Numerická matematika

Rozměr: px
Začít zobrazení ze stránky:

Download "Numerická matematika"

Transkript

1 Numerická matematika Jiří Felcman Univerzita Karlova v Praze Matematicko-fyzikální fakulta KNM PRESS PRAHA 2014

2 iv

3 PŘEDMLUVA 1 Tel KNMčdvK458(5042) 1 přednáška 2 NMAI042 Numerická matematika Obecná informatika Programování a softwarové systémy (Programování, Správa počítačových systémů- zahájení 2011 nebo dříve) 3 Požadavky ke zkoušce státnice(prospěl s vyznamenáním) Obecná informatika: MFF >Studium >BcaMgrstudium >Studijníplány >Obecná informatika sylabus SIS, Předměty, NMAI042, Hledej 4 Tituly PhD RNDr Mgr Bc 5 Studium v zahraničí- ERASMUS 6 Ceny udělované studentům 7 SVOČ 8 Hodnocení učitelů- srozumitelnost 9 Zápočet: pátek 2 května Zkouška: pátek 9 května 2014, 12:20 část písemná, dosažení minimálního předepsaného počtu bodů pro každou otázku část ústní Praha, 3 února 2014 J F v

4

5 OBSAH Úvod 1 1 Aproximace funkcí v IR 2 11 Lagrangeův interpolační polynom Chyba Lagrangeovy interpolace 5 12 Kubický spline Konstrukce přirozeného kubického spline 7 2 Numerická integrace funkcí Newtonovy-Cotesovy vzorce Složené Newtonovy Cotesovy vzorce Rombergova kvadratura Gaußova kvadratura 16 3 Metody řešení nelineárních rovnic Newtonova metoda Důkaz konvergence Newtonovy metody Řád konvergence Metoda postupných aproximací pro nelineární rovnice Kořeny polynomu Hornerovo schema 24 4 Soustavy lineárních rovnic Podmíněnost matic Gaußova eliminace Pivotace Gaußova eliminace jako faktorizační metoda LU rozklad v obecném případě Vliv zaokrouhlovacích chyb Choleského rozklad QR rozklad 35 5 Iterační metody řešení soustav lineárních rovnic Klasické iterační metody 37 6 Výpočet vlastních čísel matic Mocninná metoda 43 7 Numerická integrace obyčejných diferenciálních rovnic Formulace problému Jednokrokové metody 45 vii

6 viii OBSAH 721 Metody typu Runge Kutta 47 8 Gradientní metody Formulace problému 50 Bibliografie 51 Index 52

7 ÚVOD Numerická analýza: Studium algoritmů(jednoznačně definovaná konečná posloupnost aritmetických a logických operací) pro řešení problémů spojité matematiky LN Trefethen, Bulletin IMA 1993 Numerická matematika: realizace matematických modelů na počítači Fyzikální realita matematický model numerické řešení, tj realizace matematického modelu na počítači Validation(solving the right equations) verification(solving the equations right) Literatura k přednášce:(quarteroni et al, 2004),(Ueberhuber, 2000),(Segethová, 2000) Předpokládané znalosti: Rolleova věta, definice normy funkce, definice seminormy, vlastní čísla, báze lineárního vektorového prostoru, Taylorova věta 1

8 1 APROXIMACE FUNKCÍ V IR Jedna ze základních úloh numerické matematiky: aproximace dané funkce f jinou funkcí ϕ Zadání aproximované funkce- analyticky, nebo je k dispozici tabulkahodnot(x i, f i ), x i, f i IR, i=0,,n, n IN, f i = f(x i )(vizobr 101) tabulkahodnotderivacídourčitéhořáduvuzlech x i Pro funkci f definovanou na uzavřeném intervalu[a, b] uvažujeme dělení intervalu[a, b], a=x 0 < x 1, < x n = b, n Z + = {0,1, }anazývámeho sítí x i, i=0,nnazývámeuzly(ekvidistantní,je-li x i = a+ih,kde h IRje kroksítě) Poznámka 11 Pojem síť se používá obecně v N-rozměrném prostoru, viz např (Feistaueretal,2003,str185):LetΩ IR N beadomainif N=2,thenby Ω h wedenoteapolygonalapproximationofωthismeansthattheboundary Ω h ofω h consistsofafinitenumberofclosedsimplepiecewiselinearcurves For N=3,Ω h willdenoteapolyhedralapproximationofωfor N=3weset Ω h =ΩThesystem D h = {D i } i J,where J Z + = {0,1, }isanindexset and h >0,willbecalledafinitevolumemeshinΩ h,if D i, i J,areclosedline segmentsorclosedpolygonsorpolyhedrons,if N=1or N=2or3,respectively, with mutually disjoint interiors such that Ω h = i J D i Theelements D i D h arecalledfinitevolumestwofinitevolumes D i, D j D h areeitherdisjointortheirintersectionisformedbyacommonpartoftheir boundaries D i and D j If D i D j containsatleastonestraightsegmentora planemanifold,if N=2or3,respectively,thenwecall D i and D j neighbouring finite volumes(or simply neighbours) Požadavky na aproximující funkci ϕ (A) jednoduchý tvar, snadno vyčíslitelná polynom {1, x, x 2, x 3, } trigonometrickýpolynom {1,sinx,cosx,sin2x,cos2x, } racionální funkce exponenciálnífunkce ae bx 2

9 APROXIMACE FUNKCÍ V IR Obr 101 Interpolační polynom nabývající v daných uzlech předepsaných hodnot Obr 102 Proložení přímky třemi body(ve smyslu nejmenších čtverců) (B) ϕ (j) (x i )=f (j) (x i ), derivací v uzlech) (C) ϕ f malá,kde značínormu i=0,,n, j=0,,c i (rovnosthodnot,event Poznámka 12 Od požadavku(b) někdy upouštíme(proložit třemi body přímku-vizobr102) Nejčastější způsoby aproximace 1Interpolace-kfunkci fsestrojímefunkci ϕzjistétřídy Msplňující(B) 2 Aproximace metodou nejmenších čtverců- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující(b) ve smyslu nejmenších čtverců diskrétní případ

