Numerická matematika

Rozměr: px
Začít zobrazení ze stránky:

Download "Numerická matematika"

Transkript

1 Numerická matematika Jiří Felcman Univerzita Karlova v Praze Matematicko-fyzikální fakulta KNM PRESS PRAHA 2014

2 iv

3 PŘEDMLUVA 1 Tel KNMčdvK458(5042) 1 přednáška 2 NMAI042 Numerická matematika Obecná informatika Programování a softwarové systémy (Programování, Správa počítačových systémů- zahájení 2011 nebo dříve) 3 Požadavky ke zkoušce státnice(prospěl s vyznamenáním) Obecná informatika: MFF >Studium >BcaMgrstudium >Studijníplány >Obecná informatika sylabus SIS, Předměty, NMAI042, Hledej 4 Tituly PhD RNDr Mgr Bc 5 Studium v zahraničí- ERASMUS 6 Ceny udělované studentům 7 SVOČ 8 Hodnocení učitelů- srozumitelnost 9 Zápočet: pátek 2 května Zkouška: pátek 9 května 2014, 12:20 část písemná, dosažení minimálního předepsaného počtu bodů pro každou otázku část ústní Praha, 3 února 2014 J F v

4

5 OBSAH Úvod 1 1 Aproximace funkcí v IR 2 11 Lagrangeův interpolační polynom Chyba Lagrangeovy interpolace 5 12 Kubický spline Konstrukce přirozeného kubického spline 7 2 Numerická integrace funkcí Newtonovy-Cotesovy vzorce Složené Newtonovy Cotesovy vzorce Rombergova kvadratura Gaußova kvadratura 16 3 Metody řešení nelineárních rovnic Newtonova metoda Důkaz konvergence Newtonovy metody Řád konvergence Metoda postupných aproximací pro nelineární rovnice Kořeny polynomu Hornerovo schema 24 4 Soustavy lineárních rovnic Podmíněnost matic Gaußova eliminace Pivotace Gaußova eliminace jako faktorizační metoda LU rozklad v obecném případě Vliv zaokrouhlovacích chyb Choleského rozklad QR rozklad 35 5 Iterační metody řešení soustav lineárních rovnic Klasické iterační metody 37 6 Výpočet vlastních čísel matic Mocninná metoda 43 7 Numerická integrace obyčejných diferenciálních rovnic Formulace problému Jednokrokové metody 45 vii

6 viii OBSAH 721 Metody typu Runge Kutta 47 8 Gradientní metody Formulace problému 50 Bibliografie 51 Index 52

7 ÚVOD Numerická analýza: Studium algoritmů(jednoznačně definovaná konečná posloupnost aritmetických a logických operací) pro řešení problémů spojité matematiky LN Trefethen, Bulletin IMA 1993 Numerická matematika: realizace matematických modelů na počítači Fyzikální realita matematický model numerické řešení, tj realizace matematického modelu na počítači Validation(solving the right equations) verification(solving the equations right) Literatura k přednášce:(quarteroni et al, 2004),(Ueberhuber, 2000),(Segethová, 2000) Předpokládané znalosti: Rolleova věta, definice normy funkce, definice seminormy, vlastní čísla, báze lineárního vektorového prostoru, Taylorova věta 1

8 1 APROXIMACE FUNKCÍ V IR Jedna ze základních úloh numerické matematiky: aproximace dané funkce f jinou funkcí ϕ Zadání aproximované funkce- analyticky, nebo je k dispozici tabulkahodnot(x i, f i ), x i, f i IR, i=0,,n, n IN, f i = f(x i )(vizobr 101) tabulkahodnotderivacídourčitéhořáduvuzlech x i Pro funkci f definovanou na uzavřeném intervalu[a, b] uvažujeme dělení intervalu[a, b], a=x 0 < x 1, < x n = b, n Z + = {0,1, }anazývámeho sítí x i, i=0,nnazývámeuzly(ekvidistantní,je-li x i = a+ih,kde h IRje kroksítě) Poznámka 11 Pojem síť se používá obecně v N-rozměrném prostoru, viz např (Feistaueretal,2003,str185):LetΩ IR N beadomainif N=2,thenby Ω h wedenoteapolygonalapproximationofωthismeansthattheboundary Ω h ofω h consistsofafinitenumberofclosedsimplepiecewiselinearcurves For N=3,Ω h willdenoteapolyhedralapproximationofωfor N=3weset Ω h =ΩThesystem D h = {D i } i J,where J Z + = {0,1, }isanindexset and h >0,willbecalledafinitevolumemeshinΩ h,if D i, i J,areclosedline segmentsorclosedpolygonsorpolyhedrons,if N=1or N=2or3,respectively, with mutually disjoint interiors such that Ω h = i J D i Theelements D i D h arecalledfinitevolumestwofinitevolumes D i, D j D h areeitherdisjointortheirintersectionisformedbyacommonpartoftheir boundaries D i and D j If D i D j containsatleastonestraightsegmentora planemanifold,if N=2or3,respectively,thenwecall D i and D j neighbouring finite volumes(or simply neighbours) Požadavky na aproximující funkci ϕ (A) jednoduchý tvar, snadno vyčíslitelná polynom {1, x, x 2, x 3, } trigonometrickýpolynom {1,sinx,cosx,sin2x,cos2x, } racionální funkce exponenciálnífunkce ae bx 2

9 APROXIMACE FUNKCÍ V IR Obr 101 Interpolační polynom nabývající v daných uzlech předepsaných hodnot Obr 102 Proložení přímky třemi body(ve smyslu nejmenších čtverců) (B) ϕ (j) (x i )=f (j) (x i ), derivací v uzlech) (C) ϕ f malá,kde značínormu i=0,,n, j=0,,c i (rovnosthodnot,event Poznámka 12 Od požadavku(b) někdy upouštíme(proložit třemi body přímku-vizobr102) Nejčastější způsoby aproximace 1Interpolace-kfunkci fsestrojímefunkci ϕzjistétřídy Msplňující(B) 2 Aproximace metodou nejmenších čtverců- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující(b) ve smyslu nejmenších čtverců diskrétní případ

