Numerická matematika

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Numerická matematika"

Transkript

1 Numerická matematika Jiří Felcman Univerzita Karlova v Praze Matematicko-fyzikální fakulta KNM PRESS PRAHA 2014

2 iv

3 PŘEDMLUVA 1 Tel KNMčdvK458(5042) 1 přednáška 2 NMAI042 Numerická matematika Obecná informatika Programování a softwarové systémy (Programování, Správa počítačových systémů- zahájení 2011 nebo dříve) 3 Požadavky ke zkoušce státnice(prospěl s vyznamenáním) Obecná informatika: MFF >Studium >BcaMgrstudium >Studijníplány >Obecná informatika sylabus SIS, Předměty, NMAI042, Hledej 4 Tituly PhD RNDr Mgr Bc 5 Studium v zahraničí- ERASMUS 6 Ceny udělované studentům 7 SVOČ 8 Hodnocení učitelů- srozumitelnost 9 Zápočet: pátek 2 května Zkouška: pátek 9 května 2014, 12:20 část písemná, dosažení minimálního předepsaného počtu bodů pro každou otázku část ústní Praha, 3 února 2014 J F v

4

5 OBSAH Úvod 1 1 Aproximace funkcí v IR 2 11 Lagrangeův interpolační polynom Chyba Lagrangeovy interpolace 5 12 Kubický spline Konstrukce přirozeného kubického spline 7 2 Numerická integrace funkcí Newtonovy-Cotesovy vzorce Složené Newtonovy Cotesovy vzorce Rombergova kvadratura Gaußova kvadratura 16 3 Metody řešení nelineárních rovnic Newtonova metoda Důkaz konvergence Newtonovy metody Řád konvergence Metoda postupných aproximací pro nelineární rovnice Kořeny polynomu Hornerovo schema 24 4 Soustavy lineárních rovnic Podmíněnost matic Gaußova eliminace Pivotace Gaußova eliminace jako faktorizační metoda LU rozklad v obecném případě Vliv zaokrouhlovacích chyb Choleského rozklad QR rozklad 35 5 Iterační metody řešení soustav lineárních rovnic Klasické iterační metody 37 6 Výpočet vlastních čísel matic Mocninná metoda 43 7 Numerická integrace obyčejných diferenciálních rovnic Formulace problému Jednokrokové metody 45 vii

6 viii OBSAH 721 Metody typu Runge Kutta 47 8 Gradientní metody Formulace problému 50 Bibliografie 51 Index 52

7 ÚVOD Numerická analýza: Studium algoritmů(jednoznačně definovaná konečná posloupnost aritmetických a logických operací) pro řešení problémů spojité matematiky LN Trefethen, Bulletin IMA 1993 Numerická matematika: realizace matematických modelů na počítači Fyzikální realita matematický model numerické řešení, tj realizace matematického modelu na počítači Validation(solving the right equations) verification(solving the equations right) Literatura k přednášce:(quarteroni et al, 2004),(Ueberhuber, 2000),(Segethová, 2000) Předpokládané znalosti: Rolleova věta, definice normy funkce, definice seminormy, vlastní čísla, báze lineárního vektorového prostoru, Taylorova věta 1

8 1 APROXIMACE FUNKCÍ V IR Jedna ze základních úloh numerické matematiky: aproximace dané funkce f jinou funkcí ϕ Zadání aproximované funkce- analyticky, nebo je k dispozici tabulkahodnot(x i, f i ), x i, f i IR, i=0,,n, n IN, f i = f(x i )(vizobr 101) tabulkahodnotderivacídourčitéhořáduvuzlech x i Pro funkci f definovanou na uzavřeném intervalu[a, b] uvažujeme dělení intervalu[a, b], a=x 0 < x 1, < x n = b, n Z + = {0,1, }anazývámeho sítí x i, i=0,nnazývámeuzly(ekvidistantní,je-li x i = a+ih,kde h IRje kroksítě) Poznámka 11 Pojem síť se používá obecně v N-rozměrném prostoru, viz např (Feistaueretal,2003,str185):LetΩ IR N beadomainif N=2,thenby Ω h wedenoteapolygonalapproximationofωthismeansthattheboundary Ω h ofω h consistsofafinitenumberofclosedsimplepiecewiselinearcurves For N=3,Ω h willdenoteapolyhedralapproximationofωfor N=3weset Ω h =ΩThesystem D h = {D i } i J,where J Z + = {0,1, }isanindexset and h >0,willbecalledafinitevolumemeshinΩ h,if D i, i J,areclosedline segmentsorclosedpolygonsorpolyhedrons,if N=1or N=2or3,respectively, with mutually disjoint interiors such that Ω h = i J D i Theelements D i D h arecalledfinitevolumestwofinitevolumes D i, D j D h areeitherdisjointortheirintersectionisformedbyacommonpartoftheir boundaries D i and D j If D i D j containsatleastonestraightsegmentora planemanifold,if N=2or3,respectively,thenwecall D i and D j neighbouring finite volumes(or simply neighbours) Požadavky na aproximující funkci ϕ (A) jednoduchý tvar, snadno vyčíslitelná polynom {1, x, x 2, x 3, } trigonometrickýpolynom {1,sinx,cosx,sin2x,cos2x, } racionální funkce exponenciálnífunkce ae bx 2

9 APROXIMACE FUNKCÍ V IR Obr 101 Interpolační polynom nabývající v daných uzlech předepsaných hodnot Obr 102 Proložení přímky třemi body(ve smyslu nejmenších čtverců) (B) ϕ (j) (x i )=f (j) (x i ), derivací v uzlech) (C) ϕ f malá,kde značínormu i=0,,n, j=0,,c i (rovnosthodnot,event Poznámka 12 Od požadavku(b) někdy upouštíme(proložit třemi body přímku-vizobr102) Nejčastější způsoby aproximace 1Interpolace-kfunkci fsestrojímefunkci ϕzjistétřídy Msplňující(B) 2 Aproximace metodou nejmenších čtverců- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující(b) ve smyslu nejmenších čtverců diskrétní případ