10 4 APROXIMACE FUNKCÍ V IR n ( w i f(xi ) ϕ(x i ) ) 2 =min i=0 ψ M i=0 n ( w i f(xi ) ψ(x i ) ) 2 kde w i >0, i=0,, njsouzadanáčísla,zvanáváhynázev nejmenší čtverce je patrný z následujícího příkladu: Příklad13Prodanéděleníintervalu[a, b]adanékladnéváhy w i uvažujme normu funkce f danou vztahem f := n ( w i f(xi ) ) 2 ϕ Msehledátak,že spojitý případ b a i=0 f ϕ 2 =min f ψ 2 ψ M w(x) ( f(x) ϕ(x) ) 2 dx=min ψ M b a w(x) ( f(x) ψ(x) ) 2 dx wjeváhováfunkce(skorovšudekladnáv[a, b], w L 2 (a, b)definice pojmu skorovšude aprostoru L 2 (a, b)viznapř(feistaueretal,2003, strana)) 3 Čebyševova(stejnoměrná) aproximace- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující max [a,b] ϕ(x) f(x) max ψ(x) f(x) [a,b] provšechnyfunkce ψ M,kde Mjezvolenámnožinafunkcí 11 Lagrangeův interpolační polynom 2 přednáška Hledámepolynom L n stupněnejvýše n(píšeme L n Π n -prostorpolynomů stupně nejvýše n) takový že L n (x i )=f(x i ) i=0,,n, (111) x i -navzájemrůznéuzly, obecněneekvidistantnítakovýpolynomnazveme Lagranegeovým interpolačním polynomem Věta14Nechť x 0,, x n jsounavzájemrůznéuzlypakexistujeprávějeden interpolačnípolynom L n Π n : L n (x i )=f(x i ) i=0,,n

11 Důkaz 1 Existence Uvažujme polynomy LAGRANGEŮV INTERPOLAČNÍ POLYNOM 5 l i (x)= (x x 0)(x x 1 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x 1 )(x i x i 1 )(x i x i+1 )(x i x n ) (tzv Lagrangeovy polynomy) Platí α) l i (x) Π n, 1, i=j, β) l i (x j )=δ ij = (Kroneckerovo delta) 0, i j Položme n L n (x)= f(x i )l i (x) i=0 2 Jednoznačnost Nechť L 1 n, L2 n Π nsplňují(viz(111)) L 1 n(x i )=L 2 n(x i )=f(x i ) i=0,,n Potom L 1 n L 2 n Π n jepolynom,kterýmá(n+1)různýchkořenůpodle základnívětyalgebryje L 1 n L2 n nulovýpolynom Poznámka 15 Položme Potom platí kde čárka označuje derivaci ω n+1 (x)=(x x 0 )(x x n ) l i (x)= 111 Chyba Lagrangeovy interpolace ω n+1 (x) (x x i ) ω n+1 (x i), Věta16Nechť f C n+1 (I),kde Ijenejmenšíintervalobsahující x 0,,x n, x a x 0,, x n jsounavzájemrůznéuzly,nechť L n Π n jelagrangeůvinterpolačnípolynomprofunkci fpak ξ I f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! (chybalagrangeovyinterpolacevbodě x )

12 6 APROXIMACE FUNKCÍ V IR Důkaz Pro x = x i jedůkazzřejmýpro x x i uvažujmefunkci: kde t IRPlatí: F(x)=f(x) L n (x) t ω n+1 (x) F(x i )=0 i=0,,n Pro vhodnou volbu t:= f(x ) L n (x ) ω n+1 (x (112) ) platí,že F(x )=0 F mátedy n+2nulovýchbodů(uzly x i abod x )Podle Rolleovy věty: F máaspoň n+1nulovýchbodů, F (n+1) máaspoň1nulovýbod,označmeho ξ F (n+1) (ξ)=0=f (n+1) (ξ) 0 t (n+1)! / ωn+1 (x ) (n+1)! kdejsmevyužilitoho,že(n+1)-níderivace L n jenulováa(n+1)-níderivace ω n+1 je(n+1)!dosadíme-liza tzevztahu(112),dostaneme f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! Zkušební otázka 11! Chyba Lagrangeovy interpolace 12 Kubický spline Definice17Nechťjedánoděleníintervalu[a, b], a=x 0 < x 1 < < x n = b (x i navzájemrůzné)řekneme,žefunkce ϕ:[a, b] IRjekubickýspline,jestliže 1 ϕ jespojitá( C 2 [a, b]), 2 ϕ [xi,x i+1] jekubickýpolynom,pro i=0,1,, n 1 Poznámka 18 Spline- elastické pravítko používané při stavbě lodí Poznámka 19 Kubický spline je speciálním případem spline k-tého řádu pro k=3důvodemčastéhopoužitíkubickéhosplinejefakt,želidskéokojeschopné rozlišit ještě změny 2 derivace Poznámka 110 Kubický spline dobře aproximuje funkci, která popisuje tvar s minimální energií Popíšeme-li tvar pružné laťky funkcí y = f(x), potom E(y)= b a y (x) [ 1+(y (x)) 2] 3/2 dx měří její ohybovou energii Lať se deformuje tak, že je tato energie minimální (Hamiltonůvprincip)Dáseukázat,žemezivšemifunkcemizC 2 [a, b]aproximuje

