DIPLOMOVÁ PRÁCE. Parabolické rovnice řešené metodou konečných UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "DIPLOMOVÁ PRÁCE. Parabolické rovnice řešené metodou konečných UNIVERZITA PALACKÉHO V OLOMOUCI KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY"

Transkript

1 UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Parabolické rovnice řešené metodou konečných prvků Vedoucí diplomové práce: RNDr. Horymír Netuka, Ph.D. Rok odevzdání: 214 Vypracoval: Bc. Petra Crhonková MAP, III. ročník

2 Prohlášení Prohlašuji, že jsem vytvořila tuto diplomovou práci samostatně za vedení RNDr. Horymíra Netuky, Ph.D. a že jsem v seznamu použité literatury uvedla všechny zdroje použité při zpracování práce. V Olomouci dne 3. dubna 214

3 Poděkování Ráda bych na tomto místě poděkovala vedoucímu diplomové práce RNDr. Horymíru Netukovi, Ph.D. za obětavou spolupráci i za čas, který mi věnoval při konzultacích. Největší poděkování si zaslouží moje rodina, zejména moje matka, která mě vždy podporovala a motivovala.

4 Obsah Použité symboly 4 Úvod 5 1 Eliptické rovnice Klasická formulace úlohy Variační předpis úlohy Parabolická rovnice Klasická formulace Variační předpis úlohy MKP pro eliptické úlohy Triangulace oblasti Bázové funkce Diskretizace úlohy Stabilita řešení MKP pro parabolické rovnice I - Semidiskrétní metoda Semidiskrétní schéma Řešení vzniklé soustavy ODR s počátečními podmínkami θ-metoda Parabolická parciální diferenciální rovnice v prostoru jedné dimenze Parabolická parciální diferenciální rovnice v prostoru dvou dimenzí 33 5 MKP pro parabolické rovnice II - Rotheho metoda Explicitní Eulerova metoda Implicitní Eulerova metoda Crank-Nicholsonova metoda Rotheho funkce Parabolická parciální diferenciální rovnice v prostoru jedné dimenze Parabolická parciální diferenciální rovnice v prostoru dvou dimenzí 52 6 Stabilita a srovnání metod Stabilita řešení Srovnání metod Závěr 63

5 Použité symboly R R n Ω Γ Ω C k (Ω) L k (Ω) L (Ω) množina reálných čísel vektorový prostor nad R dimenze n oblast hranice oblasti Ω uzávěr oblasti Ω, tj. Ω Γ množina funkcí, které jsou spojité včetně derivací do k-tého řádu v oblasti Ω Lebesgueův prostor Lebesgueův prostor u L k norma Lebesgueova prostoru, tj. u L k = k Ω u k dx H k (Ω) H 1 (Ω) Sobolevův prostor funkce Sobolevova prostoru H 1 (Ω) splňující homogenní okrajovou podmínku u H k norma Sobolevova prostoru, tj. u H k = Ω Dκ u 2 dx Laplaceův operátor operátor nabla κ k u t první parciální derivace funkce u(x, t) podle časové proměnné t, u xx u h τ (u, v) a(u, v) L(v) tj. u(x,t) t druhá parciální derivace funkce u(x, t) podle prostorové proměnné x, tj. 2 u(x,t) x 2 první derivace funkce jedné proměnné u(x) prostorový krok časový krok skalární součin bilineární forma lineární fukcionál absolutní hodnota V diam(k) norma na prostoru V průměr množiny K označení konce příkladu 4

6 Úvod K nejznámějším numerickým metodám pro výpočet okrajových úloh patří metoda konečných prvků, dále jen MKP. Nyní si uvedeme několik poznatků o historii této metody. První pokusy blížící se principům MKP jsou datovány již počátkem 2.století. Poprvé ale byla popsána německým matematikem Richardem Courantem až v roce Poté se metoda dále nerozvíjela na akademické půdě, ale v průmyslu. Velkou roli hrálo při vývoji MKP letectví, neboť pouze velké průmyslové podniky si mohly dovolit počítače, které byly pro tuto metodu důležité. Zlatý věk MKP nastává v 7. letech 2.století. Do této doby bylo na konečně prvkové modely nahlíženo spíše jako na idealizaci problematiky. Nyní se však ukazuje, že teorie je v souladu s Rayleigh-Ritzovou teorií o minimální potenciální energii. Dále začíná převládat názor, že konečně prvkové modely jsou aproximací spojitých modelů, které popisují skutečné situace a objekty. Cílem této práce je seznámit čtenáře s MKP pro řešení parabolických parciálních diferenciálních rovnic. Metoda nepracuje s klasickou, ale s tzv. slabou formulací úlohy. U čtenářů se tedy předpokládá alespoň základní znalost teorie parciálních diferenciálních rovnic a variačních metod. První dvě kapitoly se věnují eliptické a parabolické rovnici. Jsou zde popsány nejen klasické, ale i slabé formulace úloh. Ve třetí kapitole je ve stručnosti popsán princip MKP pro eliptickou rovnici. Jsou zde vysvětleny pojmy triangulace a bázové funkce. Principem metody je převedení úlohy na soustavu lineárních rovnic. Na řešení parabolických úloh existují v MKP dva pohledy. Oba kombinují základní pojmy jako triangulace, bázové funkce, nahrazení hledané funkce lineární kombinací. Průběh řešení je ale odlišný. Čtvrtá kapitola se zabývá tzv. semidiskrétní (Faedo-Galerkinovou) metodou. Diskretizací úlohy v prostoru dojde k převedení na soustavu obyčejných diferenciální rovnic prvního řádu. Rovnice poté řešíme vhodnými numerickými metodami. V práci jsou popsány jednokrokové θ-metody. Postup řešení je aplikován na pří- 5

