Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry."

Transkript

1 Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/

2 Maticové hry řešené v oboru smíšených strategií V případech, kdy α < β, a tedy max i min j musíme MH řešit v oboru smíšených strategií. a ij < min j max a ij( ) i Definice: Smíšenou strategií 1. hráče P rozumíme m-tici x = (x 1,..., x m), kde x i 0 a m x i = 1. Smíšenou strategií 2. hráče P rozumíme n-tici y = (y 1,..., y n), kde y j 0 a n y j = 1. Poznámka: x i vyjadřuje pravděpodobnost, s jakou 1. hráč užívá i-tou čistou strategii A i, y j vyjadřuje pravděpodobnost, s jakou 2. hráč užívá j-tou čistou strategii B j. i=1 j=1

3 Maticové hry řešené v oboru smíšených strategií Nemá-li hra sedlový bod je pro oba hráče výhodné své jednotlivé (čisté) strategie rozumně střídat. P Výraz E( x, y) = m np a ijx iy j nazýváme střední cena hry (= očekávaná výhra i=1 j=1 1. hráče = očekávaná prohra 2. hráče). Definice: Smíšené strategie x 0, y 0, pro které platí rovnost max x min y E( x, y) = min y se nazývají optimální smíšené strategie. Cena hry pak je v = E( x 0, y 0). Základní věta teorie MH: max E( x, y) = E( x 0, y 0), x Každá maticová hra má řešení v oboru smíšených strategií. Poznámka: Existuje řada metod řešení MH. Vždy jde o to nalézt optimální smíšené strategie obou hráčů x 0, y 0 a cenu hry v = E( x 0, y 0).

4 Maticové hry typu 2 2 Předpokládejme, že MH daná platební maticí «a11 a 12 A = nemá sedlový bod. a 21 a 22 Hledáme tedy optimální smíšené strategie x 0 = (x 1, x 2), y 0 = (y 1, y 2), přičemž x 1 + x 2 = 1, y 1 + y 2 = 1; x 1, x 2, y 1, y 2 0. Pro tyto optimální smíšené strategie musí platit: a 11x 1 + a 21x 2 = v, a 11y 1 + a 12y 2 = v, a 12x 1 + a 22x 2 = v, a 21y 1 + a 22y 2 = v. Řešením této soustavy rovnic získáme neznámé x 1, x 2, y 1, y 2, v: x 1 = y 1 = a22 a21, x 2 = a a22 a12, y 2 = a a12 a11, a a11 a21, a v = det(a), a kde a = a 11 + a 22 a 12 a 21, det(a) = a 11a 22 a 12a 21.

5 Maticové hry typu 2 2 Př: Řešte MH s platební maticí A = Řešení: «. Optimální strategie získáme dosazením do vzorců: a = a 11+a 22 a 12 a 21 = = 4, det(a) = a 11a 22 a 12a 21 = = 10, Tedy: x 1 = y 1 = a22 a21 a a22 a12 a = = x 0 = = 1 a12 a11, x2 = = 4 2 = 1 2 a 4 2, = 1 a11 a21, y2 = = 4 1 = 3 4 a 4 4, v = 10 4 = , 1 «1, y 0 = 2 4, 3 «, v =

6 Maticové hry typu 2 2 Př: Řešte MH s platební maticí A = «. Řešení: Optimální strategie obou hráčů a cena hry jsou: 9 x 0 = 20, 11 «3, y 0 = 20 10, 7 «, v = Hra je nespravedlivá, zvýhodňuje hráče A.

7 Maticové hry typu 2 2 Př: Řešte MH s platební maticí A = «. Řešení: Optimální strategie obou hráčů a cena hry jsou: x 0 = (1, 0), y 0 = (0, 1), v = 3. Hra je nespravedlivá, zvýhodňuje hráče A. Poznámka: Při řešení předchozí MH bylo potřeba si uvědomit, že v platební matici exituje sedlový bod (α = β), čili řešení v čistých strategiích. Formální dosazení do vzorců by dalo špatné výsledky!