10 4 APROXIMACE FUNKCÍ V IR n ( w i f(xi ) ϕ(x i ) ) 2 =min i=0 ψ M i=0 n ( w i f(xi ) ψ(x i ) ) 2 kde w i >0, i=0,, njsouzadanáčísla,zvanáváhynázev nejmenší čtverce je patrný z následujícího příkladu: Příklad13Prodanéděleníintervalu[a, b]adanékladnéváhy w i uvažujme normu funkce f danou vztahem f := n ( w i f(xi ) ) 2 ϕ Msehledátak,že spojitý případ b a i=0 f ϕ 2 =min f ψ 2 ψ M w(x) ( f(x) ϕ(x) ) 2 dx=min ψ M b a w(x) ( f(x) ψ(x) ) 2 dx wjeváhováfunkce(skorovšudekladnáv[a, b], w L 2 (a, b)definice pojmu skorovšude aprostoru L 2 (a, b)viznapř(feistaueretal,2003, strana)) 3 Čebyševova(stejnoměrná) aproximace- k funkci f sestrojíme funkci ϕ z jisté třídy M splňující max [a,b] ϕ(x) f(x) max ψ(x) f(x) [a,b] provšechnyfunkce ψ M,kde Mjezvolenámnožinafunkcí 11 Lagrangeův interpolační polynom 2 přednáška Hledámepolynom L n stupněnejvýše n(píšeme L n Π n -prostorpolynomů stupně nejvýše n) takový že L n (x i )=f(x i ) i=0,,n, (111) x i -navzájemrůznéuzly, obecněneekvidistantnítakovýpolynomnazveme Lagranegeovým interpolačním polynomem Věta14Nechť x 0,, x n jsounavzájemrůznéuzlypakexistujeprávějeden interpolačnípolynom L n Π n : L n (x i )=f(x i ) i=0,,n

11 Důkaz 1 Existence Uvažujme polynomy LAGRANGEŮV INTERPOLAČNÍ POLYNOM 5 l i (x)= (x x 0)(x x 1 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x 1 )(x i x i 1 )(x i x i+1 )(x i x n ) (tzv Lagrangeovy polynomy) Platí α) l i (x) Π n, 1, i=j, β) l i (x j )=δ ij = (Kroneckerovo delta) 0, i j Položme n L n (x)= f(x i )l i (x) i=0 2 Jednoznačnost Nechť L 1 n, L2 n Π nsplňují(viz(111)) L 1 n(x i )=L 2 n(x i )=f(x i ) i=0,,n Potom L 1 n L 2 n Π n jepolynom,kterýmá(n+1)různýchkořenůpodle základnívětyalgebryje L 1 n L2 n nulovýpolynom Poznámka 15 Položme Potom platí kde čárka označuje derivaci ω n+1 (x)=(x x 0 )(x x n ) l i (x)= 111 Chyba Lagrangeovy interpolace ω n+1 (x) (x x i ) ω n+1 (x i), Věta16Nechť f C n+1 (I),kde Ijenejmenšíintervalobsahující x 0,,x n, x a x 0,, x n jsounavzájemrůznéuzly,nechť L n Π n jelagrangeůvinterpolačnípolynomprofunkci fpak ξ I f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! (chybalagrangeovyinterpolacevbodě x )

12 6 APROXIMACE FUNKCÍ V IR Důkaz Pro x = x i jedůkazzřejmýpro x x i uvažujmefunkci: kde t IRPlatí: F(x)=f(x) L n (x) t ω n+1 (x) F(x i )=0 i=0,,n Pro vhodnou volbu t:= f(x ) L n (x ) ω n+1 (x (112) ) platí,že F(x )=0 F mátedy n+2nulovýchbodů(uzly x i abod x )Podle Rolleovy věty: F máaspoň n+1nulovýchbodů, F (n+1) máaspoň1nulovýbod,označmeho ξ F (n+1) (ξ)=0=f (n+1) (ξ) 0 t (n+1)! / ωn+1 (x ) (n+1)! kdejsmevyužilitoho,že(n+1)-níderivace L n jenulováa(n+1)-níderivace ω n+1 je(n+1)!dosadíme-liza tzevztahu(112),dostaneme f(x ) L n (x )= f(n+1) (ξ) ω n+1 (x ) (n+1)! Zkušební otázka 11! Chyba Lagrangeovy interpolace 12 Kubický spline Definice17Nechťjedánoděleníintervalu[a, b], a=x 0 < x 1 < < x n = b (x i navzájemrůzné)řekneme,žefunkce ϕ:[a, b] IRjekubickýspline,jestliže 1 ϕ jespojitá( C 2 [a, b]), 2 ϕ [xi,x i+1] jekubickýpolynom,pro i=0,1,, n 1 Poznámka 18 Spline- elastické pravítko používané při stavbě lodí Poznámka 19 Kubický spline je speciálním případem spline k-tého řádu pro k=3důvodemčastéhopoužitíkubickéhosplinejefakt,želidskéokojeschopné rozlišit ještě změny 2 derivace Poznámka 110 Kubický spline dobře aproximuje funkci, která popisuje tvar s minimální energií Popíšeme-li tvar pružné laťky funkcí y = f(x), potom E(y)= b a y (x) [ 1+(y (x)) 2] 3/2 dx měří její ohybovou energii Lať se deformuje tak, že je tato energie minimální (Hamiltonůvprincip)Dáseukázat,žemezivšemifunkcemizC 2 [a, b]aproximuje