7 kladech v 1D a 2D. Pátá kapitola popisuje tzv. Rotheho metodu nazývanou též jako metoda úplné diskretizace. Úloha je diskretizována nejprve v čase a následně v prostoru. V práci jsou popsány diskretizace explicitní Eulerovou, implicitní Eulerovou a Crank- Nicholsonovou metodou. Součástí kapitoly je popis řešení příkladů v 1D a 2D. Šestá kapitola se věnuje stabilitě a shrnutí metod. Obě vedou na stejné systémy diferenčních rovnic. Stabilita a konvergence metod je demonstrována srovnáním výsledků získaných MKP s přesným řešením. Přínosem této práce jsou naprogramované m-fily. Ty jsou spolu s videi věnujícími se příkladům přiložené k práci na CD. Každý m-file má na začátku popsány vstupní i výstupní hodnoty. Všechny použité m-fily jsem vytvořila v matematickém softwaru MATLAB R21b na notebooku ASUS model F3E s procesorem Intel Core Duo a operační pamětí 2GB. Přiložená videa jsou ve formátu AVI a byla získána pomocí příkazu movie2avi v Matlabu. Zobrazují řešení, popř. chyby úloh, a jejich vývoj v čase. 6

8 1 Eliptické rovnice Nejjednodušším typem parciálních diferenciálních rovnic jsou tzv. eliptické rovnice. V rovnici se nevyskytuje časová derivace, takže slouží spíše k popisu ustalených stavů. Setkáme se s ní např. při stacionárním popisu vedení tepla. 1.1 Klasická formulace úlohy Mezi hlavní a nejznámnější zástupce eliptických parciálních diferenciálních rovnic patří Laplaceova a Poissonova rovnice. Definice 1.1. Nechť je dána oblast Ω R d a funkce f : Ω R splňující f C(Ω). Rovnici definovanou pro neznámou funkci u C 2 (Ω) předpisem u = f potom nazýváme Poissonovou rovnicí. Je-li f, mluvíme o Laplaceově rovnici. Eliptickou rovnici je třeba dále charakterizovat, a to užitím okrajových podmínek, které předepisují chování hledané funkce u na hranici Γ. V následující podmínce jsou popsány typy okrajových podmínek. Poznámka 1.1. Okrajové podmínky Typy okrajových podmínek: Dirichletova podmínka: předepisuje hodnoty funkce na hranici Nechť g C(Γ) u = g na Γ Neumannova podmínka: předepisuje hodnoty normálové derivace na hranici Nechť h 1 C(Γ) u n = h 1 na Γ 7

9 Newtonova podmínka Nechť h 1, h 2 C(Γ) u n + h 2u = h 1 na Γ Smíšená podmínka: jedná se o kombinaci předchozích typů podmínek Nechť Γ = Γ 1 Γ 2 a g C(Γ 1 ), h 1, h 2 C(Γ 2 ) u = g na Γ 1 u n 2u = h 1 na Γ Variační předpis úlohy Uvažujeme okrajovou eliptickou úlohu u = f u = g na Ω na Γ (1.1) Máme dánu tz. testovací funkci v C (Ω). Rovnici potom vynásobíme touto funkcí v, zintegrujeme přes oblast Ω a upravíme užitím Greenovy formule, čímž získáme Označme si nyní a(u, v) = u v dx, Ω L(v) = fv dx, Ω Ω u v dx = Ω fv dx. kde a(u, v) je symetrická bilineární forma a L(v) je lineární funkcionál. Dále položme V = H 1 (Ω), kterou nazveme množina přípustných řešení. Variační formulace úlohy (1.1) potom zní: Nalezněte fukci u V splňující a(u, v) = L(v), v V. (1.2) Řešení této úlohy potom nazveme variační nebo slabé řešení úlohy (1.1). 8

10 Poznámka 1.2. Řekneme, že bilineární forma a(u, v) : V V R je omezená, jestliže existuje číslo c 1 > takové, že a(u, v) c 1 u V v V, u, v V, spojitá, jestliže je omezená a pro libovolné v V jsou a(v, ) i a(, v) lineární funkcionály ve V, V-eliptická, jestliže existuje číslo c 2 > takové, že a(v, v) c 2 v 2 V, v V, symetrická, jestliže platí a(v, w) = a(w, v), v, w V. Věta 1.1. Lax-Milgramova věta. Nechť a(, ) je spojitá a V-eliptická bilineární forma. Potom pro každý lineární funkcionál L má variační úloha (1.2) právě jedno řešení u V. Důkaz: Viz. [9], str Věta 1.2. Nechť a(, ) je symetrická, spojitá a V-eliptická. Potom funkce u V je řešením variačního problému min J(v), kde J(v) = 1 a(v, v) L(v), v V (1.3) v V 2 právě tehdy, když je řešením variační úlohy (1.2). Důkaz: Viz. [9], str Eliptická úloha s Neumannovou okrajovou podmínkou u = f u = h n 2 na Ω na Γ 9

11 Nechť f L 2 (Ω), h 2 L (Γ). Variační formulace Neumannovy úlohy je tvaru: Najít funkci u V = H 1 (Ω) splňující a(u, v) = L(v), v V, kde a(u, v) = u v dx, Ω L(v) = Ω fv dx + Γ h 2 v ds. Eliptická úloha s Newtonovou okrajovou podmínkou u = f u + h n 1u = h 2 na Ω na Γ Nechť f L 2 (Ω), h 1 L 2 (Γ), h 2 L (Γ). Variační formulace Newtonovy úlohy je tvaru: Najít funkci u V = H 1 (Ω) splňující a(u, v) = L(v), v V, kde a(u, v) = Ω u v dx + Γ h 1 uv ds, L(v) = Ω fv dx + Γ h 2 v ds. Ritzova metoda Ritzova metoda vychází z minimalizace kvadratického funkcionálu J(v), viz. (1.3). Řešení nebudeme hledat na prostoru V, ale na jeho konečně-dimenionálním podprosoru S h. Chceme najít funkci u h S h splňující J(u h ) = min v h S h J(v h ). 1