8 Princip dominování Rozměry platební matice je často možno při řešení MH zmenšovat na základě principu dominování. Definice: Řekneme, že vektor a = (a 1,..., a n) dominuje vektor b = (b1,..., b n), jestliže a i b i, i = 1,..., n. Mějme MH s platební maticí A = (a ij) m n. Jestliže i-tý řádek platební matice dominuje k-tý řádek, můžeme k-tý řádek vynechat s tím, že x k = 0 a dále řešíme hru se zmenšenou maticí, která má stejné řešení jako původní hra. Jestliže j-tý sloupec platební matice dominuje k-tý řádek, můžeme j-tý sloupec vynechat s tím, že y j = 0 a dále řešíme hru se zmenšenou maticí, která má stejné řešení jako původní hra.

9 Princip dominování 0 Př: Řešte MH s platební maticí A A. Řešení: 0 A A 3. sloupec dominuje 1. sloupec (y 3 = 0) A 3 3 A 3. řádek dominuje 2. řádek (x 2 = 0) 2 3 «4 6 A = 2 3 Nyní vyřešíme MH s platební matící A podle vzorců pro MH typu 2 2:

10 Maticové hry typu 2 2 Nyní vyřešíme MH s platební matící A podle vzorců pro MH typu 2 2: x 1 = x 1 = 1 3 x 2 = x 3 = 2 3, y 1 = y 1 = 3 5, y 2 = y 2 = 2 5, v = v = 0. Optimální strategie obou hráčů a cena hry jsou: 1 x 0 = 3, 0, 2 «3, y 0 = 3 5, 2 «5, 0, v = 0. Hra je spravedlivá.

11 Maticové hry typu 2 n. Grafická metoda. Hry typu 2 n «a11 a a 1n Předpokládejme, že MH daná platební maticí A = a 21 a a 2n nemá sedlový bod. Hledáme tedy optimální smíšené strategie x 0 = (x 1, x 2), y 0 = (y 1, y 2,..., y n), přičemž x 1 + x 2 = 1, y 1 + y y n = 1; x 1, x 2, y 1, y 2,..., y n 0. Uvažujme funkce M j(x 1) = a 1jx 1 + a 2jx 2 = (a 1j a 2j)x 1 + a 2j, j = 1,..., n. Znázorníme graficky části těchto přímek v intervalu x 1 0, 1. Použijeme principu minimaxu.

12 Maticové hry typu 2 n. Grafická metoda. Použijeme principu minimaxu. Cílem 2. hráče je minimalizovat výhru 1. hráče. Určíme proto funkci M(x 1) = min j M j(x 1). Cílem 1. hráče je vhodnou volbou hodnoty x 1 maximalizovat svoji výhru. Hledáme tedy hodnotu x 0 1 takovou, že Řešením hry je pak M(x 0 1 ) = max x 1 M(x 1). v = M(x 0 1 ), x 0 = (x 0 1, 1 x 0 1 ). V optimální smíšené strategii 2. hráče jsou nenulové hodnoty y k, y l, které odpovídají přímkám M k (x 1), M l (x 1) protínajícím se v bodě (x1 0, v). Hodnoty y k, y l určíme řešením MH s platební maticí (typu 2 2) «A a1k a = 1l. a 2k a 2l

13 Maticová hra typu 2 n. Grafická metoda. Př: Řešte MH s platební maticí A = «. Řešení: α = 2, β = 5 sedlový bod neexistuje. MH budeme řešit graficky. Do grafu znázorníme přímky: M 1(x 1) = 2x 1 + 7x 2 = 5x 1 + 7, [0, 7], [1, 2], M 2(x 1) = 3x 1 + 5x 2 = 2x 1 + 5, [0, 5], [1, 3], M 3(x 1) = 11x 1 + 2x 2 = 9x 1 + 2, [0, 2], [1, 11].

14 Maticová hra typu 2 n. Grafická metoda. Obrázek: Grafické řešení MH

15 Maticová hra typu 2 n. Grafická metoda. Funkce M(x 1) je zřejmá z grafu. Maximum funkce M(x 1) nabývá v průsečíku přímek M 2 M 3. Proto y 1 = 0. Ostatní složky určíme řešením MH s platební maticí (2. a 3. sloupec): A = «. Optimální strategie obou hráčů a cena hry jsou: 3 x 0 = 11, 8 «, y 0 = 0, , 2 «, v = Hra je nespravedlivá, zvýhodňuje hráče A.