13 KUBICKÝ SPLINE 7 kubickýspline ϕ:: ϕ(x i )=f(x i )velmidobřefunkci y,prokterousenabývá minima E(y):min y E(y)=E(y ) Věta111Nechť f C 2 [a, b]pakprokaždýkubickýspline ϕsplňující ϕ(x i )=f(x i ), i=0,,n, platí ϕ f, kde u 2 := b a u (x) 2 dx, jestliže je splněna některá z následujících třech podmínek: (a) ϕ (a)= 0 = ϕ (b) (b) ϕ (a)=f (a) a ϕ (b)=f (b) (c) ϕ (a)=ϕ (b) a ϕ (a)=ϕ (b) (121) Poznámka 112(Pozor, ve větě 111 neznačí normu, ale pouze seminormu vsobolevověprostoru H 2 (a, b),kteráseobvykleznačí H 2 (a,b),detailyviznapř (Feistaueretal,2003,page)) Důkaz Viz cvičení k přednášce Důsledek 113 Ve všech třech případech(a),(b),(c) je kubický spline určen jednoznačně 121 Konstrukce přirozeného kubického spline Značení: f i := f(x i ) i=0,,n, ϕ i := ϕ [xi,x i+1] i=0,,n 1, h i := x i+1 x i i=0,,n 1 Kubickýpolynom ϕ i jenaintervalu[x i, x i+1 ]určenčtyřmikoeficientypočet intervalůje n,celkemmámetedyprourčení ϕpočetstupňůvolnosti4npro tyto stupně volnosti sestavíme příslušné rovnice Počet neznámých 4 počet intervalů 4n Početrovnic ϕ(x i )=f(x i ), i=0,,n n+1 spojitost ϕvx i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 4n 2 Počet rovnic je o dvě menší než počet neznámých Doplníme je proto některou z podmínek(121),(a) (b) Uvažujme např podmínku(121),(a), tj podmínku

14 8 APROXIMACE FUNKCÍ V IR ϕ M i i M i+1 x i x i+1 Obr121 Přímka ϕ i nulových druhých derivací v krajních bodech Takový spline nazýváme přirozenýmkubickýmsplinemprourčenípřirozenéhokubickéhosplinuhledáme ϕ i ve vhodném tvaru Ukazuje se, že efektivní metoda není založena na vyjádření ϕ i (x)=a i x 3 + b i x 2 + c i x+ d i (NEVHODNÉvizcvičení) ani na vyjádření ϕ i (x)=a i (x x i ) 3 +b i (x x i ) 2 +c i (x x i )+d i (MÉNĚVHODNÉvizcvičení) ale na vyjádření pomocí tzv momentů, což jsou hodnoty druhé derivace ϕ v uzlechoznačmeje M i : M i := ϕ (x i ), i=0,,n a předpokládejme, že tyto momenty známe Později ukážeme, jak je určit Platí ϕ i kubickýpolynom ϕ i parabola ϕ i přímka Z předpokladu spojitosti druhé derivace ϕ v uzlech dostáváme M i = ϕ i (x i), M i+1 = ϕ i(x i+1 ) Jetedy ϕ i přímka,procházejícíbody(x i, M i )a(x i+1, M i+1 )(vizobr121)

15 KUBICKÝ SPLINE 9 ϕ i (x)=(x x i) M i+1 x i+1 x i + M i (x x i+1 ) x i x i+1, ϕ i (x)= M i (x x i+1 )+ M i+1 (x x i ) h i h i Integrací odvodíme ϕ i(x)= M i 2h i (x x i+1 ) 2 + M i+1 2h i (x x i ) 2 + A i, ϕ i (x)= M i 6h i (x x i+1 ) 3 + M i+1 6h i (x x i ) 3 + A i (x x i )+B i (122) vhodný rozpis integrační konstanty Ve vyjádření ϕ i ve tvaru (122) nejprve určíme koeficienty A i, B i, i = 0,, n 1pomocímomentůapotomsestavímerovnicepromomentyVyužijeme k tomu podmínky ϕ i (x i )=f i, ϕ i (x i+1 )=f i+1, i=0,,n 1 (Dvěrovniceprodvěneznámé A i, B i, i=0,,n 1)Dostaneme ϕ i (x i )= M i 6 h2 i + B i= f i, ϕ i (x i+1 )= M i+1 6 B i =f i M i 6 h2 i, h 2 i + A ih i + f i M i 6 h2 i = f i+1, A i = f i+1 f i + M i M i+1 h i h i 6 Rovnice pro momenty sestavíme ekvivalentním vyjádřením podmínky spojitosti derivace kubického spline v uzlech: Připomeňmesitvar ϕ i resp ϕ i 1 ϕ i 1 (x i)=ϕ i (x i), i=1,,n ϕ i(x)= M i (x x i+1 ) 2 + M i+1 (x x i ) 2 + A i 2h i 2h i ϕ i 1 (x)= M i 1 2h i 1 (x x i ) 2 + M i 2h i 1 (x x i 1 ) 2 + A i 1 Svyužitímvyjádřenípro A i,resp A i 1 pomocímomentůdostaneme ϕ i 1 (x i)=0+ M i h 2 i 1 2h + f i f i 1 + M i 1 M i h i 1 i 1 h i 1 6