12 Konečně-dimenzionální prostor S h je charakterizován systémem bází {ϕ i } N. Hledanou funkci lze pomocí nich zapsat ve tvaru u = N α i ϕ i. Definujeme nový funkcionál F (α 1,..., α N ) : R N R předpisem ( N ) F (α) = J α i ϕ i. Nyní budeme minimalizovat funkcionál F, tj. hledáme α splňující F (α ) = min α R N F (α). Ekvivalentně tuto úlohu zapíšeme jako F (α ) =. platí Jelikož kvadratický funkcionál je definován ve tvaru J(v) = 1 a(v, v) L(v), 2 ( N ) ( F (α) = J α i ϕ i = 1 N 2 a α i ϕ i, ( N N ) α j ϕ j ) L α i ϕ i = 1 2 αt Aα F T α, j=1 kde A = (a ij ), a ij = a(ϕ i, ϕ j ), F = (F i ), F i = L(ϕ i ). A odtud dostaneme F (α) = Aα b. Ritzovu úlohu je tedy možné převést na řešení systému lineárních rovnic Aα = b. 11

13 Galerkinova metoda Galerkinova metoda vychází z variačního předpisu (1.2). Namísto prostoru V hledáme řešení na konečně-dimenzionálním prostoru S h V. Úlohu tedy přepíšeme do tvaru a(u h, v h ) = L(v h ), v h S h. Prostor S h je definován pomocí posloupnosti jeho bází {ϕ i } N. Řešení úlohy u h S h můžeme zapsat ve tvaru u h = N α i ϕ i. Dosadíme-li tuto lineární kombinaci do variačního předpisu, dostáváme soustavu ( N ) a α i ϕ i, ϕ j = L (ϕ j ), j = 1,..., N. Maticově můžeme soustavu zapsat jako Aα = F, kde A = (a ij ), a ij = a(ϕ i, ϕ j ), F = (F i ), F j = L(ϕ j ). Galerkinova i Ritzova metoda jsou ekvivalentní metody vedoucí ke stejnému výsledku. 12

14 2 Parabolická rovnice V této kapitole se budeme věnovat diferenciální rovnici parabolického typu. Popíšeme, jak rovnice tohoto typu vypadají a představíme tzv. počátečně-okrajovou úlohu. Dále budeme definovat také variační předpis. Parabolické diferenciální rovnice patří mezi tzv. evoluční parciální diferenciální rovnice. Název této skupiny je odvozen od přítomnosti časové derivace v rovnici. Nejznámějšími zástupci skupiny parabolických rovnic jsou rovnice vedení tepla a difúzní rovnice. Slouží k popisu přenosu tepla nebo difúze v tekutinách v neustáleném stavu. 2.1 Klasická formulace Definice 2.1. Parabolická rovnice Nechť Ω R d je oblast a I R interval. Jsou dány funkce f, q C(Ω I). Parciální diferenciální rovnice je definovaná předpisem u t u + qu = f na Ω I. Řešením je funkce u(x, t) vyjadřující teplotu v bodě x Ω a čase t I. Rovnici dále charakterizujeme zvolením počátečních a okrajových podmínek. Za okrajovou podmínku můžeme zvolit Dirichletovu, Newmannovu nebo Newtonovu podmínku, které jsou blíže popsány v Poznámce 1.1. Poznámka 2.1. Počáteční podmínka Nechť u C(Ω). Počáteční podmínka je tvaru u(x, ) = u (x) pro x Ω. Funkce u slouží k popsání počátečního stavu, např. může sloužit k určení výchozí teploty. Definice 2.2. Počátečně-okrajová úloha Nechť Ω R d je oblast a I R je časový interval. Dále platí f, q C(Ω I) 13

15 a u C(Ω). Počátečně-okrajová úloha pro parabolickou rovnici je definovaná předpisem: Najít funkci u(x, t) C(Ω I) takovou, že u t, u xi x i C(Ω I\Γ), splňující u t u + qu = f u = u(, ) = u na Ω I na Γ I na Ω (2.1) 2.2 Variační předpis úlohy Nechť Ω je ohraničená konvexní oblast s hladkou hranicí Γ, na níž předpokládáme počátečně-okrajovou úlohu (2.1). Rovnici úlohy (2.1) vynásobíme tzv. testovací funkcí v C (Ω) a poté zintegrujeme přes oblast Ω. Užitím Greenovy formule dostáváme rovnici u t (x, t)v(x) dx + ( u(x, t) v(x) dx + qu(x)v(x)) = f(x, t)v(x) dx. Ω Ω Ω Máme dány prostory V = H(Ω) 1 a H = L 2 (Ω). Pro každé pevně zvolené t je zobrazení x u(x, t) prvkem prostoru V. Značíme jej jako u(t) V. Potom můžeme definovat zobrazení t u(t) V splňující (u t (t), v) + a(u(t), v) = L(v), v V, t I, kde (u,v) je skalární součin na prostoru L 2 (Ω), a(u, v) = ( u, v) je symetrická bilineární forma a L(v) je lineární funkcionál. Variační předpis úlohy (2.1) potom zní: Nalezněte funkci u(t) V, t I takovou, že (u t (t), v) + a(u(t), v) = L(v), v V, t I (u(), v) = (u, v), v V. (2.2) 14