10 4 APROXIMACE FUNKCÍ V IR n ( w i f(xi ) ϕ(x i ) ) 2 =min i=0 ψ M i=0 n ( w i f(xi ) ψ(x i ) ) 2 kde w i >0, i=0,, njsouzadanáčísla,zvanáváhynázev nejmenší čtverce je patrný z následujícího příkladu: Příklad13Prodanéděleníintervalu[a, b]adanékladnéváhy w i uvažujme normu funkce f danou vztahem f := n ( w i f(xi ) ) 2 ϕ Msehledátak,že spojitý případ b a i=0 f ϕ 2 =min f ψ 2 ψ M w(x) ( f(x) ϕ(x) ) 2 dx=min ψ M b a w(x) ( f(x) ψ(x) ) 2 dx wjeváhováfunkce(skorovšudekladnáv[a, b], w L 2 (a, b)definice pojmu skorovšude aprostoru L 2 (a, b)viznapř(feistaueretal,2003, strana)) 3 Čebyševova(stejnoměrná) aproximace- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující max [a,b] ϕ(x) f(x) max ψ(x) f(x) [a,b] provšechnyfunkce ψ M,kde Mjezvolenámnožinafunkcí 11 Lagrangeův interpolační polynom 2 přednáška Hledámepolynom L n stupněnejvýše n(píšeme L n Π n -prostorpolynomů stupně nejvýše n) takový že L n (x i )=f(x i ) i=0,,n, (111) x i -navzájemrůznéuzly, obecněneekvidistantnítakovýpolynomnazveme Lagranegeovým interpolačním polynomem Věta14Nechť x 0,, x n jsounavzájemrůznéuzlypakexistujeprávějeden interpolačnípolynom L n Π n : L n (x i )=f(x i ) i=0,,n

11 Důkaz 1 Existence Uvažujme polynomy LAGRANGEŮV INTERPOLAČNÍ POLYNOM 5 l i (x)= (x x 0)(x x 1 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x 1 )(x i x i 1 )(x i x i+1 )(x i x n ) (tzv Lagrangeovy polynomy) Platí α) l i (x) Π n, 1, i=j, β) l i (x j )=δ ij = (Kroneckerovo delta) 0, i j Položme n L n (x)= f(x i )l i (x) i=0 2 Jednoznačnost Nechť L 1 n, L2 n Π nsplňují(viz(111)) L 1 n(x i )=L 2 n(x i )=f(x i ) i=0,,n Potom L 1 n L 2 n Π n jepolynom,kterýmá(n+1)různýchkořenůpodle základnívětyalgebryje L 1 n L2 n nulovýpolynom Poznámka 15 Položme Potom platí kde čárka označuje derivaci ω n+1 (x)=(x x 0 )(x x n ) l i (x)= 111 Chyba Lagrangeovy interpolace ω n+1 (x) (x x i ) ω n+1 (x i), Věta16Nechť f C n+1 (I),kde Ijenejmenšíintervalobsahující x 0,,x n, x a x 0,, x n jsounavzájemrůznéuzly,nechť L n Π n jelagrangeůvinterpolačnípolynomprofunkci fpak ξ I f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! (chybalagrangeovyinterpolacevbodě x )

12 6 APROXIMACE FUNKCÍ V IR Důkaz Pro x = x i jedůkazzřejmýpro x x i uvažujmefunkci: kde t IRPlatí: F(x)=f(x) L n (x) t ω n+1 (x) F(x i )=0 i=0,,n Pro vhodnou volbu t:= f(x ) L n (x ) ω n+1 (x (112) ) platí,že F(x )=0 F mátedy n+2nulovýchbodů(uzly x i abod x )Podle Rolleovy věty: F máaspoň n+1nulovýchbodů, F (n+1) máaspoň1nulovýbod,označmeho ξ F (n+1) (ξ)=0=f (n+1) (ξ) 0 t (n+1)! / ωn+1 (x ) (n+1)! kdejsmevyužilitoho,že(n+1)-níderivace L n jenulováa(n+1)-níderivace ω n+1 je(n+1)!dosadíme-liza tzevztahu(112),dostaneme f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! Zkušební otázka 11! Chyba Lagrangeovy interpolace 12 Kubický spline Definice17Nechťjedánoděleníintervalu[a, b], a=x 0 < x 1 < < x n = b (x i navzájemrůzné)řekneme,žefunkce ϕ:[a, b] IRjekubickýspline,jestliže 1 ϕ jespojitá( C 2 [a, b]), 2 ϕ [xi,x i+1] jekubickýpolynom,pro i=0,1,, n 1 Poznámka 18 Spline- elastické pravítko používané při stavbě lodí Poznámka 19 Kubický spline je speciálním případem spline k-tého řádu pro k=3důvodemčastéhopoužitíkubickéhosplinejefakt,želidskéokojeschopné rozlišit ještě změny 2 derivace Poznámka 110 Kubický spline dobře aproximuje funkci, která popisuje tvar s minimální energií Popíšeme-li tvar pružné laťky funkcí y = f(x), potom E(y)= b a y (x) [ 1+(y (x)) 2] 3/2 dx měří její ohybovou energii Lať se deformuje tak, že je tato energie minimální (Hamiltonůvprincip)Dáseukázat,žemezivšemifunkcemizC 2 [a, b]aproximuje