13 KUBICKÝ SPLINE 7 kubickýspline ϕ:: ϕ(x i )=f(x i )velmidobřefunkci y,prokterousenabývá minima E(y):min y E(y)=E(y ) Věta111Nechť f C 2 [a, b]pakprokaždýkubickýspline ϕsplňující ϕ(x i )=f(x i ), i=0,,n, platí ϕ f, kde u 2 := b a u (x) 2 dx, jestliže je splněna některá z následujících třech podmínek: (a) ϕ (a)= 0 = ϕ (b) (b) ϕ (a)=f (a) a ϕ (b)=f (b) (c) ϕ (a)=ϕ (b) a ϕ (a)=ϕ (b) (121) Poznámka 112(Pozor, ve větě 111 neznačí normu, ale pouze seminormu vsobolevověprostoru H 2 (a, b),kteráseobvykleznačí H 2 (a,b),detailyviznapř (Feistaueretal,2003,page)) Důkaz Viz cvičení k přednášce Důsledek 113 Ve všech třech případech(a),(b),(c) je kubický spline určen jednoznačně 121 Konstrukce přirozeného kubického spline Značení: f i := f(x i ) i=0,,n, ϕ i := ϕ [xi,x i+1] i=0,,n 1, h i := x i+1 x i i=0,,n 1 Kubickýpolynom ϕ i jenaintervalu[x i, x i+1 ]určenčtyřmikoeficientypočet intervalůje n,celkemmámetedyprourčení ϕpočetstupňůvolnosti4npro tyto stupně volnosti sestavíme příslušné rovnice Počet neznámých 4 počet intervalů 4n Početrovnic ϕ(x i )=f(x i ), i=0,,n n+1 spojitost ϕvx i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 spojitost ϕ v x i, i=1,,n 1 n 1 4n 2 Počet rovnic je o dvě menší než počet neznámých Doplníme je proto některou z podmínek(121),(a) (b) Uvažujme např podmínku(121),(a), tj podmínku

14 8 APROXIMACE FUNKCÍ V IR ϕ M i i M i+1 x i x i+1 Obr121 Přímka ϕ i nulových druhých derivací v krajních bodech Takový spline nazýváme přirozenýmkubickýmsplinemprourčenípřirozenéhokubickéhosplinuhledáme ϕ i ve vhodném tvaru Ukazuje se, že efektivní metoda není založena na vyjádření ϕ i (x)=a i x 3 + b i x 2 + c i x+ d i (NEVHODNÉvizcvičení) ani na vyjádření ϕ i (x)=a i (x x i ) 3 +b i (x x i ) 2 +c i (x x i )+d i (MÉNĚVHODNÉvizcvičení) ale na vyjádření pomocí tzv momentů, což jsou hodnoty druhé derivace ϕ v uzlechoznačmeje M i : M i := ϕ (x i ), i=0,,n a předpokládejme, že tyto momenty známe Později ukážeme, jak je určit Platí ϕ i kubickýpolynom ϕ i parabola ϕ i přímka Z předpokladu spojitosti druhé derivace ϕ v uzlech dostáváme M i = ϕ i (x i), M i+1 = ϕ i(x i+1 ) Jetedy ϕ i přímka,procházejícíbody(x i, M i )a(x i+1, M i+1 )(vizobr121)

15 KUBICKÝ SPLINE 9 ϕ i (x)=(x x i) M i+1 x i+1 x i + M i (x x i+1 ) x i x i+1, ϕ i (x)= M i (x x i+1 )+ M i+1 (x x i ) h i h i Integrací odvodíme ϕ i(x)= M i 2h i (x x i+1 ) 2 + M i+1 2h i (x x i ) 2 + A i, ϕ i (x)= M i 6h i (x x i+1 ) 3 + M i+1 6h i (x x i ) 3 + A i (x x i )+B i (122) vhodný rozpis integrační konstanty Ve vyjádření ϕ i ve tvaru (122) nejprve určíme koeficienty A i, B i, i = 0,, n 1pomocímomentůapotomsestavímerovnicepromomentyVyužijeme k tomu podmínky ϕ i (x i )=f i, ϕ i (x i+1 )=f i+1, i=0,,n 1 (Dvěrovniceprodvěneznámé A i, B i, i=0,,n 1)Dostaneme ϕ i (x i )= M i 6 h2 i + B i= f i, ϕ i (x i+1 )= M i+1 6 B i =f i M i 6 h2 i, h 2 i + A ih i + f i M i 6 h2 i = f i+1, A i = f i+1 f i + M i M i+1 h i h i 6 Rovnice pro momenty sestavíme ekvivalentním vyjádřením podmínky spojitosti derivace kubického spline v uzlech: Připomeňmesitvar ϕ i resp ϕ i 1 ϕ i 1 (x i)=ϕ i (x i), i=1,,n ϕ i(x)= M i (x x i+1 ) 2 + M i+1 (x x i ) 2 + A i 2h i 2h i ϕ i 1 (x)= M i 1 2h i 1 (x x i ) 2 + M i 2h i 1 (x x i 1 ) 2 + A i 1 Svyužitímvyjádřenípro A i,resp A i 1 pomocímomentůdostaneme ϕ i 1 (x i)=0+ M i h 2 i 1 2h + f i f i 1 + M i 1 M i h i 1 i 1 h i 1 6

16 10 APROXIMACE FUNKCÍ V IR = M i h 2 2h i+0+ f i+1 f i + M i M i+1 h i = ϕ i h i 6 i(x i ) Protožekonstruujemepřirozenýkubickýspline,je M 0 = ϕ (x 0 )=0=ϕ (x n )= M n adostávámetak n 1rovnic(i = 1,,n 1)proneznámemomenty M 1, M 2,, M n 1 Tytorovnicelzepřepsatvetvaru ( 6 M hi 1 i 1+ h i 1 + h i h ) i M i + h i 6 6 M i+1= f i f i 1 + f i+1 f i h i 1 h i h i 1 +h i g i 3 h i 1 Maticový zápis vede na soustavu s třídiagonální maticí h 0+h 1 3 h 1 6 h i 1 6 h i 1+h i 3 h i 6 h n 2 6 h n 2+h n 1 3 Zkušební otázka 12! Konstrukce přirozeného kubického spline M 1 g 1 M i 1 g i 1 M i = g i M i+1 g i+1 M n 1 g n 1 Příklad 114 Pro ekvidistantní dělení s krokem h má matice soustavy tvar 4 1 h Při vyšetřování řešitelnosti této soustavy lze využít následující definici a větu z algebry: Definice115Řekněme,žematice Atypu n n, n 2jeostřediagonálně dominantní(odd), jestliže a ii > n j=1,j i a ij i=1,,n Věta116Nechť A IR nn jeoddpak Ajenesingulární

