Systémové modelování. Ekonomicko matematické metody I. Lineární programování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Systémové modelování. Ekonomicko matematické metody I. Lineární programování"

Transkript

1 Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a vlastnostmi jiného celku modelu. Model je záměrně zjednodušený obraz skutečnosti vytvořený pomocí zvolených zobrazovacích prostředků. Systémové modelování kvantifikace modelu definice systému konstrukce modelu OBJEKT SYSTÉM MODEL Typy modelů z hlediska záměru Normativní modely Ukazují optimální, žádoucí stav systému Deskriptivní modely Popisují systém a jeho chování, neobsahují kritérium Koncepční modely Popisují koncepci nově navrhovaného systému Typy modelů z hlediska reprezentace Ikonické (materiální) modely stroje a předměty; zařízení pracující na principu analogie. Symbolické modely grafické; slovní - verbální; matematické modely operačního výzkumu. implementace řešení verifikace modelu Vybrané E-M modely Matematické programování optimalizační modely Distribuční modely Teorie grafů, modely projektového řízení Modely konfliktních situací Vícekriteriální rozhodování Strukturní analýza Stochastické modely Simulační modely Modely systémové dynamiky interpretace výsledků Prvky matematických modelů Proměnné a konstanty - modelují prvky systému o endogenní, stavové - zobrazují charakteristiky vnitřního stavu systému; o exogenní, vstupní nebo výstupní - zobrazují vztahy systému a okolí. Rovnice a nerovnice o zobrazují vazby systému. Funkce a relace o popisují chování a další vlastnosti systému. Systém Tvoří most mezi realitou a modelem Záměrně zjednodušený obraz reality Systém je neprázdná, účelově definovaná třída prvků a vazeb mezi nimi, která spolu se svými vstupy a výstupy vykazuje jako celek ve svém vývoji kvantifikovatelné vlastnosti a chování. Nelze opomenout o účel; o strukturu: prvky, hranice, okolí, vazby; o chování: y = T(x). Lineární programování - Definice modelu a jeho grafické řešení Vybrané aplikace Optimalizace výrobních programů Směšovací úlohy, řezné plány Rozvrhy směn Jiné oblasti operačního výzkumu o teorie her; o dopravní úlohy; o plánování projektů; o apod. Model lineárního programování Cíl: nalézt vázaný extrém lineární funkce více proměnných, který vyhovuje daným lineárním omezujícím podmínkám Komponenty modelu proměnné; omezující podmínky; účelová (kriteriální) funkce; podmínky nezápornosti

2 Proměnné Rozhodovací (strukturní) proměnné Značí se x i Zachycují počet realizací daného procesu Vyjadřují se ve vhodných jednotkách o z hlediska cíle rozhodování; o z hlediska výpočtů. Omezující podmínky Vymezují přípustné kombinace hodnot proměnných Základní typy omezujících podmínek o kapacitní ; o požadavkové ; o určení =. Účelová funkce Vyjádřena jako skalární součin jednotkových cen proměnných a jejich hodnot Základní typy účelových funkcí o minimalizační; o maximalizační. Podmínky nezápornosti Požadujeme pro všechny proměnné Zajišťují praktickou aplikovatelnost řešení Matematický zápis Sestavení modelu Identifikace proměnných o podle cíle řešení úlohy; o hledejte otázku proměnné by ji měly zodpovědět. Jednotky proměnných o volba jednotky - opět podle cíle řešení úlohy; o rozměr jednotky - aby se s proměnnými dobře pracovalo. Identifikace omezujících podmínek (OP) o z textu zadání; o vše, co rozhodovatele limituje při rozhodování; o rovněž OP mají svoje jednotky. Účelová funkce o přímo popisuje cíl rozhodování; o opět nezapomínáme na jednotky. Podmínky nezápornosti Grafické řešení modelu LP Prostor řešení o nejvýše dvě rozhodovací proměnné; o libovolný počet omezujících podmínek. Prostor požadavků o libovolný počet rozhodovacích proměnných; o nejvýše dvě omezující podmínky. Prostor řešení Proměnné osy souřadnic Omezující podmínky o kapacitní, požadavkové poloroviny; o určení přímky. Podmínky nezápornosti 1. kvadrant Účelová funkce mapa spojnic kombinací proměnných s konstantní hodnotou ÚF Možné výsledky Optimální řešení existuje o právě jedno optimální řešení; o nekonečně mnoho optimálních řešení. Optimální řešení neexistuje o žádné přípustné řešení; o hodnota účelové funkce může neomezeně růst nebo klesat. Vlastnosti a omezení modelu LP Linearita o Aditivita (sčitatelnost) o Spojitost o Neomezená záměna faktorů o Libovolná dělitelnost Deterministický charakter Statický charakter Specifická řešení modelu LP Přípustné řešení Optimální řešení Alternativní řešení Suboptimální řešení Bázické řešení - 2 -