13 KUBICKÝ SPLINE 7 kubickýspline ϕ:: ϕ(x i )=f(x i )velmidobřefunkci y,prokterousenabývá minima E(y):min y E(y)=E(y ) Věta111Nechť f C 2 [a, b]pakprokaždýkubickýspline ϕsplňující ϕ(x i )=f(x i ), i=0,,n, platí ϕ f, kde u 2 := b a u (x) 2 dx, jestliže je splněna některá z následujících třech podmínek: (a) ϕ (a)= 0 = ϕ (b) (b) ϕ (a)=f (a) a ϕ (b)=f (b) (c) ϕ (a)=ϕ (b) a ϕ (a)=ϕ (b) (121) Poznámka 112(Pozor, ve větě 111 neznačí normu, ale pouze seminormu vsobolevověprostoru H 2 (a, b),kteráseobvykleznačí H 2 (a,b),detailyviznapř (Feistaueretal,2003,page)) Důkaz Viz cvičení k přednášce Důsledek 113 Ve všech třech případech(a),(b),(c) je kubický spline určen jednoznačně 121 Konstrukce přirozeného kubického spline Značení: f i := f(x i ) i=0,,n, ϕ i := ϕ [xi,x i+1] i=0,,n 1, h i := x i+1 x i i=0,,n 1 Kubickýpolynom ϕ i jenaintervalu[x i, x i+1 ]určenčtyřmikoeficientypočet intervalůje n,celkemmámetedyprourčení ϕpočetstupňůvolnosti4npro tyto stupně volnosti sestavíme příslušné rovnice Počet neznámých 4 počet intervalů 4n Početrovnic ϕ(x i )=f(x i ), i=0,,n n+1 spojitost ϕvx i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 4n 2 Počet rovnic je o dvě menší než počet neznámých Doplníme je proto některou z podmínek(121),(a) (b) Uvažujme např podmínku(121),(a), tj podmínku

14 8 APROXIMACE FUNKCÍ V IR ϕ M i i M i+1 x i x i+1 Obr121 Přímka ϕ i nulových druhých derivací v krajních bodech Takový spline nazýváme přirozenýmkubickýmsplinemprourčenípřirozenéhokubickéhosplinuhledáme ϕ i ve vhodném tvaru Ukazuje se, že efektivní metoda není založena na vyjádření ϕ i (x)=a i x 3 + b i x 2 + c i x+ d i (NEVHODNÉvizcvičení) ani na vyjádření ϕ i (x)=a i (x x i ) 3 +b i (x x i ) 2 +c i (x x i )+d i (MÉNĚVHODNÉvizcvičení) ale na vyjádření pomocí tzv momentů, což jsou hodnoty druhé derivace ϕ v uzlechoznačmeje M i : M i := ϕ (x i ), i=0,,n a předpokládejme, že tyto momenty známe Později ukážeme, jak je určit Platí ϕ i kubickýpolynom ϕ i parabola ϕ i přímka Z předpokladu spojitosti druhé derivace ϕ v uzlech dostáváme M i = ϕ i (x i), M i+1 = ϕ i(x i+1 ) Jetedy ϕ i přímka,procházejícíbody(x i, M i )a(x i+1, M i+1 )(vizobr121)

15 KUBICKÝ SPLINE 9 ϕ i (x)=(x x i) M i+1 x i+1 x i + M i (x x i+1 ) x i x i+1, ϕ i (x)= M i (x x i+1 )+ M i+1 (x x i ) h i h i Integrací odvodíme ϕ i(x)= M i 2h i (x x i+1 ) 2 + M i+1 2h i (x x i ) 2 + A i, ϕ i (x)= M i 6h i (x x i+1 ) 3 + M i+1 6h i (x x i ) 3 + A i (x x i )+B i (122) vhodný rozpis integrační konstanty Ve vyjádření ϕ i ve tvaru (122) nejprve určíme koeficienty A i, B i, i = 0,, n 1pomocímomentůapotomsestavímerovnicepromomentyVyužijeme k tomu podmínky ϕ i (x i )=f i, ϕ i (x i+1 )=f i+1, i=0,,n 1 (Dvěrovniceprodvěneznámé A i, B i, i=0,,n 1)Dostaneme ϕ i (x i )= M i 6 h2 i + B i= f i, ϕ i (x i+1 )= M i+1 6 B i =f i M i 6 h2 i, h 2 i + A ih i + f i M i 6 h2 i = f i+1, A i = f i+1 f i + M i M i+1 h i h i 6 Rovnice pro momenty sestavíme ekvivalentním vyjádřením podmínky spojitosti derivace kubického spline v uzlech: Připomeňmesitvar ϕ i resp ϕ i 1 ϕ i 1 (x i)=ϕ i (x i), i=1,,n ϕ i(x)= M i (x x i+1 ) 2 + M i+1 (x x i ) 2 + A i 2h i 2h i ϕ i 1 (x)= M i 1 2h i 1 (x x i ) 2 + M i 2h i 1 (x x i 1 ) 2 + A i 1 Svyužitímvyjádřenípro A i,resp A i 1 pomocímomentůdostaneme ϕ i 1 (x i)=0+ M i h 2 i 1 2h + f i f i 1 + M i 1 M i h i 1 i 1 h i 1 6

16 10 APROXIMACE FUNKCÍ V IR = M i h 2 2h i+0+ f i+1 f i + M i M i+1 h i = ϕ i h i 6 i(x i ) Protožekonstruujemepřirozenýkubickýspline,je M 0 = ϕ (x 0 )=0=ϕ (x n )= M n adostávámetak n 1rovnic(i = 1,,n 1)proneznámemomenty M 1, M 2,, M n 1 Tytorovnicelzepřepsatvetvaru ( 6 M hi 1 i 1+ h i 1 + h i h ) i M i + h i 6 6 M i+1= f i f i 1 + f i+1 f i h i 1 h i h i 1 +h i g i 3 h i 1 Maticový zápis vede na soustavu s třídiagonální maticí h 0+h 1 3 h 1 6 h i 1 6 h i 1+h i 3 h i 6 h n 2 6 h n 2+h n 1 3 Zkušební otázka 12! Konstrukce přirozeného kubického spline M 1 g 1 M i 1 g i 1 M i = g i M i+1 g i+1 M n 1 g n 1 Příklad 114 Pro ekvidistantní dělení s krokem h má matice soustavy tvar 4 1 h Při vyšetřování řešitelnosti této soustavy lze využít následující definici a větu z algebry: Definice115Řekněme,žematice Atypu n n, n 2jeostřediagonálně dominantní(odd), jestliže a ii > n j=1,j i a ij i=1,,n Věta116Nechť A IR nn jeoddpak Ajenesingulární