17 KUBICKÝ SPLINE 11 Důkaz pomocí Geršgorinových kruhů, viz(quarteroni et al, 2004, str 184) Ajenesingulární deta 0 rovnicedet(a λi)=0nemákořen λ=0 nula není vlastním číslem matice A Nechť λ je vlastní číslo matice A Ax=λx y:= x x, x :=max x i i Ay=λy y i 1, i 0 :: y i0 =1 j i 0 a i0jy j + a i0i 0 y i0 = λy i0 j i0 a i0jy j = λ ai0i 0 y i0 λ a i0i 0 ai0j j i 0 (Geršgorinůvkruhostředu a i0i 0 apoloměru a i0j ) j i 0 Kdyby λ=0bylovlastnímčíslem a i0i 0 ai0j j i 0 SporsODD λ=0tedynenívlastníčísloamatice Ajenesingulární Matice soustavy rovnic pro momenty je ODD, soustava je tedy podle výše uvedené věty jednoznačně řešitelná a protože matice soustavy je třídiagonální, lze pro řešení použít např Gaußovu eliminaci

18 2 NUMERICKÁ INTEGRACE FUNKCÍ 3 přednáška Nechťjedánoděleníintervalu[a, b], a x 0 < x 1 < < x n b(x i navzájemrůzné)označme h=max i {0,,n 1} x i+1 x i Vzorec Cíl: I(f)= b a f(x)dx I h (f)= I h (f)= n α i f(x i ) i=0 n α i f(x i ) (201) senazývákvadraturníformule, α i jsoukoeficientykvadraturníformuleax i jsou uzly kvadraturní formule Motivace hledání aproximace určitého integrálu ve tvarulineárníkominacehodnotfunkce fvuzlech x i jezřejmáznásledujícího odstavce 21 Newtonovy-Cotesovy vzorce Prodané n IN uvažujmeekvidistantníděleníintervalu[a, b]skrokem h= b a n, x i = a+ih, i=0,,naproximujeme-lifunkci f Lagrangeovýminterpolačnímpolynomem L n prouzly x 0,, x n,lzeurčitýintegrálzfunkce f aproximovat následujícím způsobem: b a n f(x i ) i=0 b a f(x)dx b a i=0 L n (x)dx= l i(x) { }} { (x x 0 )(x x i 1 )(x x i+1 )(x x n ) (x i x 0 )(x i x i 1 )(x i x i+1 )(x i x n ) dx= i=0 b n l i (x)dx f(x i ) (211) a α i Tento vzorec nazýváme pro ekvidistantní uzly Newtonův-Cotesův Pro výpočetkoeficientů α i použijemenásledujícísubstituci 12

19 NEWTONOVY-COTESOVY VZORCE 13 subst x=a+th x i = a+ih, h= b a n α i := b a n j=0,j i (x x j ) (x i x j ) dx= b a n n 0 n j=0,j i (t j) dt (212) (i j) ZkonstrukceLagrangeovyinterpolace L n funkce f Π n plyne,že L n (x)= f(x),atedyn-cvzorecjepřesnýpropolynomystupněnejvýšentonásvede k následující definici Definice21Řekneme,žekvadraturníformule n i=0 α i f(x i )mářádpřesnosti m,jestliže m IN {0}jemaximálníčíslotakové,že b a p(x)dx= n α i p(x i ) p Π m (213) i=0 Zkušební otázka 21 Řád kvadraturní formule Lemma22Je-likvadraturníformule n i=0 α i f(x i )symetrická, tjpro i= 0,, nplatí b x n i = x i a, α i = α n i, aje-lijejířád n, nsudé,pakjejejířád n+1 Lemma 23 Newtonův-Cotesův vzorec je symetrická kvadraturní formule Důsledek24Pro nsudéjeřádn-cvzorce n+1 Zkušební otázka 22 Odvoďte Newtonův-Cotesův vzorec Lemma 25(Odhad chyby lichoběžníkového pravidla) Nechť f C 2 [a, b]označme T h (f)n-cvzorecpro n=1(lichoběžníkové pravidlo)pak ξ [a, b],::(přiznačení I(f)= b a f(x)dx) I(f) T h (f)= f (ξ) 2 h3, h=(b a) (214) 6 Lemma 26(Odhad chyby Simpsonova pravidla) Nechť f C 3 [a, b] Označme S h (f) N-C vzorec pro n = 2 (Simpsonovo pravidlo)pak ξ [a, b],:: I(f) S h (f)= h5 90 f (ξ), h= (b a) (215) 2

20 14 NUMERICKÁ INTEGRACE FUNKCÍ Definice 27(zbytek kvadraturního vzorce) Rozdíl kde I(f)= b nazýváme zbytek kvadraturního vzorce E h (f)=i(f) I h (f), a f(x)dx, I h (f)= 211 Složené Newtonovy Cotesovy vzorce n α i f(x i ), Newtonovy Cotesovy vzorce lze také aplikovat tak, že interval[a, b] rozdělíme na nekvidistantníchsubintervalů[x i, x i+1 ]velikosti hanakaždémztěchto subintervalů použijeme Newtonův Cotesův vzorec pro m + 1 ekvidistantních uzlů x i = x i0 < < x im = x i+1 skrokem H x i = a+ih, h= b a n, i=0, n, x i j = x i + jh, H= h m n 1 I(f):= i=0 xi+1 x i i=0 i=0 i=0 j=0 n, m IN n 1 n 1 f(x)dx IH i (f)= m α ij f(x ij )=: I H (f) Věta28(složené N-C vzorce) Nechť f C m+1 [a, b] Pak pro složené N-C vzorce platí I(f) I H (f) ch m+1, (216) kde c >0jekonstantanezávislánaH Důkaz plyne z odhadu chyby Lagrangeova interpolačního polynomu 22 Rombergova kvadratura Výpočet b a f(x)dxpomocísloženéholichoběžníkovéhopravidlapro n+1uzlů h= b a n, m=1, H= h Věta29(Eulerova-MacLaurinova)Nechť f C 2N+2 [a, b], h= b a n, n IN Potomprosloženélichoběžníkovépravidlo(označmeho CT h (f))platí: CT h (f)=p(h 2 )+O(h 2N+2 ) (221) = I(f)+a 1 h 2 + a 2 h 4 + +a N h 2N + O(h 2N+2 ), (222) kde p Π N, p=p(t)=a 0 + a 1 t+ +a N t, a 0 = p(0)= b a f(x)dx=i(f)