16 3 MKP pro eliptické úlohy Metoda konečných prvků je vlastně Galerkinova metoda se speciální volbou prostoru S h. Volba prostoru a jeho bází neovlivňuje přibližné řešení u h, ale ovlivňuje tvar soustavy, v tomto případě matice A. 3.1 Triangulace oblasti Chceme-li řešit úlohu MKP, potom je třeba nejprve provést triangulaci oblasti Ω, na které budeme úlohu řešit. Triangulace oblasti spočívá v pokrytí uzávěru Ω konečným počtem podmnožin K splňujících určité vlastnosti. Definice 3.1. Množinu T h = {K} nazýváme přípustnou triangulací oblasti Ω, jestliže jsou splňeny následující vlastnosti: 1. Ω = K T h K 2. pro K T h je množina K neprázdná a uzavřená 3. pro K 1, K 2 T h takové, že K 1 K 2 platí K 1 K 2 = 4. pro K T h je hranice K lipschitzovská. Každá triangulace je charakterizována svými prvky, uzly a stranami. Množiny K nazýváme prvky trianglulace. Nejčastěji volíme simplexy v příslušné dimenzi, tj. intervaly v 1D, trojúhelníky ve 2D, čtyřstěny ve 3D. Z trojúhelníkových prvků byl také odvozen název tohoto rozkladu množiny. Uzly triangulace jsou zvolené body na prvcích. Obvykle se jedná o vrcholy prvků, ale je možné použít také body uprostřed stran nebo těžiště. Uzly rozdělujeme na hraniční, ležící na hranici Γ, a vnitřní. Strany triangulace jsou hranice prvků ležící na hranici Γ. Nyní si označíme PP počet prvků, PU počet uzlů, PN počet uzlů ležících na hranici Γ 2 nebo uvnitř oblasti Ω, PB počet uzlů ležících na hranici Γ 1 a PS počet stran na hranici Γ 2. Množinu těchto stran označujeme jako T S h = {S}. 15

17 V uzlech triangulace zadáváme hodnoty koeficientů nebo pravých stran a současně v nich hledáme přibližné řešení. 3.2 Bázové funkce Na základě triangulace T h definujeme prostor S h spojitých, po částech lineárních funkcí na T h. Vzhledem k vlastnostem množiny T h platí inkluze S h V. Tedy prostor S h je konečně dimenzionálním podprostorem V. V uzlech V i triangulace T h definujeme funkce {ϕ i } P U S h předpisem ϕ i (V j ) = { 1, pro i = j, pro i j. (3.1) Takto definované pyramidové funkce tvoří bázi prostoru S h. Libovolnou funkci v S h můžeme zapsat předpisem v(x) = P U v i ϕ i (x), kde v i = v(v i ) jsou hodnoty funkce v v uzlu V i. 3.3 Diskretizace úlohy Diskretizace úlohy vychází z jejího varicačního předpisu (1.2), tj. a(u, v) = L(v), v V V předchozích kapitolách jsme nadefinovali triangulaci T h oblasti Ω, prostor S h nad touto triangulací a báze {ϕ i } S h. Přibližné Galerkinovo řešení úlohy je funkce u h S h splňující a(u h, v h ) = L(v h ), v h S h. (3.2) 16

18 Hledanou funkci u h je možné vyjádřit pomocí bází prostoru S h jako u h = P U α i ϕ i, kde neznámá představuje hodnotu přibližného řešení v příslušném uzlu V i, tj. α i = u h (V i ). Pomocí této lineární kombinace získáme úlohu ve tvaru P U α i a(ϕ i, ϕ j ) = L(ϕ j ), j = 1,..., P U. Tuto sousavu lineárních rovnic můžeme zapsat také maticově jako Aα = F, kde A = (a ij ) se nazývá matice tuhosti, F = (F i ) vektor zatížení a platí pro ně a ij = a(ϕ i, ϕ j ) = ϕ i ϕ j dx, Ω F i = L(ϕ i ) = Ω fϕ i dx. Pro řešení vzniklé soustavy lineárních rovnic existuje celá řada numerických metod. Poznámka 3.1. Je-li zadána úloha s Dirichletovou okrajovou podmínkou, sestavujeme báze pouze ve vnitřních uzlech triangulace. Uzly na hranici Γ ze soustavy vyloučíme a za řešení dosadíme předepsané hodnoty. 3.4 Stabilita řešení Nechť u V je řešením úlohy (1.2), tj. a(u, v) = (f, v), v V 17

19 a u h S h je řešením diskrétní úlohy (3.2), tj. a(u h, v h ) = L(v h ), v h S h. Potom e = u u h značí chybu přibližného řešení. Řekneme, že Galerkinova metoda konverguje, jestliže je splněno kde N = dim(s h ). Věta 3.1. Céanovo lemma. lim e V =, N Nechť a(u, v) je omezená eliptická bilineární forma na V, tj. pro u, v V platí a(u, v) C 1 u V v V, a(v, v) C 2 v 2 V, C 1, C 2 >. Nechť L(v) je omezená lineární forma na V, tj. L(v) C 3 v V pro v V. Dále nechť u je řešením úlohy (1.2) a u h je řešením úlohy (3.2). Potom platí odhad u u h V C 1 inf u v h V. C 2 v h S h Je-li navíc forma a(u, v) symetrická, platí Důkaz: viz. [2], str u u h V ( C1 C 2 ) 1 2 inf u v h V. v h S h Budeme-li chtít dokázat konvergenci Galerkinovy metody, musí být splněny předpoklady Věty 3.1 a současně musí existovat posloupnost prostorů {S h } N=1 taková, že pro každé u V platí lim N inf u v h V =. v h S h 18

