Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28"

Transkript

1 Funkce Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Funkce 5. října / 28

2 Obsah 1 Reálná funkce jedné reálné proměnné Limita funkce Věty o limitách Spojitost funkce Význačné limity Asymptoty grafu funkce Helena Říhová (ČVUT) Funkce 5. října / 28

3 Limita funkce Definice Předpokládáme, že funkce f je definovaná v nějakém prstencovém okolíbodux o (tj.vboděx o může, ale nemusíbýtdefinována). Řekneme,že limita funkce f pro x blížícísekx o je rovnačíslul, jestliže ke ε > 0 δ > 0 tak,žepro xsplňující 0 < x x o < δ je f(x) L < ε. Píšeme lim x x o f(x)=l. Jde o vlastní limitu ve vlastním bodě. Helena Říhová (ČVUT) Funkce 5. října / 28

4 y f(x) L ε ε δ 1 δ 2 δ= min{δ 1, δ 2 } x o x lim f(x)=l x x o Helena Říhová (ČVUT) Funkce 5. října / 28

5 Jednostranné limity funkce Definice Předpokládáme, že funkce f je definovaná v nějakém levostranném, pravostranném okolíbodux o. zleva Řekneme,že limita funkce f pro x blížícísekx o zprava číslul,jestliže ke ε > 0 δ > 0 tak,žepro xsplňující x (x o δ, x o ) je f(x) L < ε. Píšeme x (x o, x o +δ) je rovna lim x x o lim x x + o f(x) = L f(x) = L limita zleva limita zprava. Helena Říhová (ČVUT) Funkce 5. října / 28

6 Vlastnosti limity Pokud limita v daném bodě existuje, je dána jednoznačně. Limita je lokální pojem- nezáleží na chování funkce v bodech vzdálených x o. Limitaneovlivňuje hodnotuf(x o ), pokudexistuje.může být f(x o ) L. Je-li lim x x o f(x)= lim x x + o f(x)=l,pakexistuje lim x xo f(x) aje rovna L. Helena Říhová (ČVUT) Funkce 5. října / 28

7 Věty o limitách Věta(O sevřené funkci) Jestliže pro x Uδ(x o )platí: g(x) h(x) f(x) a lim x xo g(x)= lim x xo f(x)=l,pak lim x xo h(x) aje rovnal. Věta(O záměně pořadí limity a aritmetické operace) Necht označí jednuzoperací +,,, apříslušnélimity existují. Pak platí: lim(f(x) o g(x))= lim f(x) o lim g(x), x x o x xo x xo přičemžpro podílmusíbýtg(x) 0na Uδ(x o ) Helena Říhová (ČVUT) Funkce 5. října / 28

8 Spojitost funkce Definice Máme funkci f definovanouvnějakémokolí U δ (x o )(tj. iv x o ). Řekneme,že f je vbodě x o spojitá,jestliže Definice lim f(x)=f(x o ). x x o Funkce je spojitá na intervalu I (otevřeném, nebo uzavřeném), je-li spojitá v každém bodě I.(V krajních bodech jednostranně, viz dále.) Věta Jsou-li f, g spojitév x o,potomi f o g je spojitáv x o, přičemž označí jednuzoperací:+,-,,, prodělenímusí platit: g(x) 0na nějakému δ (x o ). Helena Říhová (ČVUT) Funkce 5. října / 28

9 Jednostranná spojitost funkce Definice Funkcef,definovanávlevo (pravo)strannémokolíbodux o včetně bodux o,je vtomtoboděspojitázleva (zprava), jestliže lim x x o lim x x + o f(x)=f(x o ) f(x)=f(x o ) Funkceje spojitávboděx o, je-lispojitávx o zleva izprava. Helena Říhová (ČVUT) Funkce 5. října / 28

10 Spojitost složené funkce Věta(O spojitosti složené funkce) Necht je funkce f spojitá v bodě c a funkce g je spojitá v bodě d, přičemž g(d)=c. Pak složenáfunkce h=f g je spojitávbodě d, h(d)=f(g(d))=f(c). Při výpočtu limity se často hodí následující skutečnost. Platí:je-li f(x)=g(x) vnějakém Uδ(x o ), pak lim f(x)= lim g(x), x xo x xo pokud zmíněné limity existují. A to je návod, jak počítat mnohé limity. Bude zužitkován v následujících příkladech. Helena Říhová (ČVUT) Funkce 5. října / 28

11 Příklad Příklad: Je dánafunkcef(x)= 1 pro x 0 = 0 pro x=0. Určete lim x 0 f(x). Řešení: Volímeg(x)=1pro x R.Pakg(x)=f(x) v Uδ(0) a lim x 0 g(x)=1=lim x 0 f(x). A jsmecelí hotoví. x 2 x 2 Příklad: Určete lim. x 2 x 2 x 2 x 2 Nejprvezkoušíme Řešení: lim = = 0 x 2 x 2 dosadit. Vyjde: 0 = můžeme krátit = lim(x+1)=3. Aje to. dvojčlenem(x 2) x 2 Helena Říhová (ČVUT) Funkce 5. října / 28