3 Bázické řešení modelu LP Vektorový prostor Báze vektorového prostoru Kanonická báze vektorového prostoru Řešení soustavy lineárních rovnic Řešení soustavy lineárních rovnic s parametrem Bázické řešení modelu lineárního programování Základní věty LP Optimální řešení úlohy LP leží vždy na hranici množiny přípustných řešení. Má-li úloha LP přípustné řešení, má i přípustné bázické řešení. Má-li úloha LP optimální řešení, má i optimální bázické řešení. Má-li úloha LP více než jedno optimální bázické řešení, je optimálním řešením i jejich lineární konvexní kombinace. Prostor požadavků Podmínka použití: model musí být v rovnicovém tvaru Realizujeme pomocí tzv. doplňkových proměnných takto: o kapacitní podmínky přičteme hodnotu doplňkové proměnné k levé straně OP o požadavkové podmínky od levé strany OP hodnotu doplňkové proměnné odečteme o podmínky určení rovnice, žádná transformace není potřeba Doplňkové proměnné o přebírají jednotku omezující podmínky; o neovlivňují ÚF, vždy jim přiřazujeme nulovou sazbu; o rovněž musí být nezáporné. Řešení modelu LP v PP Eliminujeme různé ocenění proměnných v účelové funkci vydělíme matici A koeficienty v účelové funkci Zobrazíme v grafu míru uspokojení požadavků příslušnou proměnnou (v hodnotovém vyjádření) Zakreslíme vektor požadavků a zjistíme, které kombinace proměnných tento požadavek mohou uspokojit Nalezneme tu kombinaci proměnných, která daný požadavek uspokojí co nejlevněji (MIN) resp. co nejdráže (MAX) Vypočteme z původních podmínek hodnoty proměnných v optimálním řešení a hodnotu účelové funkce. Použité symboly a značení Proměnné o x strukturní proměnné; o d doplňkové proměnné; o p pomocné proměnné. Omezující podmínky Ax b o A = (a ij ) matice soustavy; o b vektor pravých stran. Účelová funkce z = c.x o c cenové koeficienty proměnných (jednotkové ceny) Simplexový algoritmus Splnění podmínek simplexového algoritmu Výchozí bázické řešení Test optima (vstupu) Test přípustnosti báze (výstupu) Přechod na nové řešení Jordanovou eliminační metodou Podmínky simplexového algoritmu Nezápornost složek vektoru pravých stran o stačí zkontrolovat; o pokud není splněna, lze příslušné omezující podmínky vynásobit hodnotou (-1). Matice soustavy v kanonickém tvaru o krok 1: rovnicový tvar modelu; o krok 2: kanonický tvar modelu. Rovnicový tvar Nerovnice vyrovnáme na rovnice Doplňkové proměnné o značíme d, indexujeme číslem omezující podmínky; o přebírají jednotky omezující podmínky; o v účelové funkci ohodnocujeme nulovou sazbou; o požadujeme jejich nezápornost. Přidáváme do omezujících podmínek o kapacitních s kladným znaménkem (rezerva); o požadavkových se záporným znaménkem (překročení požadavku). Kanonický tvar Nerovnice vyrovnáme na rovnice (doplňkové proměnné) Zajistíme úplnou jednotkovou submatici Pomocné proměnné o značíme p, indexujeme číslem omezující podmínky; o přebírají jednotky omezující podmínky; o v účelové funkci ohodnocujeme nevýhodnou (prohibitivní) sazbou; o požadujeme jejich nezápornost. Pomocné proměnné Přidáváme do omezujících podmínek o požadavkových; o typu určení; o vždy s kladným znaménkem. Interpretace kolik jednotek zbývá do splnění omezení; řešení s kladnou hodnotou pomocné proměnné je proto automaticky nepřípustné