21 Důkaz viz Stör Numerische Mathematik I ROMBERGOVA KVADRATURA 15 Rombergovakvadratura:konstruujemelineárníkombinacivzorců CT h (f)pro vhodné h tak, abychom získali vzorec, který je přesnější: CT h (f)=i(f)+a 1 h 2 + O(h 4 ) / 1 h 2 CT h(f)=i(f)+a O(h4 ) /4 4CT h(f) CT h (f) 2 3 = I(f)+O(h 4 ) link=i(f)+chyba (N=1) Vhodnou lineární kombinací vzorců, z nichž každý aproximuje integrál I(f) s chybou O(h 2 ), jsme tak odvodili vzorec, který aproximuje integrál I(f) s chybou O(h 4 )Zapředpokladudostatečnéhladkostifunkce f (vizeulerova MacLaurinova věta) můžeme tímto způsobem odvodit vzorec, který aproximuje integrál I(f)schybou O(h 2N+2 )Všimněmesinapř,jakourolihrajevtomto postupuvyčíslenílagrangeovainterpolačníhopolynomu L 2 prouzly h2, CT h zapsanéhovetvaru L 2 (0)+b 1 t+b 2 t 2 (předpoklá- ahodnoty CT h 4 dáme h <<1), CT h 2 16, h 2 4, h2 Euler MacLaurin Lagrange CT h (f)= I(f)+a 1 h 2 + a 2 h 4 + O(h 6 )=L 2 (0)+b 1 h 2 + b 2 h 4 (223) h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b 2 (224) 16 h CT h(f)= I(f)+a a 2 h h 2 O(h6 ) = L 2 (0)+b b h 4 2 (225) 256 link = I(f)+0+0+O(h 6 ) = L 2 (0)+0+0 (N=2) kde L 2 (t)= b }{{} 0 +b 1 t+b 2 t 2 jelagrangeůvinterpolačnípolynomprotabulku L 2(0) h link CT h 4 (f) CT h 2 h 2 4 h 2 (f) CT h (f) Závěr: L 2 (0)aproximuje b a f(x)dxschybou O(h6 )Přikonstrukci L 2 (0)se jedná o tzv Richardsonovu extrapolaci Uvedený postup lze provést až do řádu 2N+2prouzly( h 2) 2 ahodnoty CT i h, i=0,, N,pomocínichžkonstruujeme 2i L N Problém: Vyčíslení Lagrangeova interpolačního polynomu v jediném bodě (zde konkrétně v 0) aniž bychom Lagrangeův interpolační polynom sestavovali Zde nepotřebujeme tvar Lagrangeova interpolačního polynomu, ale pouze jeho hodnotu v jediném bodě K tomu se používá Aitkenovo Nevilleovo schéma h 4

22 16 NUMERICKÁ INTEGRACE FUNKCÍ Zkušební otázka 23! Odvoďte Rombergův kvadraturní vzorec, který aproximujehodnotu b a f(x)dx schybou O(h4 ) VysvětletevýznamLagrangeova interpolačního polynomu při konstrukci Rombergova kvadraturního vzorce 23 Gaußova kvadratura Víme,žeN-Cvzorcemajířádaspoň n(pro nsudédokonceaspoň n+1)jakého řádumůžebýtformuletypu n i=0 α if(x i )?Uvažujmeprodanéděleníintervalu [a, b], a x 0 < < x n bkvadraturníformuli I h (f)= n α i f(x i ) (231) i=0 Lemma 210(Řád kvadraturní formule) Řád kvadraturní formule(231) je nejvýše2n+1 Důkaz Uvažujmepolynom p(x)= n i=0 (x x i) 2 Π 2n+2 Tentopolynomje nezápornáfunkcenaintervalu[a, b]aplatíproněho b a p(x) >0 Kvadraturní formule typu(231) dává pro tento polynom n α i p(x i )=0 i=0 Propolynom pnenítedykvadraturníformule(231)přesnáajejířádjetedy nejvýše2n+1 Gaußova kvadratura je způsob konstrukce vzorce n i=0 α if(x i ), který je přesný pro všechny polynomy stupně nejvýše 2n + 1 Definice 211(skalární součin polynomů) Skalární součin v C[a, b] je definován (u, v)= b Definice 212 Množina normovaných polynomů a u(x)v(x) dx (232) Π n = {p Π n ; p(x)=x n + a n 1 x n 1 + +a 0 } (233) Myšlenka konstrukce Gaußovy kvadratury: x i (uzly): kořenypolynomu p n+1 zmnožinyortogonálníchpolynomů {p 0, p 1,, p n+1 }, b α i (koeficienty): určíme tak, aby a q(x)dx = n i=0 α iq(x i ) q Π 2n+1