16 10 APROXIMACE FUNKCÍ V IR = M i h 2 2h i+0+ f i+1 f i + M i M i+1 h i = ϕ i h i 6 i(x i ) Protožekonstruujemepřirozenýkubickýspline,je M 0 = ϕ (x 0 )=0=ϕ (x n )= M n adostávámetak n 1rovnic(i = 1,,n 1)proneznámemomenty M 1, M 2,, M n 1 Tytorovnicelzepřepsatvetvaru ( 6 M hi 1 i 1+ h i 1 + h i h ) i M i + h i 6 6 M i+1= f i f i 1 + f i+1 f i h i 1 h i h i 1 +h i g i 3 h i 1 Maticový zápis vede na soustavu s třídiagonální maticí h 0+h 1 3 h 1 6 h i 1 6 h i 1+h i 3 h i 6 h n 2 6 h n 2+h n 1 3 Zkušební otázka 12! Konstrukce přirozeného kubického spline M 1 g 1 M i 1 g i 1 M i = g i M i+1 g i+1 M n 1 g n 1 Příklad 114 Pro ekvidistantní dělení s krokem h má matice soustavy tvar 4 1 h Při vyšetřování řešitelnosti této soustavy lze využít následující definici a větu z algebry: Definice115Řekněme,žematice Atypu n n, n 2jeostřediagonálně dominantní(odd), jestliže a ii > n j=1,j i a ij i=1,,n Věta116Nechť A IR nn jeoddpak Ajenesingulární

17 KUBICKÝ SPLINE 11 Důkaz pomocí Geršgorinových kruhů, viz(quarteroni et al, 2004, str 184) Ajenesingulární deta 0 rovnicedet(a λi)=0nemákořen λ=0 nula není vlastním číslem matice A Nechť λ je vlastní číslo matice A Ax=λx y:= x x, x :=max x i i Ay=λy y i 1, i 0 :: y i0 =1 j i 0 a i0jy j + a i0i 0 y i0 = λy i0 j i0 a i0jy j = λ ai0i 0 y i0 λ a i0i 0 ai0j j i 0 (Geršgorinůvkruhostředu a i0i 0 apoloměru a i0j ) j i 0 Kdyby λ=0bylovlastnímčíslem a i0i 0 ai0j j i 0 SporsODD λ=0tedynenívlastníčísloamatice Ajenesingulární Matice soustavy rovnic pro momenty je ODD, soustava je tedy podle výše uvedené věty jednoznačně řešitelná a protože matice soustavy je třídiagonální, lze pro řešení použít např Gaußovu eliminaci

18 2 NUMERICKÁ INTEGRACE FUNKCÍ 3 přednáška Nechťjedánoděleníintervalu[a, b], a x 0 < x 1 < < x n b(x i navzájemrůzné)označme h=max i {0,,n 1} x i+1 x i Vzorec Cíl: I(f)= b a f(x)dx I h (f)= I h (f)= n α i f(x i ) i=0 n α i f(x i ) (201) senazývákvadraturníformule, α i jsoukoeficientykvadraturníformuleax i jsou uzly kvadraturní formule Motivace hledání aproximace určitého integrálu ve tvarulineárníkominacehodnotfunkce fvuzlech x i jezřejmáznásledujícího odstavce 21 Newtonovy-Cotesovy vzorce Prodané n IN uvažujmeekvidistantníděleníintervalu[a, b]skrokem h= b a n, x i = a+ih, i=0,,naproximujeme-lifunkci f Lagrangeovýminterpolačnímpolynomem L n prouzly x 0,, x n,lzeurčitýintegrálzfunkce f aproximovat následujícím způsobem: b a n f(x i ) i=0 b a f(x)dx b a i=0 L n (x)dx= l i(x) { }} { (x x 0 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x i 1 )(x i x i+1 )(x i x n ) dx= i=0 b n l i (x)dx f(x i ) (211) a α i Tento vzorec nazýváme pro ekvidistantní uzly Newtonův-Cotesův Pro výpočetkoeficientů α i použijemenásledujícísubstituci 12

19 NEWTONOVY-COTESOVY VZORCE 13 subst x=a+th x i = a+ih, h= b a n α i := b a n j=0,j i (x x j ) (x i x j ) dx= b a n n 0 n j=0,j i (t j) dt (212) (i j) ZkonstrukceLagrangeovyinterpolace L n funkce f Π n plyne,že L n (x)= f(x),atedyn-cvzorecjepřesnýpropolynomystupněnejvýšentonásvede k následující definici Definice21Řekneme,žekvadraturníformule n i=0 α i f(x i )mářádpřesnosti m,jestliže m IN {0}jemaximálníčíslotakové,že b a p(x)dx= n α i p(x i ) p Π m (213) i=0 Zkušební otázka 21 Řád kvadraturní formule Lemma22Je-likvadraturníformule n i=0 α i f(x i )symetrická, tjpro i= 0,, nplatí b x n i = x i a, α i = α n i, aje-lijejířád n, nsudé,pakjejejířád n+1 Lemma 23 Newtonův-Cotesův vzorec je symetrická kvadraturní formule Důsledek24Pro nsudéjeřádn-cvzorce n+1 Zkušební otázka 22 Odvoďte Newtonův-Cotesův vzorec Lemma 25(Odhad chyby lichoběžníkového pravidla) Nechť f C 2 [a, b]označme T h (f)n-cvzorecpro n=1(lichoběžníkové pravidlo)pak ξ [a, b],::(přiznačení I(f)= b a f(x)dx) I(f) T h (f)= f (ξ) 2 h3, h=(b a) (214) 6 Lemma 26(Odhad chyby Simpsonova pravidla) Nechť f C 3 [a, b] Označme S h (f) N-C vzorec pro n = 2 (Simpsonovo pravidlo)pak ξ [a, b],:: I(f) S h (f)= h5 90 f (ξ), h= (b a) (215) 2