4 Výchozí bázické řešení Sestavení výchozí simplexové tabulky Identifikace bázických a nebázických proměnných Určení hodnot proměnných ve výchozím bázickém řešení Určení hodnoty účelové funkce Test optimality Existuje bázické řešení s lepší hodnotou ÚF? Záměna proměnných v bázi Koeficient z j c j o záporný: hodnota ÚF se zvyšuje; o kladný: hodnota ÚF se snižuje; o nulový: proměnná nemá vliv na hodnotu ÚF. Řešení je optimální o minimalizace: z j c j 0 pro všechna j; o maximalizace: z j c j 0 pro všechna j. Klíčový sloupec: maximální hodnota z j c j z těch, které porušují podmínku optimality Příklad Farma se rozhoduje o vyhrazení části své půdy pro pěstování pšenice, ječmene a žita. o tyto plodiny mají obsadit celkem právě 140 hektarů; o potřeba chlévského hnoje je 40; 15 a 20 t/ha, k dispozici je maximálně 3000 t hnoje; o odhadované zisky v tis. Kč/ha jsou pro jednotlivé plodiny 1; 1 a 2 (bráno po řadě), je požadováno dosáhnout alespoň 200 tis. Kč zisku. Farma chce minimalizovat dopady na životní prostředí, které vyjadřuje v jednotkách zátěže (JZ/ha) a které jsou pro jednotlivé plodiny 7; 2 a 4. Na jaké ploše by měly být vysety jednotlivé plodiny? Výpočet v simplexové tabulce Test přípustnosti I nové řešení musí splňovat podmínky SA Nezáporné složky vektoru b Známe klíčový sloupec (z testu optima) Určíme klíčový řádek podle podílů, kde k je index klíčového sloupce Pouze pro a ij > 0 Minimum z těchto podílů určuje klíčový řádek Nové řešení Jeden krok Jordanovy eliminační metody Přesun jednotkového vektoru pod proměnnou, která vstupuje do báze Průsečík klíčového řádku a klíčového sloupce = klíčový prvek Klíčový řádek vydělíme klíčovým prvkem Od ostatních řádků odečteme vhodný násobek NOVÉHO klíčového řádku Interpretace výsledku Rozdělení proměnných na bázické a nebázické Hodnoty všech proměnných Hodnota účelové funkce Relativní nevýhodnost nebázických proměnných duální (stínové) ceny Interpretace výsledku Rozdělení proměnných na bázické a nebázické Hodnoty všech proměnných o zápis vektorem bázického řešení; o zápis vektorem obecného řešení. Hodnota účelové funkce Matice báze B, inverzní matice báze B -1 Relativní nevýhodnost nebázických proměnných duální (stínové) ceny - 4 -

