257 ) Ponorka se potopí do 50 m. Na dně ponorky je výstupní tunel o průměru 70 cm a délce, m. Tunel je napojen na uzavřenou komoru o objemu 4 m. Po otevření vnějšího poklopu vnikne z části voda tunelem do komory.

Více

1.1.1 Národní identifikační značky. (1) Česká republika. Kiel (2) Kolín nad Rýnem (3) Mellrichstadt (4) Mnichov (5) Německá spolková republika

1.1.1 Národní identifikační značky. (1) Česká republika. Kiel (2) Kolín nad Rýnem (3) Mellrichstadt (4) Mnichov (5) Německá spolková republika Zkušební značky platné podle zákona č. 156/2000 Sb., o ověřování střelných zbraní, střeliva a pyrotechnických předmětů a o zacházení s některými pyrotechnickými výrobky, ve znění pozdějších předpisů. Obsah

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

6. cvičení. Clonový odstřel II. Trhací práce na lomech

6. cvičení. Clonový odstřel II. Trhací práce na lomech 6. cvičení Clonový odstřel II Trhací práce na lomech Zadání Navrhněte parametry 1 řadového clonového odstřelu ve vápencovém lomu. Délka etáže 100 m. Objemová hmotnost suroviny ρ=2700 kg.m -3. Výška etáže

Více

POŽADAVKY NA KONSTRUKČNÍ BEZPEČNOST MUNICE PRO MINOMETY

POŽADAVKY NA KONSTRUKČNÍ BEZPEČNOST MUNICE PRO MINOMETY ČESKÝ OBRANNÝ STANDARD POŽADAVKY NA KONSTRUKČNÍ BEZPEČNOST MUNICE PRO MINOMETY Praha (VOLNÁ STRANA) 2 ČESKÝ OBRANNÝ STANDARD POŽADAVKY NA KONSTRUKČNÍ BEZPEČNOST MUNICE PRO MINOMETY Základem pro tvorbu

Více

VYHLÁŠKA 384/2002 Sb. Ministerstva vnitra ze dne 6. srpna 2002. o provedení některých ustanovení zákona o zbraních

VYHLÁŠKA 384/2002 Sb. Ministerstva vnitra ze dne 6. srpna 2002. o provedení některých ustanovení zákona o zbraních VYHLÁŠKA 384/2002 Sb. Ministerstva vnitra ze dne 6. srpna 2002 o provedení některých ustanovení zákona o zbraních Ministerstvo vnitra stanoví podle 79 odst. 2 zákona č. 119/2002 Sb., o střelných zbraních

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Školení lektorů a zkušebních komisařů ČMMJ, z.s. VI. skupina Lovecké zbraně a střelivo

Školení lektorů a zkušebních komisařů ČMMJ, z.s. VI. skupina Lovecké zbraně a střelivo Školení lektorů a zkušebních komisařů ČMMJ, z.s. VI. skupina Lovecké zbraně a střelivo Lovecké střelectví - cíle výuky Skupina znalostí z okruhu loveckých zbraní a střeliva se věnuje teoretické přípravě

Více

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice

3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice 3 - Hmotnostní bilance filtrace a výpočet konstant filtrační rovnice I Základní vztahy a definice iltrace je jedna z metod dělení heterogenních směsí pevná fáze tekutina. Směs prochází pórovitým materiálem

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 2

PROCESNÍ INŽENÝRSTVÍ cvičení 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AULTA APLIOVANÉ INORMATIY PROCESNÍ INŽENÝRSTVÍ cvičení iltrace část 1 Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle Při výstřelu lodního protiletadlového děla projektil neboli střela ráže 3 mm o hmotnosti 190 gramů zrychlí z klidu na rychlost 880 km/h za 0,01 s. Předpokládáme, že: pohybující se projektil v hlavni je

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

PASPORT TP PRO HLOUBENOU JÁMU

PASPORT TP PRO HLOUBENOU JÁMU PASPORT TP PRO HLOUBENOU JÁMU SOUČÁSTI NÁVRHU: A, Parametry odstřelu B, Roznět náloží C, Škodlivé účinky odstřelů TRHACÍ PRÁCE A ROZPOJOVÁNÍ HORNIN PROGRAM Č. 3 1, Volba skutečné zabírky: z sk [m] Volíme

Více

3. cvičení. Chemismus výbušnin. Trhací práce na lomech

3. cvičení. Chemismus výbušnin. Trhací práce na lomech 3. cičení Chemismus ýbušnin Trhací práce na lomech Požadaky na průmysloé trhainy: 1, dostatečně ysoký obsah energie objemoé jednotce ýbušniny 2, přiměřená citliost k nějším podmětům 3, dlouhodobá chemická

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.