20 4 MKP pro parabolické rovnice I - Semidiskrétní metoda V této kapitole se budeme věnovat řešení lineární parabolické úlohy v prostoru jedné a dvou dimenzí. Zápis úlohy v obecném tvaru u t u = f u = u(, ) = u na Ω I na Γ I na Ω V teorii MKP existují dvě metody zabývající se řešením parabolických úloh: semidiskrétní metoda a Rotheho metoda. V této kapitole se představíme první jmenovanou. Semidiskrétní metoda bývá někdy také nazývána jako Faedo-Galerkinova metoda. Její princip spočívá v diskretizaci úlohy v prostoru Ω a tím k převedení úlohy na řešení soustavy obyčejných diferencilních rovnic s počátečními podmínkami. Nejprve je nutné provést triangulaci oblasti Ω. Tedy musíme tuto oblast rozdělit na konečný počet prvků K podle kapitoly 3.1. Označme si P U počet uzlů. Nad zvolenou triangulací potom uvažujeme prostor S h spojitých a po částech lineárních funkcí. Tento prostor dále definujeme množinou bázových funkcí {ϕ i (x)} P U popsaných v kapitole 3.2. Jedná se o spojité, po částech lineární funkce splňující vlastnost (3.1). 4.1 Semidiskrétní schéma Semidiskrétní schéma úlohy vychází z jejího variačního předpisu (2.2), tj. (u t (t), v) + a(u(t), v) = L(v), v V, t I u() = u v V. 19

21 Prvním krokem k semidiskretizaci úlohy je aproximace řešení u(x, t) funkcí u h (x, t) splňující následující vlastnost: Funkce u h (x, t) je pro každé pevně zvolené t I funkcí po částech lineární nad zvolenou triangulací T h oblasti Ω, tj. u h (x, t) S h. Tímto dostáváme semidiskrétní předpis úlohy ve tvaru (u t,h, v h ) + a (u h, v h ) = L (v h ), (u h (), v h ) = (u h, v h), v h S h, (4.1) kde funkce u h S h je aproximací počáteční funkce u. Jedná se o soustavu N rovnic. Jelikož platí u h S h, můžeme funkci zapsat jako lineární kombinaci bázových funkcí {ϕ i } prostoru S h. Tedy u h (x, t) = P U α i (t)ϕ i (x), kde α i (t) je časově závislý koeficient představující hodnotu přibližného řešení v příslušném uzlu V i, tj. α i (t) = u h (V i, t). Dosadíme-li toto vyjádření funkce u h do úlohy (4.1) a současně funkce v h S h nahradíme bázovými funkcemi ϕ j, dostáváme soustavu ve tvaru ( P U ) α i(t)ϕ i (x), ϕ j (x) ( P U + a ( P U ) α i (t)ϕ i (x), ϕ j (x) ) α i ()ϕ i (x), ϕ j (x) = L (ϕ j (x)), j = 1,..., P U = (u h, ϕ j(x)), j = 1,..., P U. Jelikož pro skalární součin (, ) i bilineární formu a(, ) platí linearita, je možné přepsat rovnice na tvar P U α i(t)(ϕ i, ϕ j ) + P U α i (t)a(ϕ i, ϕ j ) = L(ϕ j ), j = 1,..., P U, t I P U α i () (ϕ i (x), ϕ j (x)) = (u h, ϕ j(x)), j = 1,..., P U. Nyní jsme převedli parabolickou parciální diferenciální rovnici s okrajovými a počátečními podmínkami na soustavu obyčejných diferenciálních rovnic s po- 2

22 čátečními podmínkami. Tuto soustavu včetně počátečních podmínek můžeme zapsat maticově ve tvaru Bα (t) + Aα(t) = F (t), Bα() = U, t I (4.2) kde matice A = (a ij ), B = (b ij ) a vektory F = (F i ), α = (α i ), U = (U i ) splňují b ij = (ϕ i, ϕ j ) = Ω ϕ i ϕ j dx, a ij = a(ϕ i, ϕ j ) = Ω ϕ i ϕ j dx, F i (t) = L(ϕ i ) = Ω f(t)ϕ i dx, U i = (u, ϕ i ) = Ω u ϕ i dx. Dále se zaměříme na vlastnosti těchto matic. Poznámka 4.1. Vlastnosti matic: Matice hmotnosti B (mass matrix): Symetrická: neboť skalární součin (, ) je symetrický Řídká: jestliže nejsou V i a V j uzly stejného prvku, potom b ij =, Pozitivně definitní Pásová: pouze při správném očíslování prvků a uzlů triangulace Matice tuhosti A (stiffness matrix): Symetrická: neboť bilineární forma a(, ) je symetrická, Řídká: jestliže nejsou V i a V j uzly stejného prvku, potom a ij =, Pozitivně definitní Pásová: pouze při správném očíslování prvků a uzlů triangulace 21

23 4.2 Řešení vzniklé soustavy ODR s počátečními podmínkami Aproximací počátečně-okrajové parabolické úlohy jsme dostali soustavu obyčejných diferenciálních rovnic s počáteční podmínkou (4.2), tj. Bα (t) + Aα(t) = F (t), Bα() = U. t I Pro vyřešení této soustavy musíme zvolit některou z vhodných numerických metod. Numerická matematika v tomto ohledu nabízí širokou škálu výpočetních nástrojů. Jednu velkou skupinu tvoří jednokrokové metody. Výpočet nové hodnoty se provádí pomocí dat z předchozího kroku. Jednou z jejich výhoda je např. možnost měnit délku kroku. Druhou skupinu tvoří mnohokrokové metody, které při řešení pracují s hodnotami z několika předchozích kroků. V této práci si rozebereme jednokrokovou θ-metodu θ-metoda Máme dánu obyčejnou diferenciální rovnici 1. řádu s počáteční podmínkou y = f(x, y), y(x ) = y. (4.3) Interval x = [A, B] rozdělíme na díly A = x < x 1 <... < x m 1 < x m = B s krokem τ. Dále si označíme aproximace y i = y(x i ) a položíme y = y. Obecný tvar metody y i+1 = y i + τ f(t i + σ x τ, y i + σ y (y i+1 y i )), i = 1,..., m 1. Varianty metody explicitní Eulerova metoda pro θ x = θ y = implicitní Eulerova metoda pro θ x = θ y = 1 22