17 KUBICKÝ SPLINE 11 Důkaz pomocí Geršgorinových kruhů, viz(quarteroni et al, 2004, str 184) Ajenesingulární deta 0 rovnicedet(a λi)=0nemákořen λ=0 nula není vlastním číslem matice A Nechť λ je vlastní číslo matice A Ax=λx y:= x x, x :=max x i i Ay=λy y i 1, i 0 :: y i0 =1 j i 0 a i0jy j + a i0i 0 y i0 = λy i0 j i0 a i0jy j = λ ai0i 0 y i0 λ a i0i 0 ai0j j i 0 (Geršgorinůvkruhostředu a i0i 0 apoloměru a i0j ) j i 0 Kdyby λ=0bylovlastnímčíslem a i0i 0 ai0j j i 0 SporsODD λ=0tedynenívlastníčísloamatice Ajenesingulární Matice soustavy rovnic pro momenty je ODD, soustava je tedy podle výše uvedené věty jednoznačně řešitelná a protože matice soustavy je třídiagonální, lze pro řešení použít např Gaußovu eliminaci

18 2 NUMERICKÁ INTEGRACE FUNKCÍ 3 přednáška Nechťjedánoděleníintervalu[a, b], a x 0 < x 1 < < x n b(x i navzájemrůzné)označme h=max i {0,,n 1} x i+1 x i Vzorec Cíl: I(f)= b a f(x)dx I h (f)= I h (f)= n α i f(x i ) i=0 n α i f(x i ) (201) senazývákvadraturníformule, α i jsoukoeficientykvadraturníformuleax i jsou uzly kvadraturní formule Motivace hledání aproximace určitého integrálu ve tvarulineárníkominacehodnotfunkce fvuzlech x i jezřejmáznásledujícího odstavce 21 Newtonovy-Cotesovy vzorce Prodané n IN uvažujmeekvidistantníděleníintervalu[a, b]skrokem h= b a n, x i = a+ih, i=0,,naproximujeme-lifunkci f Lagrangeovýminterpolačnímpolynomem L n prouzly x 0,, x n,lzeurčitýintegrálzfunkce f aproximovat následujícím způsobem: b a n f(x i ) i=0 b a f(x)dx b a i=0 L n (x)dx= l i(x) { }} { (x x 0 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x i 1 )(x i x i+1 )(x i x n ) dx= i=0 b n l i (x)dx f(x i ) (211) a α i Tento vzorec nazýváme pro ekvidistantní uzly Newtonův-Cotesův Pro výpočetkoeficientů α i použijemenásledujícísubstituci 12

19 NEWTONOVY-COTESOVY VZORCE 13 subst x=a+th x i = a+ih, h= b a n α i := b a n j=0,j i (x x j ) (x i x j ) dx= b a n n 0 n j=0,j i (t j) dt (212) (i j) ZkonstrukceLagrangeovyinterpolace L n funkce f Π n plyne,že L n (x)= f(x),atedyn-cvzorecjepřesnýpropolynomystupněnejvýšentonásvede k následující definici Definice21Řekneme,žekvadraturníformule n i=0 α i f(x i )mářádpřesnosti m,jestliže m IN {0}jemaximálníčíslotakové,že b a p(x)dx= n α i p(x i ) p Π m (213) i=0 Zkušební otázka 21 Řád kvadraturní formule Lemma22Je-likvadraturníformule n i=0 α i f(x i )symetrická, tjpro i= 0,, nplatí b x n i = x i a, α i = α n i, aje-lijejířád n, nsudé,pakjejejířád n+1 Lemma 23 Newtonův-Cotesův vzorec je symetrická kvadraturní formule Důsledek24Pro nsudéjeřádn-cvzorce n+1 Zkušební otázka 22 Odvoďte Newtonův-Cotesův vzorec Lemma 25(Odhad chyby lichoběžníkového pravidla) Nechť f C 2 [a, b]označme T h (f)n-cvzorecpro n=1(lichoběžníkové pravidlo)pak ξ [a, b],::(přiznačení I(f)= b a f(x)dx) I(f) T h (f)= f (ξ) 2 h3, h=(b a) (214) 6 Lemma 26(Odhad chyby Simpsonova pravidla) Nechť f C 3 [a, b] Označme S h (f) N-C vzorec pro n = 2 (Simpsonovo pravidlo)pak ξ [a, b],:: I(f) S h (f)= h5 90 f (ξ), h= (b a) (215) 2