23 GAUßOVA KVADRATURA 17 Věta213(Ortogonálnípolynomy)Existujíjednoznačněurčenépolynomy p i, pro které platí 1 p i Π i, i IN {0}, (p i, p j )=0, i j, (pozn p 0 (x)=1) 2Kořeny x 0,,x n polynomu p n+1, n IN {0},jsoureálné,jednoduché aležív(a, b) 3 p 0 (x 0 ) p 0 (x 1 ) p 0 (x n ) p 1 (x 0 ) p 1 (x 1 ) p 1 (x n ) A= je nesingulární p n (x 0 ) p n (x 1 ) p n (x n ) Důkaz viz cvičení k přednášce 4 přednáška Svyužitímortogonálníchpolynomů p 0,, p n+1 akořenů x i polynomu p n+1 určímekoeficienty α i Gaußovykvadraturníformuletak,abyplatilo: b a q(x)dx= n α i q(x i ), q Π 2n+1 (234) i=0 Ktomuvyjádřímepolynom qvetvaru q(x)=r(x)p n+1 (x)+s(x), r, s Π n, (dělenípolynomu qpolynomem p n+1 )apolynomy r(x), s(x) Π n vyjádříme jako lineární kombinaci ortogonálních polynomů(existence takového vyjádření viz cvičení k přednášce), specielně nechť s(x)= n γ j p j (x) Nazákladětohotovyjádřenímávýraznalevéstraněv(234)tvar = b a b a j=0 b q(x)dx= r(x)p n+1 (x)dx+ a =0 n γ j p j (x)dx= j=0 b a n j=0 γ j b a s(x) dx =1 { }} { p 0 (x) p j (x)dx

24 18 NUMERICKÁ INTEGRACE FUNKCÍ = n b b b γ j p 0 (x)p j (x)dx=γ 0 p 0 (x)p 0 (x)dx=γ 0 dx j=0 a Levástranav(234)jetedyrovna a γ 0 (b a) Pravá strana v(234) má na základě výše uvedených vyjádření tvar n n n α i [r(x i )p n+1 (x i ) +s(x i )]= α i γ j p j (x i ) i=0 i=0 j=0 =0 Vidíme, že levou a pravou stranu v(234) lze tedy vyjádřit jako lineární kombinacíjistýchvýrazůskoeficienty γ j γ 0 (b a)+ γ γ n 0 n n n = γ 0 p 0 (x i )α i + γ 1 p 1 (x i )α i + +γ n p n (x i )α i i=0 i=0 Porovnánímvýrazůukoeficientů γ j nalevéapravéstranědostanemerovnice prourčeníhledanýchkoeficientů α i : n i=0 p 0(x i )α i = (b a) n i=0 p 1(x i )α i = 0 n i=0 p n(x i )α i = 0 i=0 p 0 (x 0 ) p 0 (x n ) p 1 (x 0 ) p 1 (x n ) p n (x 0 ) p n (x n ) a α 0 α 1 α n = b a 0 Zhlediskastabilityjevýhodné,žekoeficienty α i Gaußovakvadraturního vzorce n i=0 α if(x i )jsoukladné Věta214(pozitivita α i ) Koeficienty α i Gaußova kvadraturního vzorce jsou kladné Důkaz Položme: 0 < p k (x)= b a n i=0,i k (x x i ) 2 Π 2n n p k (x)dx= α i p k (x i )=α k p k (x k ) i=0 >0 α k kladné k=0,1,,n Zkušební otázka 24! Odvoďte Gaußův kvadraturní vzorec řádu 2n + 1 na intervalu[a, b] Odvoďte Gaußův kvadraturní vzorec řádu 3 na intervalu[ 1, 1] (uvažujteortogonálnípolynomy {1, x, x } 0

25 3 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Nechť je dáno nelineární zobrazení 5 přednáška F:IR N IR N Hledáme α:: F(α)=0 Metody pro řešení výše uvedené úlohy jsou většinou iterační Cíl je generovat posloupnost {x (k) }takovou,želimx (k) = α,kde F(α)=0 31 Newtonova metoda Problém F(x)=0nahradímeposloupnostílineárníchproblémů L k (x)=0, L k : IR N IR N, k=0,1,,takových,žejejichřešenítvoříposloupnostkonvergující křešeníproblému F(x)=0 α x (k+1), kde L k (x (k+1) )=0 Nechť x (0) jedáno(pozdějiukážeme,jakhovolit)prodanouaprixamaci x (k) uvažujeme L k (x)jakolineárníčásttaylorovarozvojezobrazení Fvbodě x (k) IR N (J(x)značíJakobihomaticizobrazeníFvbodě x): F(x)=F(x (k) )+J(x (k) )(x x (k) ) +O( x x (k) 2 ) L k (x) (za předpokladu dostatečné hladkosti zobrazení F) Nelineární problém nahradíme problémem lineárním {F(x)=0} {F(x (k) )+J(x (k) )(x x (k) ) =0(311) L k (x) řešení αnelinpb aproximujemeřešením x (k+1) linpb (312) α x (k+1) := x (k) J 1 (x (k) )F(x (k) )(313) Vzorecv(313),kterýmjedefinována(k+1)-níaproximace x (k+1) řešení nelineárního problému je formální, ve skutečnosti se inverzní matice nepočítá a algoritmus má následující dva kroky: Algoritmus: 19

26 20 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 1 J(x (k) )(x x k ) δx (k) = F(x(k) )-řešímelineárníúlohupro δx(k) 2 x (k+1) := x (k) + δx (k) -provedemeupdatepředchozíaproximace Pro N = 1(nelineární skalární rovnice pro jednu neznámou) má Newtonova metoda názorný geometrický význam Nelineární funkci f(x) nahradíme lineárnífunkcí(přímkou),kterájetečnoukegrafufunkce f vbodě(x (k), f(x (k) ) (mátedysměrnici f (x (k) )aprocházíbodem(x (k), f(x (k) ))Vtomtopřípaděse Newtonova metoda nazývá metodou tečen N=1: x (k+1) = x (k) f(x(k) ) f (x (k) ), x(0) dáno, f (x (k) ) 0 Zkušební otázka 31! Odvoďte Newtonovu metodu pro soustavy nelineárních rovnic a její algoritmizaci Popište algoritmus v případě jedné skalární rovnice Způsob,jaknahraditfunkci f přímkouprocházejícíbodem(x (k), f(x (k) )) není jediný Další možnosti jsou metoda sečen, jednobodová metoda sečen nebo metoda regula falsi(viz cvičení k přednášce) Poznámka 31 Newtonova metoda je speciálním případem náhrady funkce f lineární funkcí l k (x):= f(x (k) )+(x x (k) )q k, kdesměrnice q k sevolí q k := f (x (k) ) 311 Důkaz konvergence Newtonovy metody Věta32(KonvergenceNewtonovymetodyprosoustavy)Nechť F C(D), D IR N konvexní,otevřenámnožina,kteráobsahuje α:: F(α)=0Nechť J 1 (α), nechť R >0, c >0, L >0: J 1 (α) c, J(x) J(y) L x y maticová norma vekt norma x, y B(α, R), kde B(α, R)jekouleostředu αapoloměru RPotom r, x (0) B(α, r), posloupnost 313 je jednoznačně definována a konverguje k α a platí α x (k+1) α cl x (k) 2 (314) Motivace: N=1 x (k+1) = x (k) f(x(k) ) f (x (k) ) Newtonova metoda