20 14 NUMERICKÁ INTEGRACE FUNKCÍ Definice 27(zbytek kvadraturního vzorce) Rozdíl kde I(f)= b nazýváme zbytek kvadraturního vzorce E h (f)=i(f) I h (f), a f(x)dx, I h (f)= 211 Složené Newtonovy Cotesovy vzorce n α i f(x i ), Newtonovy Cotesovy vzorce lze také aplikovat tak, že interval[a, b] rozdělíme na nekvidistantníchsubintervalů[x i, x i+1 ]velikosti hanakaždémztěchto subintervalů použijeme Newtonův Cotesův vzorec pro m + 1 ekvidistantních uzlů x i = x i0 < < x im = x i+1 skrokem H x i = a+ih, h= b a n, i=0, n, x i j = x i + jh, H= h m n 1 I(f):= i=0 xi+1 x i i=0 i=0 i=0 j=0 n, m IN n 1 n 1 f(x)dx IH i (f)= m α ij f(x ij )=: I H (f) Věta28(složené N-C vzorce) Nechť f C m+1 [a, b] Pak pro složené N-C vzorce platí I(f) I H (f) ch m+1, (216) kde c >0jekonstantanezávislánaH Důkaz plyne z odhadu chyby Lagrangeova interpolačního polynomu 22 Rombergova kvadratura Výpočet b a f(x)dxpomocísloženéholichoběžníkovéhopravidlapro n+1uzlů h= b a n, m=1, H= h Věta29(Eulerova-MacLaurinova)Nechť f C 2N+2 [a, b], h= b a n, n IN Potomprosloženélichoběžníkovépravidlo(označmeho CT h (f))platí: CT h (f)=p(h 2 )+O(h 2N+2 ) (221) = I(f)+a 1 h 2 + a 2 h 4 + +a N h 2N + O(h 2N+2 ), (222) kde p Π N, p=p(t)=a 0 + a 1 t+ +a N t, a 0 = p(0)= b a f(x)dx=i(f)

21 Důkaz viz Stör Numerische Mathematik I ROMBERGOVA KVADRATURA 15 Rombergovakvadratura:konstruujemelineárníkombinacivzorců CT h (f)pro vhodné h tak, abychom získali vzorec, který je přesnější: CT h (f)=i(f)+a 1 h 2 + O(h 4 ) / 1 h 2 CT h(f)=i(f)+a O(h4 ) /4 4CT h(f) CT h (f) 2 3 = I(f)+O(h 4 ) link=i(f)+chyba (N=1) Vhodnou lineární kombinací vzorců, z nichž každý aproximuje integrál I(f) s chybou O(h 2 ), jsme tak odvodili vzorec, který aproximuje integrál I(f) s chybou O(h 4 )Zapředpokladudostatečnéhladkostifunkce f (vizeulerova MacLaurinova věta) můžeme tímto způsobem odvodit vzorec, který aproximuje integrál I(f)schybou O(h 2N+2 )Všimněmesinapř,jakourolihrajevtomto postupuvyčíslenílagrangeovainterpolačníhopolynomu L 2 prouzly h2, CT h zapsanéhovetvaru L 2 (0)+b 1 t+b 2 t 2 (předpoklá- ahodnoty CT h 4 dáme h <<1), CT h 2 16, h 2 4, h2 Euler MacLaurin Lagrange CT h (f)= I(f)+a 1 h 2 + a 2 h 4 + O(h 6 )=L 2 (0)+b 1 h 2 + b 2 h 4 (223) h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b 2 (224) 16 h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b h 4 2 (225) 256 link = I(f)+0+0+O(h 6 ) = L 2 (0)+0+0 (N=2) kde L 2 (t)= b }{{} 0 +b 1 t+b 2 t 2 jelagrangeůvinterpolačnípolynomprotabulku L 2(0) h link CT h 4 (f) CT h 2 h 2 4 h 2 (f) CT h (f) Závěr: L 2 (0)aproximuje b a f(x)dxschybou O(h6 )Přikonstrukci L 2 (0)se jedná o tzv Richardsonovu extrapolaci Uvedený postup lze provést až do řádu 2N+2prouzly( h 2) 2 ahodnoty CT i h, i=0,, N,pomocínichžkonstruujeme 2i L N Problém: Vyčíslení Lagrangeova interpolačního polynomu v jediném bodě (zde konkrétně v 0) aniž bychom Lagrangeův interpolační polynom sestavovali Zde nepotřebujeme tvar Lagrangeova interpolačního polynomu, ale pouze jeho hodnotu v jediném bodě K tomu se používá Aitkenovo Nevilleovo schéma h 4

22 16 NUMERICKÁ INTEGRACE FUNKCÍ Zkušební otázka 23! Odvoďte Rombergův kvadraturní vzorec, který aproximujehodnotu b a f(x)dx schybou O(h4 ) VysvětletevýznamLagrangeova interpolačního polynomu při konstrukci Rombergova kvadraturního vzorce 23 Gaußova kvadratura Víme,žeN-Cvzorcemajířádaspoň n(pro nsudédokonceaspoň n+1)jakého řádumůžebýtformuletypu n i=0 α if(x i )?Uvažujmeprodanéděleníintervalu [a, b], a x 0 < < x n bkvadraturníformuli I h (f)= n α i f(x i ) (231) i=0 Lemma 210(Řád kvadraturní formule) Řád kvadraturní formule(231) je nejvýše2n+1 Důkaz Uvažujmepolynom p(x)= n i=0 (x x i) 2 Π 2n+2 Tentopolynomje nezápornáfunkcenaintervalu[a, b]aplatíproněho b a p(x) >0 Kvadraturní formule typu(231) dává pro tento polynom n α i p(x i )=0 i=0 Propolynom pnenítedykvadraturníformule(231)přesnáajejířádjetedy nejvýše2n+1 Gaußova kvadratura je způsob konstrukce vzorce n i=0 α if(x i ), který je přesný pro všechny polynomy stupně nejvýše 2n + 1 Definice 211(skalární součin polynomů) Skalární součin v C[a, b] je definován (u, v)= b Definice 212 Množina normovaných polynomů a u(x)v(x) dx (232) Π n = {p Π n ; p(x)=x n + a n 1 x n 1 + +a 0 } (233) Myšlenka konstrukce Gaußovy kvadratury: x i (uzly): kořenypolynomu p n+1 zmnožinyortogonálníchpolynomů {p 0, p 1,, p n+1 }, b α i (koeficienty): určíme tak, aby a q(x)dx = n i=0 α iq(x i ) q Π 2n+1