20 14 NUMERICKÁ INTEGRACE FUNKCÍ Definice 27(zbytek kvadraturního vzorce) Rozdíl kde I(f)= b nazýváme zbytek kvadraturního vzorce E h (f)=i(f) I h (f), a f(x)dx, I h (f)= 211 Složené Newtonovy Cotesovy vzorce n α i f(x i ), Newtonovy Cotesovy vzorce lze také aplikovat tak, že interval[a, b] rozdělíme na nekvidistantníchsubintervalů[x i, x i+1 ]velikosti hanakaždémztěchto subintervalů použijeme Newtonův Cotesův vzorec pro m + 1 ekvidistantních uzlů x i = x i0 < < x im = x i+1 skrokem H x i = a+ih, h= b a n, i=0, n, x i j = x i + jh, H= h m n 1 I(f):= i=0 xi+1 x i i=0 i=0 i=0 j=0 n, m IN n 1 n 1 f(x)dx IH i (f)= m α ij f(x ij )=: I H (f) Věta28(složené N-C vzorce) Nechť f C m+1 [a, b] Pak pro složené N-C vzorce platí I(f) I H (f) ch m+1, (216) kde c >0jekonstantanezávislánaH Důkaz plyne z odhadu chyby Lagrangeova interpolačního polynomu 22 Rombergova kvadratura Výpočet b a f(x)dxpomocísloženéholichoběžníkovéhopravidlapro n+1uzlů h= b a n, m=1, H= h Věta29(Eulerova-MacLaurinova)Nechť f C 2N+2 [a, b], h= b a n, n IN Potomprosloženélichoběžníkovépravidlo(označmeho CT h (f))platí: CT h (f)=p(h 2 )+O(h 2N+2 ) (221) = I(f)+a 1 h 2 + a 2 h 4 + +a N h 2N + O(h 2N+2 ), (222) kde p Π N, p=p(t)=a 0 + a 1 t+ +a N t, a 0 = p(0)= b a f(x)dx=i(f)

21 Důkaz viz Stör Numerische Mathematik I ROMBERGOVA KVADRATURA 15 Rombergovakvadratura:konstruujemelineárníkombinacivzorců CT h (f)pro vhodné h tak, abychom získali vzorec, který je přesnější: CT h (f)=i(f)+a 1 h 2 + O(h 4 ) / 1 h 2 CT h(f)=i(f)+a O(h4 ) /4 4CT h(f) CT h (f) 2 3 = I(f)+O(h 4 ) link=i(f)+chyba (N=1) Vhodnou lineární kombinací vzorců, z nichž každý aproximuje integrál I(f) s chybou O(h 2 ), jsme tak odvodili vzorec, který aproximuje integrál I(f) s chybou O(h 4 )Zapředpokladudostatečnéhladkostifunkce f (vizeulerova MacLaurinova věta) můžeme tímto způsobem odvodit vzorec, který aproximuje integrál I(f)schybou O(h 2N+2 )Všimněmesinapř,jakourolihrajevtomto postupuvyčíslenílagrangeovainterpolačníhopolynomu L 2 prouzly h2, CT h zapsanéhovetvaru L 2 (0)+b 1 t+b 2 t 2 (předpoklá- ahodnoty CT h 4 dáme h <<1), CT h 2 16, h 2 4, h2 Euler MacLaurin Lagrange CT h (f)= I(f)+a 1 h 2 + a 2 h 4 + O(h 6 )=L 2 (0)+b 1 h 2 + b 2 h 4 (223) h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b 2 (224) 16 h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b h 4 2 (225) 256 link = I(f)+0+0+O(h 6 ) = L 2 (0)+0+0 (N=2) kde L 2 (t)= b }{{} 0 +b 1 t+b 2 t 2 jelagrangeůvinterpolačnípolynomprotabulku L 2(0) h link CT h 4 (f) CT h 2 h 2 4 h 2 (f) CT h (f) Závěr: L 2 (0)aproximuje b a f(x)dxschybou O(h6 )Přikonstrukci L 2 (0)se jedná o tzv Richardsonovu extrapolaci Uvedený postup lze provést až do řádu 2N+2prouzly( h 2) 2 ahodnoty CT i h, i=0,, N,pomocínichžkonstruujeme 2i L N Problém: Vyčíslení Lagrangeova interpolačního polynomu v jediném bodě (zde konkrétně v 0) aniž bychom Lagrangeův interpolační polynom sestavovali Zde nepotřebujeme tvar Lagrangeova interpolačního polynomu, ale pouze jeho hodnotu v jediném bodě K tomu se používá Aitkenovo Nevilleovo schéma h 4

22 16 NUMERICKÁ INTEGRACE FUNKCÍ Zkušební otázka 23! Odvoďte Rombergův kvadraturní vzorec, který aproximujehodnotu b a f(x)dx schybou O(h4 ) VysvětletevýznamLagrangeova interpolačního polynomu při konstrukci Rombergova kvadraturního vzorce 23 Gaußova kvadratura Víme,žeN-Cvzorcemajířádaspoň n(pro nsudédokonceaspoň n+1)jakého řádumůžebýtformuletypu n i=0 α if(x i )?Uvažujmeprodanéděleníintervalu [a, b], a x 0 < < x n bkvadraturníformuli I h (f)= n α i f(x i ) (231) i=0 Lemma 210(Řád kvadraturní formule) Řád kvadraturní formule(231) je nejvýše2n+1 Důkaz Uvažujmepolynom p(x)= n i=0 (x x i) 2 Π 2n+2 Tentopolynomje nezápornáfunkcenaintervalu[a, b]aplatíproněho b a p(x) >0 Kvadraturní formule typu(231) dává pro tento polynom n α i p(x i )=0 i=0 Propolynom pnenítedykvadraturníformule(231)přesnáajejířádjetedy nejvýše2n+1 Gaußova kvadratura je způsob konstrukce vzorce n i=0 α if(x i ), který je přesný pro všechny polynomy stupně nejvýše 2n + 1 Definice 211(skalární součin polynomů) Skalární součin v C[a, b] je definován (u, v)= b Definice 212 Množina normovaných polynomů a u(x)v(x) dx (232) Π n = {p Π n ; p(x)=x n + a n 1 x n 1 + +a 0 } (233) Myšlenka konstrukce Gaußovy kvadratury: x i (uzly): kořenypolynomu p n+1 zmnožinyortogonálníchpolynomů {p 0, p 1,, p n+1 }, b α i (koeficienty): určíme tak, aby a q(x)dx = n i=0 α iq(x i ) q Π 2n+1