27 Z Taylorova rozvoje dostáváme: NEWTONOVA METODA 21 f(α)=f(x (k) )+f (x (k) )(α x (k) )+ f (ξ)(α x (k) ) 2 2 Zajímánáschyba(α x (k+1) )Chcemeukázat,že α x (k+1) 0Odečtením α od obou stran vzorce pro Newtonovu metodu získáme vyjádření α x (k+1) = α x (k) + f(x(k) ) f (x (k) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že f(α) = 0) dostaneme 0= f(x(k) ) f (x (k) ) +(α x(k) )+ f (ξ)(α x (k) ) 2 2 f (x (k) ) Z předchozích dvou rovnic snadno nahlédneme, že platí α x (k+1) = f (ξ)(α x (k) ) 2 2 f (x (k) ) Předpokládejme nyní, že existuje konstanta c taková, že podíl derivací na pravé straně předchozího výrazu lze odhadnout f (ξ) 2 f (x (k) ) < c ξ x(k) Potom dostaneme ( α x (k+1) α c x (k) 2 ) c c α x (k 1) 2 2 = 1 c ( ) c α x (k 1) 4 1 c ( ) c α x (0) 2 k+1 Pravástranakonvergujeknulepro k + zapředpokladu c α x (0) <1,tjjestližeje x (0) dostatečněblízkokα Pro důkaz konvergence Newtonovy metody pro jednu skalární rovnici jsme tedy využili tyto předpoklady 1 x (0) dostatečněblízko α, 2 f omezenáshora 1 3 f omezenáshora(tjpředpokládáme f (α) 0), které korespondují s předpoklady Věty 32 Jak, to je patrné z následujícího důkazu

28 22 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC Důkaz věty32 x (0) zvolímevb(α, r),kde ručímetak,aby J 1 (x (0) )existovala(jinýmislovy, x (0) volímedostatečněblízko α)ktomuvyužijemenásledující tvrzení z algebry: Lemma 33 Důkaz viz cvičení k přednášce Definujme matici A <1 (I A) 1 existujeaplatí (I A) A A:= I J 1 (α)j(x (0) ) kde x (0) zvolímetak(blízko α),aby A <1,konkrétnězvolíme x (0) tak,aby A 1 2 K tomu využijeme předpoklady Věty 32 týkající se odhadu inverze Jacobiho matice v bodě α a lipschitzovskosti Jacobiho matice: A { }} { I J 1 (α)j(x (0) ) = J 1 (α)(j(α) J(x (0) )) cl α x (0) (315) x (0) zvolímetak,abyposlednívýrazv(315) 1 2 Tímdostávámepodmínku na x (0) : α x (0) 1 α cl azároveň x (0) R( platnost podmínky lipschitzovskosti) Pro r dostáváme ( ) 1 r:=min 2cL, R Vmnožine B(α, r)existujepodlevýšeuvedenéhotvrzenízalgebry J 1 (x (0) ) Toplynezevztahů (I A)=J 1 (α)j(x 0 ), (I A) 1 = J 1 (x (0) )J(α) Lze tedy spočítat první iteraci Newtonovy metody a odhadnout její chybu: α x (1) = α x (0) + J 1 (x (0) )F(x (0) ) Úpravou Taylorova rozvoje(uvědomíme-li si, že F(α) = 0) dostaneme 0=F(α)=F(x (0) )+J(x (0) )(α x (0) )+ zbytek, 0=J 1 (x (0) )F(x (0) )+(α x (0) )+J 1 (x (0) )zbytek

29 NEWTONOVA METODA 23 S využitím odhadu zbytku Taylorova rozvoje dostaneme odhad zbytku { }} { α x (1) J 1 (x (0) 1 α ) 2 L x (0) 2 a důkaz dokončíme pomocí odhadu normy inverzní matice J 1 (x (0) ) = J ( 1) (x (0) )J(α) J (I A) 1 Pro odhad chyby máme tedy vztah ( 1) (α) 1 c 2c 1 A }{{} 1 2 α x (1) α cl x (0) 2 ( ) = cl α x (0) α x (0), 1 2 z něhož plyne dále indukcí konvergence Newtonovy metody Zkušební otázka 32 Dokažte větu o konvergenci Newtonovy metody Poznámka 34 Modifikace Newtonovy metody: Jacobihomaticeseneměnípro p 2kroků nepřesné řešení soustavy lin rovnic vyčísleníjacobihomaticepomocídiferencí f (x) f(x+h) f(x) h 312 Řádkonvergence Definice 35(řád konvergence iterační metody pro řešení F(x) = 0) Řekneme, žeposloupnost {x (k) }generovanánumerickoumetodoukonvergujekαsřádem p 1,pokud c >0 α x (k+1) α x (k) p c k k 0 V takovém případě se numerická metoda nazývá řádu p Věta 32 říká, že Newtonova metoda je kvadraticky konvergentní, α x (k+1) α cl x (k) 2, pokudje x (0) dostatečněblízko αapokudje J(α)nesingulární