24 Crank-Nicholsonova metoda pro θ x = θ y = 1 2 O kvalitách numerických metod vypovídají jejich vlastnosti. V následujících definicích si popíšeme, co znamená konvergence a stabilita. Definice 4.1. Metoda konverguje, jestliže pro každé x [a, b] platí lim yn = y(x n ). τ + Definice 4.2. Úloha je stabilní, jestliže malá počáteční změna vyvolá malou změnu řešení. Nyní si rozebereme jednotlivé varianty této metody trochu podrobněji. Uvedeme si vlastnosti těchto metod a ukážeme jejich modifikovaný tvar pro zadanou počáteční úlohu. Explicitní Eulerova metoda Explicitní Eulerova metoda je nejjednodušší jednokroková metoda pro řešení počáteční úlohy diferenciálních rovnic 1.řádu. Metodu je snadné odvodit z Taylovororva rozvoje hledané funkce y. Odvození: Taylorův rozvoj se středem v bodě x je tvaru y(x + τ) = y(x) + τy (x) τ 2 y (x) +. Ze zadané rovnice (4.3) dostáváme y(x + τ) = y(x) + τf(x, y) + O(τ 2 ). Předpis metody: y n+1 = y n + τf(x n, y n ). Definice 4.3. Lokální chyba explicitní Eulerovy metody je dána výrazem L(y; τ) = y(x + τ) y(x) τf(x, y(x)). 23

25 Přesnost je určována velikostí lokální chyby, která je v tomto případě řádu O(τ 2 ). Hromaděním lokálních chyb vzniká globální chyba e n = y(x n ) y n. Můžeme dokázat, že je řádu O(τ). Metoda je podmíněně stabilní. Modifikace explicitní Eulerovy metody pro soustavu (4.2): Bα i+1 = (B τa) α i + τf (t i ) Shrnutí: Výhody: snadný výpočet - řešení lineárních rovnic Nevýhody: pouze podmíněně stabilní, lineární rychlost konvergence Implicitní Eulerova metoda Nyní se podíváme na implicitní variantu Eulerovy metody. Opět jednoduše odvodíme z Taylorova rozvoje funkce y. Odvození: Taylorův rozvoj se středem v bodě x + τ je tvaru y(x) = y(x + τ) τy (x + τ) τ 2 y (x + τ) +. Ze zadané rovnice (4.3) dostáváme y(x + τ) = y(x) + τf(x + τ, y(x + τ)) + O(τ 2 ). Předpis metody y n+1 = y n + f(x n+1, y n+1 ). Stejně jako pro explicitní variantu metody je lokální chyba kvadratického řádu, tj. L(y; τ) = O(τ 2 ). Globální chyba je opět lineárního řádu. Metoda je absolutně stabilní. Modifikace implicitní Eulerovy metody pro soustavu (4.2): (B + τa) α i+1 = Bα i + τf (t i+1 ). 24

26 Shrnutí: Výhody: absolutně stabilní Nevýhody: lineární konvergence, náročná - řešení nelineárních rovnic Crank-Nicholsonova metoda Předpis metody: y n+1 = y n + τf ( x n + τ 2, 1 ) 2 (y i+1 + y i ). Lokální i globální chyba jsou kvadratického řádu. Metoda je absolutně stabilní. Modifikace Crank-Nicholsonovy metody pro soustavu (4.2): Shrnutí: ( B + τ 2 A) α i+1 = ( B τ 2 A) α i + τf ( t i + τ 2). Výhody: absolutně stabilní, kvadratická rychlost konvergence (nejlepší konvergence z definovaných θ-metod, tj. nejpřesnější výsledky) Nevýhody: náročná - řešení nelineárních rovnic Poznámka 4.2. Funkci F v čase t i + τ 2 můžeme aproximovat výrazem F (t i + τ 2 ) F (t i+1) F (t i ). 2 Srovnání metod Implicitní Eulerova a Crank-Nicholsona metoda jsou obě absolutně stabilní, přičemž nejpřesnější výsledky získáme druhou zmíněnou. Obě metody jsou však náročnější na výpočet, jelikož je nutné v každém kroku řešit soustavy nelineárních rovnic. 25

27 Oproti nim je explicitní Eulerova metoda jednodušší, neboť řešíme pouze soustavy lineárních rovnic. Nemusíme se však dopočítat výsledku, neboť metoda je pouze podmíněně stabilní. Problém stability u explicitních metod není ničím vyjímeným. Je možné jej odstranit např. vloženými algoritmy pro kontrolu kroku na základě zvolených tolerancí. 4.3 Parabolická parciální diferenciální rovnice v prostoru jedné dimenze V této kapitole si ukážeme výpočet pomocí MKP pro parabolické rovnice v prostoru 1D. Nechť f C([a, b] R + ), u C([a, b]), p, q R. Okrajovo-počáteční parabolická rovnice v 1D má následující tvar u t pu xx + qu = f(x, t), a < x < b a t >, u(x, ) = u (x), a x b, u(a, t) = u(b, t) =, t >. Variační formulace pro tuto úlohu zní: Najít u H 1 splňující (u t, v) + a(u, v) = L(v) v H 1, t >, (u, v) = (u, v) x H 1, t =, kde (u t, v) = a(u, v) = L(v) = b a b a b a u t v dx, (pu x v x + quv) dx, fv dx. 26