16 Maticové hry typu m 2. Grafická metoda. Hry typu m 2 Řeší se analogicky jako hry typu 2 n, ale z pohledu 2. hráče. 0 1 a 11 a 12 a 21 a 22 Předpokládejme, že MH daná platební maticí A = C.. A nemá sedlový bod. Hledáme tedy optimální smíšené strategie x 0 = (x 1, x 2,..., x m), y 0 = (y 1, y 2), přičemž x 1 + x x m = 1, y 1 + y 2 = 1; x 1, x 2,..., x m, y 1, y 2 0. Uvažujme funkce a m1 a m2 N i(x 1) = a i1y 1 + a i2y 2 = (a i1 a i2)y 1 + a i2, i = 1,..., m. Znázorníme graficky části těchto přímek v intervalu y 1 0, 1. Použijeme principu maximinu.

17 Maticové hry typu m 2. Grafická metoda. Použijeme principu maximinu. Určí se funkce N(y 1) = max N i(y 1). i Cílem 2. hráče je vhodnou volbou hodnoty y 1 minimalizovat svou prohru (=maximalizovat svoji výhru). Hledáme tedy hodnotu y1 0 takovou, že Řešením hry je pak N(y 0 1 ) = min y 1 N(y 1). v = N(y 0 1 ), y 0 = (y 0 1, 1 y 0 1 ). V optimální smíšené strategii 1. hráče jsou nenulové hodnoty x k, x l, které odpovídají přímkám N k (y 1), N l (y 1) protínajícím se v bodě (y1 0, v). Hodnoty x k, x l určíme řešením MH s platební maticí (typu 2 2) «A ak1 a = l1. a k2 a l2

18 Maticová hra typu m 2. Grafická metoda. 0 Př: Řešte MH s platební maticí A A. Řešení: α = 1, β = 1 sedlový bod neexistuje. MH budeme řešit graficky. Do grafu znázorníme přímky: N 1(y 1) = 2y 1 + y 2 = 3y 1 + 1, [0, 1], [1, 2], N 2(y 1) = y 1 5y 2 = 4y 1 5, [0, 5], [1, 1], N 3(y 1) = y 2 = y 1 1, [0, 1], [1, 0].

19 Maticová hra typu m 2. Grafická metoda. Obrázek: Grafické řešení MH

20 Maticová hra typu m 2. Grafická metoda. Funkce N(y 1) je zřejmá z grafu. Maximum funkce N(y 1) nabývá v průsečíku přímek N 1 N 3. Proto x 2 = 0. Ostatní složky určíme řešením MH s platební maticí (1. a 3. řádek): «A 2 1 =. 0 1 Optimální strategie obou hráčů a cena hry jsou: 1 x 0 = 4, 0, 3 «1, y 0 = 4 2, 1 «, v = Hra je nespravedlivá, zvýhodňuje hráče B.

21 Maticová hra typu m 2. Grafická metoda. 0 Př: Řešte MH s platební maticí A A. Řešení: α = 3, β = 4 sedlový bod neexistuje. MH budeme řešíme graficky. Do grafu znázorníme přímky: N 1(y 1) = y 1 + 4y 2 = 3y 1 + 4, [0, 4], [1, 1], N 2(y 1) = 3y 1 + 3y 2 = 3, [0, 3], [1, 3], N 3(y 1) = 5y 1 + 1y 2 = 4y 1 + 1, [0, 1], [1, 5].