5 Dualita lineárních modelů Princip: otočení úhlu pohledu o 90 o Tvorba duálního modelu Simplexová metoda Ověření podmínek simplexového algoritmu Výchozí bázické řešení Test optimality Test přípustnosti Přechod na nové řešení Interpretace výsledku Postoptimalizační úvahy Tvorba nebázického řešení o maximální hodnota nebázické proměnné. Analýza stability báze vzhledem ke složkám vektoru pravých stran Analýza citlivosti řešení vzhledem ke změnám cenových koeficientů o nebázických proměnných; o bázických proměnných. Dualita lineárních modelů Matice koeficientů A v primárním modelu a matice A T v duálním Vektor pravých stran b v primárním modelu a vektor cen b v duálním Vektor cen c v primárním modelu a vektor pravých stran c v duálním Největší problém: typ omezení a podmínky nezápornosti proměnných Vztahy dvojice duálně sdružených modelů Primární úloha má optimální řešení x o právě tehdy, když má duální úloha optimální řešení y o. Navíc platí c T x o = b T y o. Nechť má primární úloha přípustné řešení x a duální úloha přípustné řešení y, pro která platí c T x = b T y, pak jsou tato řešení optimálními řešeními obou úloh. Věta o dualitě Pro dvojici duálně sdružených úloh platí buď: obě úlohy mají přípustná řešení, pak mají i optimální řešení nebo jedna z úloh přípustné řešení nemá, pak druhá nemá optimální řešení (buď také nemá přípustné řešení nebo má neomezenou účeovou funkci) Suboptimální řešení Sousední bázické řešení Zařazení nebázické proměnné do báze Interpretace o rozhodovací proměnná přidání aktivity; o doplňková proměnná změna omezení. Změny o maximální hodnota do hodnoty testu přípustnosti; o změna účelové funkce o součin duální hodnoty a počtu zařazovaných jednotek proměnné. Inverzní matice báze Základ pro všechny postoptimalizační úvahy Značíme B -1 Umožní spočítat výslednou tabulku z výchozí v jednom kroku Zjistíme z výsledné tabulky na místech, kde ve výchozí tabulce byly jednotkové vektory Interval stability pravých stran Pro jednu konkrétní složku b i Cíl: aby výsledné řešení zůstalo přípustné Vyjádříme parametricky jako b i + λ Musí platit B -1 b 0 Hledáme přípustné hodnoty parametru λ - 5 -

6 Ekvivalentně o dolní mez změny test přípustnosti pro i-tý sloupec matice B -1 pro kladné hodnoty; o horní mez změny test přípustnosti pro i-tý sloupec matice B -1 pro záporné hodnoty. Interval stability cen Pro jednu konkrétní složku c i Cíl: aby výsledné řešení zůstalo optimální Vyjádříme parametricky jako c j + ν Hledáme přípustné hodnoty parametru ν, aby platil test optimality o pro nebázickou proměnnou zhoršení neomezené, zlepšení nejvýše o hodnotu testu optima; o pro bázickou proměnnou podle poměrů testu optimality a hodnot v řádku bázické proměnné. Směnové rozvrhy Minimalizace počtu pracovníků ve směnách při dodržení požadavků v jednotlivých hodinách a umožnění odpracovat nepřerušovanou směnu. Program Linkosa Doplněk MS Excel Řeší modely LP pomocí simplexové metody Poskytuje následující výstupy o optimální řešení; o matice alfa; o stabilita pravých stran; o stabilita cen. Praktické aplikace modelů LP Výrobní program Směšovací úlohy Řezné plány Plán směn Směšovací úlohy Také nutriční, výživové, apod. Cíl: Hledání optimální směsi produktů různých vlastností a cen Krmné dávky Dietní přípravky pro lidskou výživu Surové ropné produkty pro různé druhy prodávaných paliv Složky barev Řezné plány Obecně: úlohy o dělení Hledání racionálního způsobu dělení Dodržení podmínek o Počet kusů apod. Kritérium o Minimalizace spotřebovaného materiálu o Minimalizace odpadu, který vzniká při dělení (řezání) ocele, kůže apod. z plátu, desky, tyče, roury apod. základního materiálu - 6 -

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

4.Řešení optimalizačních úloh v tabulkových kalkulátorech

4.Řešení optimalizačních úloh v tabulkových kalkulátorech 4.Řešení optimalizačních úloh v tabulkových kalkulátorech Tabulkové kalkulátory patří mezi nejpoužívanější a pro běžného uživatele nejdostupnější programové systémy. Kromě základních a jim vlastních funkcí