12 Věta ozáměnělimityafunkce Věta Jestliže lim x xo g(x)=c a f(x) jevbodě c spojitá,pak lim f(g(x))=f(lim g(x))=f(c) x x o x xo Příklad: Určete lim x 1 ln x2 x x 2 +x 2. Řešení: lim x 1 ln x2 x x 2 +x 2 = ln = ln 1 3 ( lim x 1 x 2 ) ( x x 2 = ln lim +x 2 x 1 ) x = x+2. = Helena Říhová (ČVUT) Funkce 5. října / 28

13 I. význačná limita sin x lim x 0 x y 1 = 1 sin x x π π 2 π 2 π x Helena Říhová (ČVUT) Funkce 5. října / 28

14 I. význačná limita Zlimity vyplývá, že proxblízkánuleje sin x x. y y=x 1 π 2 π 2 x Helena Říhová (ČVUT) Funkce 5. října / 28

15 Věta o substituci Věta Necht limf(u)=l a limg(x)=dabud f jespojitáv d, u d x c nebog(x) dvnějakémokolíbodu c.potom limf(g(x))= substituce u=g(x) =limf(u). x c u d sin3x 2 Příklad: Určete lim x 0 x 2 Řešení: sin3x 2 lim x 0 x 2 sin3x 2 = lim x 0 3x 2 3= substituce u=3x 2, u 0 = lim3 sinu = 3 u 0 u Helena Říhová (ČVUT) Funkce 5. října / 28

16 Důsledky limity Dále platí: lim x 0 sin(kx) kx lim x 0 tan x x Proxblízkánuleje = 1 prok R, k 0, lim x 0 sin k (x) x k = 1prok R, lim x 0 sinx k x k = 1 pro k R +, arcsinx arctanx = 1, lim = 1, lim = 1. x 0 x x 0 x tanx x, arcsinx x, arctanx x a jsou splněny obdobné vztahy jako ty výše uvedené pro sinus. Helena Říhová (ČVUT) Funkce 5. října / 28

17 Příklad: Daným funkcím sin2x 2x, sin x 2 x 2, odpovídající grafy. sin 2 x x 2 přiřad te π 2 π 2 π 2 π 2 π 2 π 2 Helena Říhová (ČVUT) Funkce 5. října / 28

18 Nevlastní limita Definice Říkáme,že funkcef má vboděx o nevlastní limitu +,, ke k > 0 δ > 0tak,že pro x: 0 < x x o < δ k < 0 je f(x) > k f(x) < k. Píšeme lim f(x)=+ x xo lim f(x)=. x x o jestliže Helena Říhová (ČVUT) Funkce 5. října / 28

19 (Ne)vlastní limita v nevlastním bodě Definice Říkáme,že funkcef má limitu Lvnevlastnímboděx o = ±, jestliže ke ǫ > 0 c takové,žepro x cje f(x) L < ǫ. Píšeme lim f(x)=l x + lim f(x)=l. x Říkáme,že funkcef má nevlastnílimitu+ vnevlastnímbodě +,jestliže ke k > 0 c takové,žepro x > c je f(x) > k. Píšeme lim x + f(x)=+. Helena Říhová (ČVUT) Funkce 5. října / 28

20 II. význačná limita y ( lim 1+ 1 x = e x x) e y= ( 1+ 1 ) x x 1 1 x Helena Říhová (ČVUT) Funkce 5. října / 28

21 II. význačná limita y lim(1+x) 1 x= e x 0 e 1 y=(1+x) 1 x 1 x Helena Říhová (ČVUT) Funkce 5. října / 28

22 II. význačná limita Další limity, které vyplývají z těch předešlých: ( lim 1+ 1 x = e x x) ln(1+x) lim = 1 x 0 x e x 1 lim = 1 x 0 x Limity se spočítají vhodnou substitucí, kterou se převedou na předešlé. Helena Říhová (ČVUT) Funkce 5. října / 28

23 Asymptoty Jestliže limita funkce ve vlastním(konečném) bodě je nevlastní (nekonečná), graf funkce má svislou asymptotu(asymptotu bez směrnice). lim f(x)=± svisláasymptota x=x o. x x o (Limita může být zleva, zprava nebo oboustranná.) Jestliže limita funkce v nevlastním bodě(nekonečnu) je vlastní (konečná), graf funkce má vodorovnou asymptotu. lim f(x)=l vodorovnáasymptota y=l. x ± Helena Říhová (ČVUT) Funkce 5. října / 28

24 Asymptoty Definice Říkáme,že přímkay=kx+q jeasymptotou(sesměrnicí)křivky y=f(x) prox ±,jestliže platí Určení rovnice asymptoty lim (f(x) (kx+q))=0. x ± f(x) lim x ± x = k, lim (f(x) kx)=q. x ± Vyjde-lisměrniceknenulová,mluvíme ošikméasymptotě,prok=0 jsmeopětuvodorovnéasymptotyy=q. Helena Říhová (ČVUT) Funkce 5. října / 28