28 Triangulace v 1D Nejprve provedeme triangulaci zvolené oblasti, tj. vytvoříme síť. V našem případě máme za oblast zvolen interval [a, b]. Ten rozdělíme na konečný počet podintervalů [x k 1, x k ], k = 1,..., P U. V takto vytvořené triangulaci máme celkem P P = P U 1 prvků (podintervalů) a P N = P U 2 vnitřních uzlů. Namísto prostoru H([a, 1 b]) tedy budeme hledat řešení na jeho konečně dimenzionálním podprostoru S h. Ten se skládá ze spojistých, po částech lineárních funkcí na zvolené triangulaci. Bázové funkce v 1D Bázové funkce v 1D jsou definované následujícím předpisem x x j 1 x j x j 1, jestliže x j 1 < x x j x ϕ i (x) = j+1 x x j+1 x j, jestliže x j < x x j+1 jinde. (4.4) Jak vidíme na obrázku 1, jedná se o po částech lineární funkce s malým nosičem. Někdy bývají tyto funkce označovány jako střechové nebo stanové. Obrázek 1: Bázové funkce v 1D. Diskretizace úlohy v 1D Jelikož máme pro úlohu předepsány Dirichletovy okrajové podmínky, budeme sestavovat bázové funkce {ϕ i } prostoru S h pouze ve vnitřních uzlech triangulace. Za řešení v hraničních uzlech dosadíme předepsané hodnoty, tedy u h (x, t) =, u h (x P U, t) =. 27

29 Nyní provedeme diskretizaci úlohy ve vniřních uzlech x i,,...,pn. Řešení úlohy u h můžeme pomocí bázových funkcí prostoru S h zapsat jako u h (x, t) = P N α i (t)ϕ i (x). Po aproximaci řešení dostáváme soustavu obyčejných diferenciálních rovnic s počáteční podmínkou ve tvaru P N α i(t) (ϕ i, ϕ j ) + P N α i (t)a (ϕ i, ϕ j ) = L (ϕ j ), j = 1,..., P N P N α() (ϕ i, ϕ j ) = (u h, ϕ j), j = 1,..., P N. Úlohu můžeme zapsat maticově ve tvaru Bα + Aα = F, Bα() = U, kde b ij = (ϕ i, ϕ j ) = b a ij = a (ϕ i, ϕ j ) = f j (t) = L (ϕ j ) = b u j = (u h, ϕ j) = a b a b ϕ i (x)ϕ j (x) dx a ( pϕ i (x)ϕ j(x) + qϕ i (x)ϕ j (x) ) dx f(x, t)ϕ j (x) dx. a u (x)ϕ j (x) dx Poznámka 4.3. Užitím metod numerické integrace a využitím vlastností bázových funkcí vypočítáme matice a vektory hledané soustavy: B = h , A = p qh , 6 h f + 4f 1 + f 2 u 1 + 4u 2 + u 3 F (t) = h f 1 + 4f 2 + f 3 6., U = h u 2 + 4u 3 + u 4 6., f N 2 + 4f N 1 + f N u N 3 + 4u N 2 + u N 1 28

30 kde f i = f(x i, t) a u i = u (x i ). Řešení soustav ODR Soustavy budeme řešit metodami popsanými v kapitole 4.2. Výsledky zaznamenáme dvěma způsoby: Graf: Vykreslíme graf hledané funkce u h. Abychom ukázali vývoj řešení, vykreslíme graf ve více časových krocích. Video: Grafy funkce u h v jednotlivých časových krocích spojíme do animace, čímž dostaneme nejlepší ukázku vývoje řešení úlohy. Zatímco graf je možné vysázet v textu této práce, případná videa k příkladům budou na přiloženém CD. Příklady Nyní si ukážeme řešení konkrétních příkladů parabolických úloh v 1D. Příklady byly řešeny v programu MATLAB a příslušné M-fily jsou uloženy na přiloženém CD. Téměř nikdy neznáme přesné řešení, takže nemáme možnost ověřit správnost výsledků. Můžeme ale úlohu spočítat na různých triangulacích nebo použít různé výpočtové metody. Porovnáním získaných hodnoty ukážeme jejich správnost. Příklad 4.1. V této úloze budeme řešit rovnici vedení tepla s nenulovou pravou stranou a nulovými podmínkami na intervalu [, 2] v čase [, 1]. Triangulace u t u xx = x 2 (x, t) (, 2) (, 1) u(, t) = u(1, t) = t (, 1) u(x, ) = x (, 2) Nejprve provedeneme triangulaci, tj. rozdělení intervalu [, 2] pomocí uzlů {x i ; i =,..., 4} na 4 podintervaly o délce h =.5. 29

31 Řešení Z řešení vyloučíme hraniční uzly x = a x 4 = 2, v nichž je hodnota předem určena zadanou okrajovou podmínkou. Pro zbylé 3 vnitřní uzly sestavíme dle předpisu v Poznámce 4.3 matice A, B a vektory F, U pro soustavu obyčejných diferenciálních rovnic. Tu potom můžeme vyřešit metodami popsanými v kapitole 4.2 s krokem τ =.1. Úloha je řešena v přiloženém M-filu s názvem Semi1D_Pr1.m. Výsledky Na obrázku 2 vidíme ve vybraných časových krocích řešení úlohy vypočítané implicitní Eulerovou a Crank-Nicholsonovou metodou. Obě metody jsou absolutně stabilní a jejich řešení jsou si velmi podobná..6 Cas:.2.6 Cas: Cas: Cas: Crank Nicholsonova metoda implicitní Eulerova metoda Obrázek 2: Crank-Nicholsonova a implicitní Eulerova metoda. 3