Více

Reaktivní pěchotní plamenomety RPO-A, RPO-Z, RPO-D Čmelák (Реактивные пехотные огнеметы РПО-А, РПО-З, РПО-Д Шмель )

Reaktivní pěchotní plamenomety RPO-A, RPO-Z, RPO-D Čmelák (Реактивные пехотные огнеметы РПО-А, РПО-З, РПО-Д Шмель ) Reaktivní pěchotní plamenomety RPO-A, RPO-Z, RPO-D Čmelák (Реактивные пехотные огнеметы РПО-А, РПО-З, РПО-Д Шмель ) Určení: K ničení nekryté živé síly, palebných postavení, polních opevnění, automobilní

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Úřední věstník Evropské unie. (Nelegislativní akty) NAŘÍZENÍ

Úřední věstník Evropské unie. (Nelegislativní akty) NAŘÍZENÍ 8.3.2018 L 65/1 II (Nelegislativní akty) NAŘÍZENÍ PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2018/337 ze dne 5. března 2018, kterým se mění prováděcí nařízení (EU) 2015/2403, kterým se stanoví společné pokyny o normách

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?

Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C? TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ - ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY A TECHNIKY PROSTŘEDÍ doc. Ing. Josef ŠTETINA, Ph.D. Předmět 3. ročníku BS http://ottp.fme.vutbr.cz/sat/

Více

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn

Více

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu.

Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Míchání a homogenizace směsí Míchání je hydrodynamický proces, při kterém je různými způsoby vyvoláván vzájemný pohyb částic míchaného materiálu. Účelem mícháním je dosáhnout dokonalé, co nejrovnoměrnější

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

Zobrazený náboj má zkrácené označení a. 100 mm EPrSv b. 100 mm JPrSv c. 100 mm JPpSv 152

Zobrazený náboj má zkrácené označení a. 100 mm EPrSv b. 100 mm JPrSv c. 100 mm JPpSv 152 151 Zobrazený náboj má zkrácené označení a. 100 mm EPrSv b. 100 mm JPrSv c. 100 mm JPpSv 152 Zobrazený náboj je opatřen zapalovačem 153 a. nz 41 b. nz 11 c. nz 42 + rp Střela zobrazeného náboje obsahuje

Více

Příklady k opakování TERMOMECHANIKY

Příklady k opakování TERMOMECHANIKY Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

h nadmořská výška [m]

h nadmořská výška [m] Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za

Více

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru ČVUT v Praze, Fakulta stavební Katedra ocelových a dřevěných konstrukcí Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru Petr Kuklík České Budějovice, Kongresové centrum BAZILIKA 29.

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Doprovodné otázky pro studenty, kvízy, úkoly aj.

Doprovodné otázky pro studenty, kvízy, úkoly aj. Doprovodné otázky pro studenty, kvízy, úkoly aj. Otázky: 1. Jak se projeví menší hustota ledu v porovnání s vodou při zamrzání vodních nádrží a toků? 2. Jaký jev se nazývá anomálie vody? 3. Vysvětlete

Více

Předmluva...Il. Úvod Historie kriminalistiky Předmět kriminalistiky Systém kriminalistiky...29

Předmluva...Il. Úvod Historie kriminalistiky Předmět kriminalistiky Systém kriminalistiky...29 Obsah Předmluva...Il Úvod...13 1. Historie kriminalistiky... 15 2. Předmět kriminalistiky...27 3. Systém kriminalistiky...29 4. Kriminalistické metody...31 4.1 Kriminalisticko-technické metody...32 4.2

Více

Klasifikace nebezpečných věcí ADR. Český úřad pro zkoušení zbraní a střeliva Jilmová 759/12 130 00 Praha 3 Žižkov www.cuzzs.cz