23 GAUßOVA KVADRATURA 17 Věta213(Ortogonálnípolynomy)Existujíjednoznačněurčenépolynomy p i, pro které platí 1 p i Π i, i IN {0}, (p i, p j )=0, i j, (pozn p 0 (x)=1) 2Kořeny x 0,,x n polynomu p n+1, n IN {0},jsoureálné,jednoduché aležív(a, b) 3 p 0 (x 0 ) p 0 (x 1 ) p 0 (x n ) p 1 (x 0 ) p 1 (x 1 ) p 1 (x n ) A= je nesingulární p n (x 0 ) p n (x 1 ) p n (x n ) Důkaz viz cvičení k přednášce 4 přednáška Svyužitímortogonálníchpolynomů p 0,, p n+1 akořenů x i polynomu p n+1 určímekoeficienty α i Gaußovykvadraturníformuletak,abyplatilo: b a q(x)dx= n α i q(x i ), q Π 2n+1 (234) i=0 Ktomuvyjádřímepolynom qvetvaru q(x)=r(x)p n+1 (x)+s(x), r, s Π n, (dělenípolynomu qpolynomem p n+1 )apolynomy r(x), s(x) Π n vyjádříme jako lineární kombinaci ortogonálních polynomů(existence takového vyjádření viz cvičení k přednášce), specielně nechť s(x)= n γ j p j (x) Nazákladětohotovyjádřenímávýraznalevéstraněv(234)tvar = b a b a j=0 b q(x)dx= r(x)p n+1 (x)dx+ a =0 n γ j p j (x)dx= j=0 b a n j=0 γ j b a s(x) dx =1 { }} { p 0 (x) p j (x)dx

24 18 NUMERICKÁ INTEGRACE FUNKCÍ = n b b b γ j p 0 (x)p j (x)dx=γ 0 p 0 (x)p 0 (x)dx=γ 0 dx j=0 a Levástranav(234)jetedyrovna a γ 0 (b a) Pravá strana v(234) má na základě výše uvedených vyjádření tvar n n n α i [r(x i )p n+1 (x i ) +s(x i )]= α i γ j p j (x i ) i=0 i=0 j=0 =0 Vidíme, že levou a pravou stranu v(234) lze tedy vyjádřit jako lineární kombinacíjistýchvýrazůskoeficienty γ j γ 0 (b a)+ γ γ n 0 n n n = γ 0 p 0 (x i )α i + γ 1 p 1 (x i )α i + +γ n p n (x i )α i i=0 i=0 Porovnánímvýrazůukoeficientů γ j nalevéapravéstranědostanemerovnice prourčeníhledanýchkoeficientů α i : n i=0 p 0(x i )α i = (b a) n i=0 p 1(x i )α i = 0 n i=0 p n(x i )α i = 0 i=0 p 0 (x 0 ) p 0 (x n ) p 1 (x 0 ) p 1 (x n ) p n (x 0 ) p n (x n ) a α 0 α 1 α n = b a 0 Zhlediskastabilityjevýhodné,žekoeficienty α i Gaußovakvadraturního vzorce n i=0 α if(x i )jsoukladné Věta214(pozitivita α i ) Koeficienty α i Gaußova kvadraturního vzorce jsou kladné Důkaz Položme: 0 < p k (x)= b a n i=0,i k (x x i ) 2 Π 2n n p k (x)dx= α i p k (x i )=α k p k (x k ) i=0 >0 α k kladné k=0,1,,n Zkušební otázka 24! Odvoďte Gaußův kvadraturní vzorec řádu 2n + 1 na intervalu[a, b] Odvoďte Gaußův kvadraturní vzorec řádu 3 na intervalu[ 1, 1] (uvažujteortogonálnípolynomy {1, x, x } 0

25 3 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Nechť je dáno nelineární zobrazení 5 přednáška F:IR N IR N Hledáme α:: F(α)=0 Metody pro řešení výše uvedené úlohy jsou většinou iterační Cíl je generovat posloupnost {x (k) }takovou,želimx (k) = α,kde F(α)=0 31 Newtonova metoda Problém F(x)=0nahradímeposloupnostílineárníchproblémů L k (x)=0, L k : IR N IR N, k=0,1,,takových,žejejichřešenítvoříposloupnostkonvergující křešeníproblému F(x)=0 α x (k+1), kde L k (x (k+1) )=0 Nechť x (0) jedáno(pozdějiukážeme,jakhovolit)prodanouaprixamaci x (k) uvažujeme L k (x)jakolineárníčásttaylorovarozvojezobrazení Fvbodě x (k) IR N (J(x)značíJakobihomaticizobrazeníFvbodě x): F(x)=F(x (k) )+J(x (k) )(x x (k) ) +O( x x (k) 2 ) L k (x) (za předpokladu dostatečné hladkosti zobrazení F) Nelineární problém nahradíme problémem lineárním {F(x)=0} {F(x (k) )+J(x (k) )(x x (k) ) =0(311) L k (x) řešení αnelinpb aproximujemeřešením x (k+1) linpb (312) α x (k+1) := x (k) J 1 (x (k) )F(x (k) )(313) Vzorecv(313),kterýmjedefinována(k+1)-níaproximace x (k+1) řešení nelineárního problému je formální, ve skutečnosti se inverzní matice nepočítá a algoritmus má následující dva kroky: Algoritmus: 19