23 GAUßOVA KVADRATURA 17 Věta213(Ortogonálnípolynomy)Existujíjednoznačněurčenépolynomy p i, pro které platí 1 p i Π i, i IN {0}, (p i, p j )=0, i j, (pozn p 0 (x)=1) 2Kořeny x 0,,x n polynomu p n+1, n IN {0},jsoureálné,jednoduché aležív(a, b) 3 p 0 (x 0 ) p 0 (x 1 ) p 0 (x n ) p 1 (x 0 ) p 1 (x 1 ) p 1 (x n ) A= je nesingulární p n (x 0 ) p n (x 1 ) p n (x n ) Důkaz viz cvičení k přednášce 4 přednáška Svyužitímortogonálníchpolynomů p 0,, p n+1 akořenů x i polynomu p n+1 určímekoeficienty α i Gaußovykvadraturníformuletak,abyplatilo: b a q(x)dx= n α i q(x i ), q Π 2n+1 (234) i=0 Ktomuvyjádřímepolynom qvetvaru q(x)=r(x)p n+1 (x)+s(x), r, s Π n, (dělenípolynomu qpolynomem p n+1 )apolynomy r(x), s(x) Π n vyjádříme jako lineární kombinaci ortogonálních polynomů(existence takového vyjádření viz cvičení k přednášce), specielně nechť s(x)= n γ j p j (x) Nazákladětohotovyjádřenímávýraznalevéstraněv(234)tvar = b a b a j=0 b q(x)dx= r(x)p n+1 (x)dx+ a =0 n γ j p j (x)dx= j=0 b a n j=0 γ j b a s(x) dx =1 { }} { p 0 (x) p j (x)dx

24 18 NUMERICKÁ INTEGRACE FUNKCÍ = n b b b γ j p 0 (x)p j (x)dx=γ 0 p 0 (x)p 0 (x)dx=γ 0 dx j=0 a Levástranav(234)jetedyrovna a γ 0 (b a) Pravá strana v(234) má na základě výše uvedených vyjádření tvar n n n α i [r(x i )p n+1 (x i ) +s(x i )]= α i γ j p j (x i ) i=0 i=0 j=0 =0 Vidíme, že levou a pravou stranu v(234) lze tedy vyjádřit jako lineární kombinacíjistýchvýrazůskoeficienty γ j γ 0 (b a)+ γ γ n 0 n n n = γ 0 p 0 (x i )α i + γ 1 p 1 (x i )α i + +γ n p n (x i )α i i=0 i=0 Porovnánímvýrazůukoeficientů γ j nalevéapravéstranědostanemerovnice prourčeníhledanýchkoeficientů α i : n i=0 p 0(x i )α i = (b a) n i=0 p 1(x i )α i = 0 n i=0 p n(x i )α i = 0 i=0 p 0 (x 0 ) p 0 (x n ) p 1 (x 0 ) p 1 (x n ) p n (x 0 ) p n (x n ) a α 0 α 1 α n = b a 0 Zhlediskastabilityjevýhodné,žekoeficienty α i Gaußovakvadraturního vzorce n i=0 α if(x i )jsoukladné Věta214(pozitivita α i ) Koeficienty α i Gaußova kvadraturního vzorce jsou kladné Důkaz Položme: 0 < p k (x)= b a n i=0,i k (x x i ) 2 Π 2n n p k (x)dx= α i p k (x i )=α k p k (x k ) i=0 >0 α k kladné k=0,1,,n Zkušební otázka 24! Odvoďte Gaußův kvadraturní vzorec řádu 2n + 1 na intervalu[a, b] Odvoďte Gaußův kvadraturní vzorec řádu 3 na intervalu[ 1, 1] (uvažujteortogonálnípolynomy {1, x, x } 0

25 3 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Nechť je dáno nelineární zobrazení 5 přednáška F:IR N IR N Hledáme α:: F(α)=0 Metody pro řešení výše uvedené úlohy jsou většinou iterační Cíl je generovat posloupnost {x (k) }takovou,želimx (k) = α,kde F(α)=0 31 Newtonova metoda Problém F(x)=0nahradímeposloupnostílineárníchproblémů L k (x)=0, L k : IR N IR N, k=0,1,,takových,žejejichřešenítvoříposloupnostkonvergující křešeníproblému F(x)=0 α x (k+1), kde L k (x (k+1) )=0 Nechť x (0) jedáno(pozdějiukážeme,jakhovolit)prodanouaprixamaci x (k) uvažujeme L k (x)jakolineárníčásttaylorovarozvojezobrazení Fvbodě x (k) IR N (J(x)značíJakobihomaticizobrazeníFvbodě x): F(x)=F(x (k) )+J(x (k) )(x x (k) ) +O( x x (k) 2 ) L k (x) (za předpokladu dostatečné hladkosti zobrazení F) Nelineární problém nahradíme problémem lineárním {F(x)=0} {F(x (k) )+J(x (k) )(x x (k) ) =0(311) L k (x) řešení αnelinpb aproximujemeřešením x (k+1) linpb (312) α x (k+1) := x (k) J 1 (x (k) )F(x (k) )(313) Vzorecv(313),kterýmjedefinována(k+1)-níaproximace x (k+1) řešení nelineárního problému je formální, ve skutečnosti se inverzní matice nepočítá a algoritmus má následující dva kroky: Algoritmus: 19