22 Maticová hra typu m 2. Grafická metoda. Obrázek: Grafické řešení MH

23 Maticová hra typu m 2. Grafická metoda. Funkce N(y 1) je zřejmá z grafu. Maximum funkce N(y 1) nabývá na úsečce mezi průsečíky přímek N 1 N 2 a N 2 N 3. Celá tato úsečka představuje nekonečně mnoho optimálních řešení. Proto x 2 = 1 (přímka N 2 je konstantní). Optimální strategie obou hráčů a cena hry jsou: x 0 = (0, 1, 0), y 0 = (y 1, 1 y 1), kde y 1 Hra je nespravedlivá, zvýhodňuje hráče A. fi 1 3, 1 fl, v = 3. 2

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit:

{Q={1,2};S,T;u(s,t)} (3.3) Prorovnovážnéstrategie s,t vehřesnulovýmsoučtemmusíplatit: 3 ANTAGONISTICKÉ HRY 3. ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

KOOPERATIVNI HRY DVOU HRA CˇU

KOOPERATIVNI HRY DVOU HRA CˇU 8 KOOPERATIVNÍ HRY DVOU HRÁČŮ 291 V této kapitole se budeme zabývat situacemi, kdy hráči mohou před začátkem hry uzavřít závaznou dohodu o tom, jaké použijí strategie, vygenerovaný zisk si však nemohou

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Stručný úvod do teorie her. Michal Bulant

Stručný úvod do teorie her. Michal Bulant Stručný úvod do teorie her Michal Bulant Čím se budeme zabývat Alespoň 2 hráči (osoby, firmy, státy, biologické druhy apod.) Každý hráč má určitou množinu strategií, konkrétní situace (outcome) ve hře

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy

Teorie her. Kapitola 1. 1.1 Základní pojmy. 1.1.1 Základní pojmy Kapitola 1 Teorie her Dosud jsme se věnovali jednokriteriální či vícekriteriální optimalizaci, kde ve všech úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí.

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU

LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je

Více

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný)

TEORIE HER. Základní pojmy teorie her. buď racionální (usiluje o optimální výsledek hry) nebo indiferentní (výsledek hry je mu lhostejný) TEORIE HER V dosavadních přednáškách jsme probírali jedno či vícekriteriální optimalizaci, ale v těchto úlohách byly předem pevně dané podmínky a ty se nijak neměnily v závislosti na našem rozhodnutí Také

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv.

Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv. Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

9. Soustava lineárních rovnic

9. Soustava lineárních rovnic @097 9. Soustava lineárních rovnic Definice: Nechť x, y, z, t,... jsou reálné proměnné, a, b, c, d,... jsou reálné konstanty. Kombinace proměnných a konstant tvaru ax+b=0, ax+by+c=0, ax+by+cz+d=0, ax+by+cz+dt+e=0,

Více

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií.

Dokažte Větu 2(Minimax) ze třetího dílu seriálu pro libovolnou hru s nulovým součtem, ve kterémákaždýhráčnavýběrprávězedvoustrategií. Teorie her º Ö ÐÓÚ Ö Ì ÖÑ Ò Ó Ð Ò º Ù Ò ¾¼½ ÐÓ ½º HráčIsitajněnapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho ivestejnou chvílisirovněžhráčiinapíšenapapírnějaképřirozenéčíslozrozmezíaž noznačmeho

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic .3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ..07/.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÁ

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry

Teorie her a ekonomické rozhodování. 8. Vyjednávací hry Teorie her a ekonomické rozhodování 8. Vyjednávací hry 8. Vyjednávání Teorie her Věda o řešení konfliktů Ale také věda o hledání vzájemně výhodné spolupráce Teorie vyjednávání Odvětví teorie her dohoda

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D.

ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D. ÚVOD DO TEORIE HER MGR. LENKA PLOHÁKOVÁ RNDR. DAVID BARTL, PH.D. ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: OP VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST ČÍSLO OBLASTI PODPORY: ZVYŠOVÁNÍ ODBORNÝCH

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Úvod do teorie her. podzim 2010 v.1.0

Úvod do teorie her. podzim 2010 v.1.0 Úvod do teorie her podzim 2010 v.1.0 1 Obsah 1 Matematická teorie her 3 1.1 Matematický model.................................. 3 1.2 Maticové hry...................................... 6 1.3 Bi maticové

Více

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková

Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Mikroekonomie magisterský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 1 Teorie her pro manažery Obsah 5.1 Teorie her jako součást mikroekonomie 5.2 Základní pojmy teorie

Více

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Teorie her. RNDr. Magdalena Hykšová, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie her RNDr. Magdalena Hykšová, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více