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

MATEMATICKÉ MODELOVÁNÍ ÚLOH VÝROBNÍHO PLÁNOVÁNÍ

MATEMATICKÉ MODELOVÁNÍ ÚLOH VÝROBNÍHO PLÁNOVÁNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS MATEMATICKÉ MODELOVÁNÍ ÚLOH VÝROBNÍHO PLÁNOVÁNÍ

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Nástroje pro analýzu dat

Nástroje pro analýzu dat 7 Nástroje pro analýzu dat V té to ka pi to le: Ověřování vstupních dat Hledání řešení Řešitel Scénáře Citlivostní analýza Rychlá analýza Kapitola 7 Nástroje pro analýzu dat Součástí Excelu jsou nástroje

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Optimalizace portfolia a míry rizika. Pavel Sůva

Optimalizace portfolia a míry rizika. Pavel Sůva Základní seminář 6. října 2009 Obsah Úloha optimalizace portfolia Markowitzův model Míry rizika Value-at-Risk Conditional Value-at-Risk Drawdown míry rizika Minimalizační formule Optimalizační modely Empirická

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí.

Když vyjde desetinné číslo, není to reálný výsledek, nemůžu říct šéfovi, vyrábět 700,988 židlí. Úvod do operačního výzkumu Operační výzkum = Výzkum operací. OV je výzkum systémů samostatných disciplín. Vojenské, strategické a taktické opce. Po skončení války přesun do ekonomie, řešení stavebních

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI P Ř Í R O D O V Ě D E C K Á F A K U L T A KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY Bakalářská práce Analýza nákladovosti prodejních cest v pojišťovnictví Vedoucí

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

N i investiční náklady, U roční úspora ročních provozních nákladů

N i investiční náklady, U roční úspora ročních provozních nákladů Technicko-ekonomická optimalizace cílem je určení nejvýhodnějšího řešení pro zamýšlenou akci Vždy existují nejméně dvě varianty nerealizace projektu nulová varianta realizace projektu Konstrukce variant

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005

Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005 PROPOJENÍ OPTIMALIZAČNÍHO A SIMULAČNÍHO MODELU PRO PLÁNOVÁNÍ A ŘÍZENÍ 1. Úvod FARMACEUTICKÉ VÝROBY Ing Petra Vegnerová Prof. Ing. Ivan Gros, CSc. Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská,

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace

5.6.3 Rekursivní indexace složitostních tříd 5.6.4 Uniformní diagonalizace 5.6.5 Konstrukce rekursivních indexací a aplikace uniformní diagonalizace Obsah prvního svazku 1 Úvod 1.1 Přehled pojmů a struktur 1.1.1 Množiny, čísla a relace 1.1.2 Funkce 1.1.3 Pravděpodobnost 1.1.4 Grafy 1.2 Algebra 1.2.1 Dělitelnost, prvočíselnost a základní kombinatorické

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

EKONOMICKÁ OPTIMALIZACE SMĚŠOVACÍHO PROBLÉMU

EKONOMICKÁ OPTIMALIZACE SMĚŠOVACÍHO PROBLÉMU EKONOMICKÁ OPTIMALIZACE SMĚŠOVACÍHO PROBLÉMU Josef Košťálek Klíčová slova: Analýza nákladů, optimalizace směšovaných surovin, směšovací problém, nutriční problém, matematický zápis, matematický algoritmus,

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

jklzxcvbnmqwertyuiop dfghjklzxcvbnmqwerty iopasdfghjklzxcvbnmqw tyuiopasdfghjklzxcvbn

jklzxcvbnmqwertyuiop dfghjklzxcvbnmqwerty iopasdfghjklzxcvbnmqw tyuiopasdfghjklzxcvbn qwertyuiopasdfghjklzxc nmqwertyuiopasdfghjk xcvbnmqwertyuiopasdf Mikroekonomická jklzxcvbnmqwertyuiop analýza dfghjklzxcvbnmqwerty Jindřich Soukup iopasdfghjklzxcvbnmqw 2012 tyuiopasdfghjklzxcvbn qwertyuiopasdfghjklzxc

Více