26 20 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 1 J(x (k) )(x x k ) δx (k) = F(x(k) )-řešímelineárníúlohupro δx(k) 2 x (k+1) := x (k) + δx (k) -provedemeupdatepředchozíaproximace Pro N = 1(nelineární skalární rovnice pro jednu neznámou) má Newtonova metoda názorný geometrický význam Nelineární funkci f(x) nahradíme lineárnífunkcí(přímkou),kterájetečnoukegrafufunkce f vbodě(x (k), f(x (k) ) (mátedysměrnici f (x (k) )aprocházíbodem(x (k), f(x (k) ))Vtomtopřípaděse Newtonova metoda nazývá metodou tečen N=1: x (k+1) = x (k) f(x(k) ) f (x (k) ), x(0) dáno, f (x (k) ) 0 Zkušební otázka 31! Odvoďte Newtonovu metodu pro soustavy nelineárních rovnic a její algoritmizaci Popište algoritmus v případě jedné skalární rovnice Způsob,jaknahraditfunkci f přímkouprocházejícíbodem(x (k), f(x (k) )) není jediný Další možnosti jsou metoda sečen, jednobodová metoda sečen nebo metoda regula falsi(viz cvičení k přednášce) Poznámka 31 Newtonova metoda je speciálním případem náhrady funkce f lineární funkcí l k (x):= f(x (k) )+(x x (k) )q k, kdesměrnice q k sevolí q k := f (x (k) ) 311 Důkaz konvergence Newtonovy metody Věta32(KonvergenceNewtonovymetodyprosoustavy)Nechť F C(D), D IR N konvexní,otevřenámnožina,kteráobsahuje α:: F(α)=0Nechť J 1 (α), nechť R >0, c >0, L >0: J 1 (α) c, J(x) J(y) L x y maticová norma vekt norma x, y B(α, R), kde B(α, R)jekouleostředu αapoloměru RPotom r, x (0) B(α, r), posloupnost 313 je jednoznačně definována a konverguje k α a platí α x (k+1) α cl x (k) 2 (314) Motivace: N=1 x (k+1) = x (k) f(x(k) ) f (x (k) ) Newtonova metoda

27 Z Taylorova rozvoje dostáváme: NEWTONOVA METODA 21 f(α)=f(x (k) )+f (x (k) )(α x (k) )+ f (ξ)(α x (k) ) 2 2 Zajímánáschyba(α x (k+1) )Chcemeukázat,že α x (k+1) 0Odečtením α od obou stran vzorce pro Newtonovu metodu získáme vyjádření α x (k+1) = α x (k) + f(x(k) ) f (x (k) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že f(α) = 0) dostaneme 0= f(x(k) ) f (x (k) ) +(α x(k) )+ f (ξ)(α x (k) ) 2 2 f (x (k) ) Z předchozích dvou rovnic snadno nahlédneme, že platí α x (k+1) = f (ξ)(α x (k) ) 2 2 f (x (k) ) Předpokládejme nyní, že existuje konstanta c taková, že podíl derivací na pravé straně předchozího výrazu lze odhadnout f (ξ) 2 f (x (k) ) < c ξ x(k) Potom dostaneme ( α x (k+1) α c x (k) 2 ) c c α x (k 1) 2 2 = 1 c ( ) c α x (k 1) 4 1 c ( ) c α x (0) 2 k+1 Pravástranakonvergujeknulepro k + zapředpokladu c α x (0) <1,tjjestližeje x (0) dostatečněblízkokα Pro důkaz konvergence Newtonovy metody pro jednu skalární rovnici jsme tedy využili tyto předpoklady 1 x (0) dostatečněblízko α, 2 f omezenáshora 1 3 f omezenáshora(tjpředpokládáme f (α) 0), které korespondují s předpoklady Věty 32 Jak, to je patrné z následujícího důkazu

28 22 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Důkaz věty32 x (0) zvolímevb(α, r),kde ručímetak,aby J 1 (x (0) )existovala(jinýmislovy, x (0) volímedostatečněblízko α)ktomuvyužijemenásledující tvrzení z algebry: Lemma 33 Důkaz viz cvičení k přednášce Definujme matici A <1 (I A) 1 existujeaplatí (I A) A A:= I J 1 (α)j(x (0) ) kde x (0) zvolímetak(blízko α),aby A <1,konkrétnězvolíme x (0) tak,aby A 1 2 K tomu využijeme předpoklady Věty 32 týkající se odhadu inverze Jacobiho matice v bodě α a lipschitzovskosti Jacobiho matice: A { }} { I J 1 (α)j(x (0) ) = J 1 (α)(j(α) J(x (0) )) cl α x (0) (315) x (0) zvolímetak,abyposlednívýrazv(315) 1 2 Tímdostávámepodmínku na x (0) : α x (0) 1 α cl azároveň x (0) R( platnost podmínky lipschitzovskosti) Pro r dostáváme ( ) 1 r:=min 2cL, R Vmnožine B(α, r)existujepodlevýšeuvedenéhotvrzenízalgebry J 1 (x (0) ) Toplynezevztahů (I A)=J 1 (α)j(x 0 ), (I A) 1 = J 1 (x (0) )J(α) Lze tedy spočítat první iteraci Newtonovy metody a odhadnout její chybu: α x (1) = α x (0) + J 1 (x (0) )F(x (0) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že F(α) = 0) dostaneme 0=F(α)=F(x (0) )+J(x (0) )(α x (0) )+ zbytek, 0=J 1 (x (0) )F(x (0) )+(α x (0) )+J 1 (x (0) )zbytek