30 24 METODY ŘEŠENÍ NELINEÁRNÍCH ROVNIC 32 Metoda postupných aproximací pro nelineární rovnice Metoda postupných aproximací je založena na faktu, že pro dané zobrazení F: M IR N IR N jevždymožnétransformovatproblém F(x)=0naekvivalentní problém x φ(x)=0,kdepomocnáfunkce φjevolenatak,aby φ(α)=αprávě když F(α)=0Nalezenínulovýchbodůzobrazení Fsetakpřevedenanalezení pevného bodu zobrazení φ, které se realizuje pomocí následujícího algoritmu: Dáno x (0), x (k+1) := φ(x (k) ), k 0 Definice36(kontrahujícízobrazení)Řekneme,žezobrazení G:D IR N IR n jekontrahujícína D 0 D,jestliže L <1:: G(x) G(y) L x y x, y D 0 Věta37(větaopevnémbodě)Nechť G:D IR N IR N kontrahujícína uzavřenémnožině D 0 D, G(x) D 0 x D 0 Pak Gmáprávějedenpevný bodtentobodjelimitouposloupnosti x (k+1) = φ(x (k) ), x (0) D 0 libovolné Důkaz jednoznačnost, existence(cauchyovská posloupnost, spojitost G), viz cvičení k přednášce Poznámka 38 Newtonova metoda jako speciální případ věty o pevném bodě (Viz cvičení k přednášce) 33 Kořeny polynomu Nalezení lokalizacekořenůvc aproximace kořenů 6 přednáška Věta 39(Descartes) Počet kladných kořenů(včetně násobnosti) polynomu p n (α)=a 0 +a 1 x+ +a n x n jerovenpočtuznaménkovýchzměnvposloupnosti a 0, a 1,,a n,nebojeosudéčíslomenší Věta 310(Cauchy) Kořeny polynomu leží v kruhu { Γ= z C; z 1+η, η= max 0 k n 1 Poznámka3111 η:translaceazměnasouřadnic 331 Hornerovoschema V dalším budeme potřebovat vyčíslení hodnoty polynomu v daném bodě x Vyčíslení polynomu: p n (x)=a 0 + a 1 x+ +a n x n a k a n }

Numerická matematika

Numerická matematika Numerická matematika Jiří Felcman Univerzita Karlova v Praze Matematicko-fyzikální fakulta KNM PRESS PRAHA 2009 iv PŘEDMLUVA 1 přednáška 1 felcman@karlinmffcunicz Tel 22191 3392 KNMčdv442 2 Numerická matematika-

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

NUMERICKÉ METODY. Josef Dalík

NUMERICKÉ METODY. Josef Dalík NUMERICKÉ METODY Josef Dalík Zdroje chyb Při řešení daného technického problému numerickými metodami jde zpravidla o zjištění některých kvantitativních charakteristik daného procesu probíhajícího v přírodě

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

2. Matice, soustavy lineárních rovnic

2. Matice, soustavy lineárních rovnic Matice, soustavy lineárních rovnic Tento učební text byl podpořen z Operačního programu Praha- Adaptabilita Irena Sýkorová Některé vlastnosti matic Uvažujmečtvercovoumatici A=(a ij ) n n Matice Asenazývásymetrická,jestližeplatí

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA IV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ doc RNDr Josef Dalík, CSc MATEMATIKA IV NUMERICKÁ ANALÝZA STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε c Josef

Více

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Mgr. Karel Pazourek. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Mnohočleny z různých stran Mgr. Karel Pazourek Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR POČÁTEČNÍ ÚLOHY Numerické metody 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Numerické metody. Vratislava Mošová

Numerické metody. Vratislava Mošová Numerické metody Vratislava Mošová 1 Předmluva S rozvojem počítačů vzrostl význam numerických metod. Řada výpočetních postupů, které sem řadíme, vznikla sice už dávno předtím, ale teprve nástup výpočetní

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

MASARYKOVA UNIVERZITA V BRNĚ NELINEÁRNÍCH ROVNIC

MASARYKOVA UNIVERZITA V BRNĚ NELINEÁRNÍCH ROVNIC MASARYKOVA UNIVERZITA V BRNĚ PŘÍRODOVĚDECKÁ FAKULTA NUMERICKÉ ŘEŠENÍ NELINEÁRNÍCH ROVNIC RIGORÓZNÍ PRÁCE Mgr. Michal Šmerek Brno 2005 ii Prohlášení: Prohlašuji, že předložená práce je mým původním autorským

Více

Numerické řešení rovnice f(x) = 0

Numerické řešení rovnice f(x) = 0 Numerické řešení rovnice f(x) = 0 Přemysl Vihan 9.10.2003 Katedra fyziky, Pedagogická fakulta Univerzity J.E. Purkyně v Ústí n.l. 2. ročník, PMVT-mag. Abstrakt Seminární práce se zabývá numerickým řešením

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D.

Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY. RNDr. Karel Hasík, Ph.D. Matematický ústav Slezské univerzity v Opavě NUMERICKÉ METODY RNDr. Karel Hasík, Ph.D. Obsah 2 ÚVOD DO NUMERICKÉ MATEMATIKY 7 2.1 Rozdělení chyb........................... 7 2.2 Zaokrouhlovací chyby.......................

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2.

A NUMERICKÉ METODY. Matice derivací: ( ) ( ) Volím x 0 = 0, y 0 = -2. A NUMERICKÉ METODY Fourierova podmínka: f (x) > 0 => rostoucí, f (x) < 0 => klesající, f (x) > 0 => konvexní ᴗ, f (x) < 0 => konkávní ᴖ, f (x) = 0 ᴧ f (x)!= 0 => inflexní bod 1. Řešení nelineárních rovnic:

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008

INOVACE MATEMATIKY PRO EKONOMY NA VŠE. Anketavroce2008 INOVACE MATEMATIKY PRO EKONOMY NA VŠE Anketavroce2008 Dne 11.12.2008 se obrátil člen katedry matematiky doc. RNDr. Jiří Henzler, CSc. na všechny učitele Vysoké školy ekonomické v Praze s následující výzvou:

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více