Klasifikace nebezpečných věcí ADR. Český úřad pro zkoušení zbraní a střeliva Jilmová 759/12 130 00 Praha 3 Žižkov www.cuzzs.cz Klasifikace nebezpečných věcí ADR Český úřad pro zkoušení zbraní a střeliva Jilmová 759/12 130 00 Praha 3 Žižkov www.cuzzs.cz Úvod Přeprava látek a předmětů, které svými vlastnostmi mohou ohrozit zdraví

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

ZBRANĚ A ZÁKON. Projekt: Vzdělávání pro bezpečnostní systém státu. Operační program Vzdělávání pro konkurenceschopnost

ZBRANĚ A ZÁKON. Projekt: Vzdělávání pro bezpečnostní systém státu. Operační program Vzdělávání pro konkurenceschopnost ZBRANĚ A ZÁKON 1/1 ZÁKLADY KONSTRUKCE RUČNÍCH PALNÝCH ZBRANÍ Ing. Hubert ŠTOFKO Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail: hubert.stofko@unob.cz

Více

Bezpeč nostní značky Zvláštní ustanovení. Zvláštní. ustanovení 3.1.2 2.2 2.2 2.1.1.3 5.2.2 3.3 3.4.6 3.5.1.2 4.1.4 4.1.4 4.1.10 4.2.5.2, 7.3.2 4.2.5.

Bezpeč nostní značky Zvláštní ustanovení. Zvláštní. ustanovení 3.1.2 2.2 2.2 2.1.1.3 5.2.2 3.3 3.4.6 3.5.1.2 4.1.4 4.1.4 4.1.10 4.2.5.2, 7.3.2 4.2.5. UN Třída Klasifi kód Obalová skupina Bezpeč nostní značky Omezené a vyňaté množství Pokyny pro Balení pro obaly Ustanovení o společném Přemístitelné cisterny a kontejnery pro volně ložené látky Pokyny

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006

Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby. S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba

Více

VUT v Brně Fakulta strojního inženýrství

VUT v Brně Fakulta strojního inženýrství VUT v Brně Fakulta strojního inženýrství Druhy malorážových zbraní a jejich použití Róbert Jankových (jankovych@fme.vutbr.cz ) Brno, 2. října 2012 Studijní literatura Osnova Pistole Kulomety Revolvery

Více

PŘÍSPĚVEK K TORKRETACI ZTEKUCENÝCH ŽÁROBETONŮ

PŘÍSPĚVEK K TORKRETACI ZTEKUCENÝCH ŽÁROBETONŮ PŘÍSPĚVEK K TORKRETACI ZTEKUCENÝCH ŽÁROBETONŮ Ing.Milan Henek, CSc. Průmyslová keramika, spol. s r.o., Rájec-Jestřebí Ing. Miroslav Vajda RAMIRA PRAHA-ZÁPAD, Třebotov 1. ÚVOD Torkretování (stříkání) je

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Ing. Vladimír Bendák Datum vytvoření: Ročník: Autor:

Ing. Vladimír Bendák Datum vytvoření: Ročník: Autor: Autor: Ing. Vladimír Bendák Datum vytvoření: 5. 11. 2012 Ročník: 2. ročník nástavbové studium Tematická oblast: Přeprava nebezpečných věcí dle ADR Předmět: Technologie a řízení dopravy Klíčová slova: Výbušné

Více

Teplotní analýza požárního úseku. Návrh konstrukce za zvýšené teploty

Teplotní analýza požárního úseku. Návrh konstrukce za zvýšené teploty Vstupy Návrh požární odolnosti konstrukce Evropské normy Požární zatížení Geometrie pož. úseku Charakteristiky hoření Teplotní analýza požárního úseku ČSN EN 1991-1-2 Geometrie prvků Termální vlastnosti

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

CHO cvičení, FSv, ČVUT v Praze

CHO cvičení, FSv, ČVUT v Praze 2. Chemické rovnice Chemická rovnice je schématický zápis chemického děje (reakce), který nás informuje o reaktantech (výchozích látkách), produktech, dále o stechiometrii reakce tzn. o vzájemném poměru

Více

POZOR! Nedodržením těchto pokynů může dojít k poškození přístroje.

POZOR! Nedodržením těchto pokynů může dojít k poškození přístroje. Pokyny pro zabezpečení správné funkce přístroje 1. Čištění přístroje - viz. příslušný odstavec 2. Je zakázáno střílet přístrojem naprázdno (do vzduchu). Přístroj se tím poškozuje. Při zkušebních výstřelech

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více