29 NEWTONOVA METODA 23 S využitím odhadu zbytku Taylorova rozvoje dostaneme odhad zbytku { }} { α x (1) J 1 (x (0) 1 α ) 2 L x (0) 2 a důkaz dokončíme pomocí odhadu normy inverzní matice J 1 (x (0) ) = J ( 1) (x (0) )J(α) J (I A) 1 Pro odhad chyby máme tedy vztah ( 1) (α) 1 c 2c 1 A }{{} 1 2 α x (1) α cl x (0) 2 ( ) = cl α x (0) α x (0), 1 2 z něhož plyne dále indukcí konvergence Newtonovy metody Zkušební otázka 32 Dokažte větu o konvergenci Newtonovy metody Poznámka 34 Modifikace Newtonovy metody: Jacobihomaticeseneměnípro p 2kroků nepřesné řešení soustavy lin rovnic vyčísleníjacobihomaticepomocídiferencí f (x) f(x+h) f(x) h 312 Řádkonvergence Definice 35(řád konvergence iterační metody pro řešení F(x) = 0) Řekneme, žeposloupnost {x (k) }generovanánumerickoumetodoukonvergujekαsřádem p 1,pokud c >0 α x (k+1) α x (k) p c k k 0 V takovém případě se numerická metoda nazývá řádu p Věta 32 říká, že Newtonova metoda je kvadraticky konvergentní, α x (k+1) α cl x (k) 2, pokudje x (0) dostatečněblízko αapokudje J(α)nesingulární

30 24 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 32 Metoda postupných aproximací pro nelineární rovnice Metoda postupných aproximací je založena na faktu, že pro dané zobrazení F: M IR N IR N jevždymožnétransformovatproblém F(x)=0naekvivalentní problém x φ(x)=0,kdepomocnáfunkce φjevolenatak,aby φ(α)=αprávě když F(α)=0Nalezenínulovýchbodůzobrazení Fsetakpřevedenanalezení pevného bodu zobrazení φ, které se realizuje pomocí následujícího algoritmu: Dáno x (0), x (k+1) := φ(x (k) ), k 0 Definice36(kontrahujícízobrazení)Řekneme,žezobrazení G:D IR N IR n jekontrahujícína D 0 D,jestliže L <1:: G(x) G(y) L x y x, y D 0 Věta37(větaopevnémbodě)Nechť G:D IR N IR N kontrahujícína uzavřenémnožině D 0 D, G(x) D 0 x D 0 Pak Gmáprávějedenpevný bodtentobodjelimitouposloupnosti x (k+1) = φ(x (k) ), x (0) D 0 libovolné Důkaz jednoznačnost, existence(cauchyovská posloupnost, spojitost G), viz cvičení k přednášce Poznámka 38 Newtonova metoda jako speciální případ věty o pevném bodě (Viz cvičení k přednášce) 33 Kořeny polynomu Nalezení lokalizacekořenůvc aproximace kořenů 6 přednáška Věta 39(Descartes) Počet kladných kořenů(včetně násobnosti) polynomu p n (α)=a 0 +a 1 x+ +a n x n jerovenpočtuznaménkovýchzměnvposloupnosti a 0, a 1,,a n,nebojeosudéčíslomenší Věta 310(Cauchy) Kořeny polynomu leží v kruhu { Γ= z C; z 1+η, η= max 0 k n 1 Poznámka3111 η:translaceazměnasouřadnic 331 Hornerovoschema V dalším budeme potřebovat vyčíslení hodnoty polynomu v daném bodě x Vyčíslení polynomu: p n (x)=a 0 + a 1 x+ +a n x n a k a n }

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D.

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D. Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY RNDr. Karel Hasík, Ph.D. Obsah 2 ÚVOD DO NUMERICKÉ MATEMATIKY 7 2.1 Rozdělení chyb........................... 7 2.2 Zaokrouhlovací chyby.......................

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc.

Numerické metody. Autoři textu: RNDr. Rudolf Hlavička, CSc. FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Numerické metody Garant předmětu: doc. RNDr. Libor Čermák, CSc. Autoři textu: Mgr. Irena Růžičková RNDr. Rudolf Hlavička, CSc. Ústav matematiky

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce.

1a. Metoda půlení intervalů (metoda bisekce, Bisection method) Tato metoda vychází z vlastnosti mezihodnoty pro spojité funkce. Hledání kořenů Úloha: Pro danou funkci f(x) máme najít číslo r tak, aby f(r) = 0. Pozor, počítač totiž kořen nepozná! Má jistou přesnost výpočtu δ > 0 a prohlásí f(r) = 0 pokaždé, když f(x) < δ. Není ovšem

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí

Numerické algoritmy KAPITOLA 11. Vyhledávání nulových bodů funkcí Numerické algoritmy KAPITOLA 11 V této kapitole: Vyhledávání nulových bodů funkcí Iterativní výpočet hodnot funkce Interpolace funkcí Lagrangeovou metodou Derivování funkcí Integrování funkcí Simpsonovou

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

A 9. Počítejte v radiánech, ne ve stupních!

A 9. Počítejte v radiánech, ne ve stupních! A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Jakub Opršal. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. TEORIE ČÍSEL MNOHOČLENŮ A MNOHOČLENY V TEORII ČÍSEL Jakub Opršal Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Radek Kučera ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Radek Kučera ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA NUMERICKÉ METODY Radek Kučera Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 Studijní opory s převažujícími

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Masarykova univerzita Brno. Katedra aplikované matematiky. maticemi

Masarykova univerzita Brno. Katedra aplikované matematiky. maticemi Masarykova univerzita Brno Fakulta přírodovědecká Katedra aplikované matematiky Lineární systémy se speciálními maticemi Diplomová práce květen 2006 Jaroslava Benáčková Poděkování V úvodu bych ráda poděkovala

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Organic Search Traffic

Organic Search Traffic http://forum.matweb.cz http://forum.matweb.cz Matematické forum [DEFAULT] Organic Search Traffic Jan 1, 2012 Dec 31, 2012 % of visits: 86.15% Explorer Site Usage Visits 10,000 5,000 April 2012 July 2012

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Škola matematického modelování 2015. Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal

Škola matematického modelování 2015. Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal Počítačová cvičení Škola matematického modelování 2015 Petr Beremlijski, Rajko Ćosić, Lukáš Malý, Marie Sadowská, Robert Skopal Počítačová cvičení Škola matematického modelování Petr Beremlijski, Rajko

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více