26 20 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 1 J(x (k) )(x x k ) δx (k) = F(x(k) )-řešímelineárníúlohupro δx(k) 2 x (k+1) := x (k) + δx (k) -provedemeupdatepředchozíaproximace Pro N = 1(nelineární skalární rovnice pro jednu neznámou) má Newtonova metoda názorný geometrický význam Nelineární funkci f(x) nahradíme lineárnífunkcí(přímkou),kterájetečnoukegrafufunkce f vbodě(x (k), f(x (k) ) (mátedysměrnici f (x (k) )aprocházíbodem(x (k), f(x (k) ))Vtomtopřípaděse Newtonova metoda nazývá metodou tečen N=1: x (k+1) = x (k) f(x(k) ) f (x (k) ), x(0) dáno, f (x (k) ) 0 Zkušební otázka 31! Odvoďte Newtonovu metodu pro soustavy nelineárních rovnic a její algoritmizaci Popište algoritmus v případě jedné skalární rovnice Způsob,jaknahraditfunkci f přímkouprocházejícíbodem(x (k), f(x (k) )) není jediný Další možnosti jsou metoda sečen, jednobodová metoda sečen nebo metoda regula falsi(viz cvičení k přednášce) Poznámka 31 Newtonova metoda je speciálním případem náhrady funkce f lineární funkcí l k (x):= f(x (k) )+(x x (k) )q k, kdesměrnice q k sevolí q k := f (x (k) ) 311 Důkaz konvergence Newtonovy metody Věta32(KonvergenceNewtonovymetodyprosoustavy)Nechť F C(D), D IR N konvexní,otevřenámnožina,kteráobsahuje α:: F(α)=0Nechť J 1 (α), nechť R >0, c >0, L >0: J 1 (α) c, J(x) J(y) L x y maticová norma vekt norma x, y B(α, R), kde B(α, R)jekouleostředu αapoloměru RPotom r, x (0) B(α, r), posloupnost 313 je jednoznačně definována a konverguje k α a platí α x (k+1) α cl x (k) 2 (314) Motivace: N=1 x (k+1) = x (k) f(x(k) ) f (x (k) ) Newtonova metoda

27 Z Taylorova rozvoje dostáváme: NEWTONOVA METODA 21 f(α)=f(x (k) )+f (x (k) )(α x (k) )+ f (ξ)(α x (k) ) 2 2 Zajímánáschyba(α x (k+1) )Chcemeukázat,že α x (k+1) 0Odečtením α od obou stran vzorce pro Newtonovu metodu získáme vyjádření α x (k+1) = α x (k) + f(x(k) ) f (x (k) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že f(α) = 0) dostaneme 0= f(x(k) ) f (x (k) ) +(α x(k) )+ f (ξ)(α x (k) ) 2 2 f (x (k) ) Z předchozích dvou rovnic snadno nahlédneme, že platí α x (k+1) = f (ξ)(α x (k) ) 2 2 f (x (k) ) Předpokládejme nyní, že existuje konstanta c taková, že podíl derivací na pravé straně předchozího výrazu lze odhadnout f (ξ) 2 f (x (k) ) < c ξ x(k) Potom dostaneme ( α x (k+1) α c x (k) 2 ) c c α x (k 1) 2 2 = 1 c ( ) c α x (k 1) 4 1 c ( ) c α x (0) 2 k+1 Pravástranakonvergujeknulepro k + zapředpokladu c α x (0) <1,tjjestližeje x (0) dostatečněblízkokα Pro důkaz konvergence Newtonovy metody pro jednu skalární rovnici jsme tedy využili tyto předpoklady 1 x (0) dostatečněblízko α, 2 f omezenáshora 1 3 f omezenáshora(tjpředpokládáme f (α) 0), které korespondují s předpoklady Věty 32 Jak, to je patrné z následujícího důkazu

28 22 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Důkaz věty32 x (0) zvolímevb(α, r),kde ručímetak,aby J 1 (x (0) )existovala(jinýmislovy, x (0) volímedostatečněblízko α)ktomuvyužijemenásledující tvrzení z algebry: Lemma 33 Důkaz viz cvičení k přednášce Definujme matici A <1 (I A) 1 existujeaplatí (I A) A A:= I J 1 (α)j(x (0) ) kde x (0) zvolímetak(blízko α),aby A <1,konkrétnězvolíme x (0) tak,aby A 1 2 K tomu využijeme předpoklady Věty 32 týkající se odhadu inverze Jacobiho matice v bodě α a lipschitzovskosti Jacobiho matice: A { }} { I J 1 (α)j(x (0) ) = J 1 (α)(j(α) J(x (0) )) cl α x (0) (315) x (0) zvolímetak,abyposlednívýrazv(315) 1 2 Tímdostávámepodmínku na x (0) : α x (0) 1 α cl azároveň x (0) R( platnost podmínky lipschitzovskosti) Pro r dostáváme ( ) 1 r:=min 2cL, R Vmnožine B(α, r)existujepodlevýšeuvedenéhotvrzenízalgebry J 1 (x (0) ) Toplynezevztahů (I A)=J 1 (α)j(x 0 ), (I A) 1 = J 1 (x (0) )J(α) Lze tedy spočítat první iteraci Newtonovy metody a odhadnout její chybu: α x (1) = α x (0) + J 1 (x (0) )F(x (0) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že F(α) = 0) dostaneme 0=F(α)=F(x (0) )+J(x (0) )(α x (0) )+ zbytek, 0=J 1 (x (0) )F(x (0) )+(α x (0) )+J 1 (x (0) )zbytek