25 Příklad Příklad: Určete všechny asymptoty grafu funkce f(x)= x x+1 x. Načrtnětečástigrafu vblízkostiasymptot. x 1 Řešení: Vzhledem k absolutní hodnotě hledáme řešení úlohy zvlášt prox < 1aprox 1. a) x < 1 Pak f(x)= 2x2, funkcejedefinovánanacelém intervalu(, 1) x 1 svislá asymptota není. Zjistíme, zda je šikmá, vodorovná, nebo žádná. f(x) lim x x = lim 2x2 = 2 šikmáasymptotaje amá x x(x 1) směrnici k = 2. Určíme q. Helena Říhová (ČVUT) Funkce 5. října / 28

26 Pokračování příkladu ( ) 2x 2 q= lim (f(x) kx)= lim x x x 1 +2x 2x 2 +2x 2 2x = lim x x 1 = 2. A máme rovnici šikméasymptoty: y= 2x 2. b) x 1 Nyní f(x)= 2x x 1. Funkcenenídefinovánavboděx=1. 2x lim = ±, grafmásvislou asymptotux=1. x 1 ± x 1 A protože lim y=2. x 2x = 2, existujeivodorovnáasymptotaamárovnici x 1 Helena Říhová (ČVUT) Funkce 5. října / 28

27 Konec příkladu Závěr:graf funkcemá šikmouasymptotuy= 2x 2v,svislou asymptotux=1avodorovnouasymptotuy=2v+. y y= x x+1 x 1 x 1 1 x Helena Říhová (ČVUT) Funkce 5. října / 28

28 Děkuji za pozornost Helena Říhová (ČVUT) Funkce 5. října / 28

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Helena R ˇ ı hova (CˇVUT) Limita funkce vı ce promeˇnny ch 26. za rˇı / 16

Helena R ˇ ı hova (CˇVUT) Limita funkce vı ce promeˇnny ch 26. za rˇı / 16 Limita funkce více proměnných Helena Říhová FBMI 26. září 2010 Helena Říhová (ČVUT) Limita funkce více proměnných 26. září 2010 1 / 16 Obsah 1 Limita Definice limity Parciální derivace Tečná rovina, totální

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce

2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce 2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

Funkce více proměnných - úvod

Funkce více proměnných - úvod Funkce více proměnných - úvod Helena Říhová FBMI 14. července 2014 Helena Říhová (ČVUT) Funkce více proměnných - úvod 14. července 2014 1 / 16 Obsah 1 Úvod Grafy funkcí dvou proměnných Eukleidovská vzdálenost

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

a = a 0.a 1 a 2 a 3...

a = a 0.a 1 a 2 a 3... Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17 Posloupnosti Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Posloupnosti 5. října 2012 1 / 17 Obsah 1 Posloupnosti Definice, vlastnosti Vybraná, stacionární, oscilující, ohraničená posloupnost Monotónní

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval)

(,b)={x IR;x < b} (otevřenýinterval) a,b ={x IR;a x b} (uzavřenýinterval) A definice a tvrzení 1 c phabala 2010 Definice a tvrzení Reálná osa Značení(populární číselné množiny. IN přirozenáčísla1,2,3,4,... IN 0 = IN {0}={0,1,2,3,4,...} Z celáčísla0,1,-1,2,-2,3,-3,... IQ racionální

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 2015 Studijní program: Studijní obory: Matematika MMUI Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 1 (25 bodů Navrhněte deterministický konečný

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

, f g jsou elementární funkce.

, f g jsou elementární funkce. Průběh funkce použité definice a věty Definice. Řekneme, že funkce je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce je spojitá na

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε. LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. Vážení studenti,

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Derivace funkce a parciální derivace

Derivace funkce a parciální derivace Derivace funkce a parciální derivace Derivace funkce jedné proměnné Derivace vyšších řádů L Hospitalovo pravidlo Parciální derivace. p.1/18 Derivace funkce jedné proměnné Příklad 3.1.1 Vypočtěte z definice

Více

9. Limita a spojitost funkce

9. Limita a spojitost funkce Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. 1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)

Více

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Matematika 1. Matematika 1

Matematika 1. Matematika 1 5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

Aplikační úlohy z diferenciálního počtu jedné proměnné

Aplikační úlohy z diferenciálního počtu jedné proměnné Jihočeská univerzita v Českých Budějovicích Fakulta Katedra Bakalářská práce Aplikační úlohy z diferenciálního počtu jedné proměnné Vypracoval: Michaela Jelínková Vedoucí práce: RNDr. Vladimíra Petrášková,

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Matematická analýza 1

Matematická analýza 1 VŠB TECHNICKÁ UNIVERZITA OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY Matematická analýza 1 Cvičení Martina Litschmannová 2015 / 2016 Definice, věty i mnohé příklady jsou převzaty z: KUBEN, Jaromír a

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více