29 NEWTONOVA METODA 23 S využitím odhadu zbytku Taylorova rozvoje dostaneme odhad zbytku { }} { α x (1) J 1 (x (0) 1 α ) 2 L x (0) 2 a důkaz dokončíme pomocí odhadu normy inverzní matice J 1 (x (0) ) = J ( 1) (x (0) )J(α) J (I A) 1 Pro odhad chyby máme tedy vztah ( 1) (α) 1 c 2c 1 A }{{} 1 2 α x (1) α cl x (0) 2 ( ) = cl α x (0) α x (0), 1 2 z něhož plyne dále indukcí konvergence Newtonovy metody Zkušební otázka 32 Dokažte větu o konvergenci Newtonovy metody Poznámka 34 Modifikace Newtonovy metody: Jacobihomaticeseneměnípro p 2kroků nepřesné řešení soustavy lin rovnic vyčísleníjacobihomaticepomocídiferencí f (x) f(x+h) f(x) h 312 Řádkonvergence Definice 35(řád konvergence iterační metody pro řešení F(x) = 0) Řekneme, žeposloupnost {x (k) }generovanánumerickoumetodoukonvergujekαsřádem p 1,pokud c >0 α x (k+1) α x (k) p c k k 0 V takovém případě se numerická metoda nazývá řádu p Věta 32 říká, že Newtonova metoda je kvadraticky konvergentní, α x (k+1) α cl x (k) 2, pokudje x (0) dostatečněblízko αapokudje J(α)nesingulární

30 24 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 32 Metoda postupných aproximací pro nelineární rovnice Metoda postupných aproximací je založena na faktu, že pro dané zobrazení F: M IR N IR N jevždymožnétransformovatproblém F(x)=0naekvivalentní problém x φ(x)=0,kdepomocnáfunkce φjevolenatak,aby φ(α)=αprávě když F(α)=0Nalezenínulovýchbodůzobrazení Fsetakpřevedenanalezení pevného bodu zobrazení φ, které se realizuje pomocí následujícího algoritmu: Dáno x (0), x (k+1) := φ(x (k) ), k 0 Definice36(kontrahujícízobrazení)Řekneme,žezobrazení G:D IR N IR n jekontrahujícína D 0 D,jestliže L <1:: G(x) G(y) L x y x, y D 0 Věta37(větaopevnémbodě)Nechť G:D IR N IR N kontrahujícína uzavřenémnožině D 0 D, G(x) D 0 x D 0 Pak Gmáprávějedenpevný bodtentobodjelimitouposloupnosti x (k+1) = φ(x (k) ), x (0) D 0 libovolné Důkaz jednoznačnost, existence(cauchyovská posloupnost, spojitost G), viz cvičení k přednášce Poznámka 38 Newtonova metoda jako speciální případ věty o pevném bodě (Viz cvičení k přednášce) 33 Kořeny polynomu Nalezení lokalizacekořenůvc aproximace kořenů 6 přednáška Věta 39(Descartes) Počet kladných kořenů(včetně násobnosti) polynomu p n (α)=a 0 +a 1 x+ +a n x n jerovenpočtuznaménkovýchzměnvposloupnosti a 0, a 1,,a n,nebojeosudéčíslomenší Věta 310(Cauchy) Kořeny polynomu leží v kruhu { Γ= z C; z 1+η, η= max 0 k n 1 Poznámka3111 η:translaceazměnasouřadnic 331 Hornerovoschema V dalším budeme potřebovat vyčíslení hodnoty polynomu v daném bodě x Vyčíslení polynomu: p n (x)=a 0 + a 1 x+ +a n x n a k a n }

Numerická matematika

Numerická matematika Numerická matematika Jiří Felcman Univerzita Karlova v Praze Matematicko-fyzikální fakulta KNM PRESS PRAHA 2009 iv PŘEDMLUVA 1 přednáška 1 felcman@karlinmffcunicz Tel 22191 3392 KNMčdv442 2 Numerická matematika-

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Numerické metody I. Jaro Normy vektorů a matic 1. 2 Nelineární rovnice Metoda bisekce (půlení intervalu) Iterační metody...

Numerické metody I. Jaro Normy vektorů a matic 1. 2 Nelineární rovnice Metoda bisekce (půlení intervalu) Iterační metody... Poznámky k přednášce 1 Numerické metody I Jaro 2010 Tomáš Řiháček Obsah 1 Normy vektorů a matic 1 2 Nelineární rovnice 3 2.1 Metoda bisekce (půlení intervalu).............................. 3 2.2 Iterační

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 8 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Moderní numerické metody

Moderní numerické metody Moderní numerické metody Sbírka příkladů doc. RNDr. Jaromír Baštinec, CSc. RNDr. Michal Novák, Ph.D. ÚSTAV MATEMATIKY Moderní numerické metody 1 Obsah 1 Soustavy lineárních rovnic 7 2 Řešení jedné nelineární

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou

Numerická matematika. Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Numerická matematika Zadání 25. Řešení diferenciální rovnice Rungovou Kuttovou metodou Václav Bubník, xbubni01, sk. 60 FIT VUT v Brně, 2004 Obsah Numerická matematika...1 1. Teorie... 3 1.1 Diferenciální

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

2. Matice, soustavy lineárních rovnic

2. Matice, soustavy lineárních rovnic Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

4 Numerické derivování a integrace

4 Numerické derivování a integrace Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Obyčejné diferenciální rovnice (ODE)

Obyčejné diferenciální rovnice (ODE) Obyčejné diferenciální rovnice (ODE) Obyčejné diferenciální rovnice N tého řádu převádíme na soustavy N diferenciálních rovnic prvního řádu. V rovnici f x, y, y ', y '',, y N =gx se substituují y '=z 1,

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Interpolace Lagrangeovy polynomy. 29. října 2012

Interpolace Lagrangeovy polynomy. 29. října 2012 Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více