32 Na obrázku 3 vidíme, že řešení explicitní Eulerovou metodouzcela zřejmě není správné. Metoda je pouze podmíněně stabilní a v tomto případě se zvolený krok τ =.1 ukázal jako nedostatečný. Jako vhodně zvolený se ukazuje již poloviční krok τ =.5. Cas: Cas: Cas: Cas: Obrázek 3: Explicitní Eulerova metoda. Řešení úlohy na různých triangulacích Nyní si ukážeme řešení úlohy na dvou růných triangulacích. Počítáme úlohu se 4 prvkovou a 2-ti prvkovou triangulací. Interval [, 2] dělíme postupně s krokem h =.5 a h =.1. Při řešení použijeme Crank-Nicholsonovu metodu s krokem τ =.1. Srovnáním triangulací se věnuje M-file Semi1D_Pr1_2.m. Výsledky Na obrázku 4 vidíme srovnání výsledků zadané úlohy řešené Crank-Nicholsonovou metodou pro obě zvolené triangulace. Řešení s větším počtem kroků je přesnější. Průběh řešení pro obě triangulace je zaznamenán na videu Semi1D_Pr1_CN.avi. 31

33 .6 Cas:.24.6 Cas: Cas: Cas: prvku 4 prvky Obrázek 4: Řešení úlohy Crank-Nicholsonovou metodou pro triangulace se 4 a 2 prvky. Příklad 4.2. Řešíme úlohu s nenulovou časově závislou pravou stranou a nenulovou počáteční podmínkou. Při zadání úlohy je nutné, aby si počáteční a okrajové podmínky odpovídaly. Na levé straně rovnice navíc přibyl nový lineární člen hledané funkce u. u t 2u xx 3u = t 2 x 2 sin(t) cos(x) (x, t) (, 2) (, 1) u(, t) = u(2, t) = t (, 1) u(x, ) = x(2 x) x (, 2) Řešení Pracujeme s 2-ti prvkovou triangulací, tj. h =.1. Vzniklou soustavu budeme nyní řešit Crank-Nicholsonovou metodou s krokem τ =.5. Úloha je řešena v přiloženém M-filu Semi1D_Pr2.m. 32

34 Výsledky Na obrázku 5 vidíme řešení úlohy ve vybraných časových krocích. Náhled na průběh celého řešení v čase je možný ve videu Semi1D_Pr2_CN.avi..25 Cas:..25 Cas: Cas: Cas: Obrázek 5: Řešení úlohy Crank-Nicholsonovou metodou. Stejně jako v předchozím příkladě je možné úlohu vyřešit také explicitní či implicitní Eulerovou metodou na různých triangulacích. 4.4 Parabolická parciální diferenciální rovnice v prostoru dvou dimenzí V této kapitole si ukážeme MKP pro parabolické rovnice v prostoru 2D. Nechť je dána oblast Ω R 2 a platí c, p, q, f C(Ω R + ), u C(Ω) a h 1, h 2 C(Γ 2 R + ). Potom okrajovo-počáteční parabolickou rovnici definujeme 33

35 v následujícím tvaru cu t p u + qu = f(x, y, t), (x, y) Ω a t >, u(x, y, ) = u (x, y), (x, y) Ω, u(x, y, t) =, t >, (x, y) Γ 1, p u(x,y,t) n = h 1 u h 2, t >, (x, y) Γ 2. Variační formulace pro tuto úlohu zní: Najít u(t) H 1 splňující (u t, v) + a(u, v) = L(v), v H, 1 t > (u, v) = (u, v), x H, 1 t =, (4.5) kde (u t, v) = Ω a(u, v) = Ω u t v dxdy, (p u v + quv) dxdy + Γ 2 h 1 uv ds, L(v) = Ω fv dxdy + Γ 2 h 2 v ds. Triangulace ve 2D Nejprve provedeme triangulaci zvolené oblasti Ω, tj. vytvoříme síť. Tuto oblast rozdělíme na konečný počet podoblastí K, které splňují podmínky triangulace popsané v kapitole 3.1. Ve dvourozměrných prostorech se nejčastěji používají trojúhelníkové prvky, ale je možné zvolit libovolné oblasti. My budeme pracovat s trojúhelníkovými prvky. Označíme si PP počet prvků (trojúhlelníků), PU počet uzlů, PN počet uzlů ležících na hranici Γ 2 nebo uvnitř oblasti Ω, PB počet uzlů ležících na hranici Γ 1 a PS počet stran na hranici Γ 2. Označme si T h množinu prvků K a T S h množinu stran S hranice Γ 2. Dále si označíme prvky a uzly triangulace. Pro lepší práci při výpočtech očíslujeme uzly na hranici Γ 1 čísly P N + 1,..., P P. Prvky značíme {K i } P P a uzly {V i } P U. Prvek můžeme zapsat pomocí trojčíslí označující vrcholy prvku. 34

36 Namísto prostoru H 1 (Ω) budeme hledat řešení na jeho konečně dimenzionálním podprostoru S h. Ten se skládá ze spojitých, po částech lineárních funkcí na zvolené triangulaci. Bázové funkce ve 2D Bázové funkce {ϕ i } P U prostoru S h jsou po částech lineární funkce definovány v uzlech V i, i = 1,..., P U splňující ϕ i (V j ) = { 1, i = j,, i j. Tyto báze nazýváme globální, neboť jsou takto definované na celé triangulaci T h. Příklad triangulace a globální báze ve 2D vidíme na obrázku 6. S nimi jsme si vystačili při řešení problematiky parabolické úlohy v 1D, ale nyní je při řešení nevyužijeme. Obrázek 6: Globální bázové funkce v 2D. Jelikož předpokládáme trojúhelníkové prvky, je zřejmé, že na každém prvku K existují právě 3 báze mající zde svůj nosič. Označme si N K = {ω 1, ω 2, ω 3 } restrikce těchto bází nad zvoleným prvkem. Dle definice prostoru S h víme, že tyto báze jsou tvaru ω j (x, y) = a j + b j x + c j y, j = 1,..., 3 a splňují ω j (V i ) = { pro i j, 1 pro i = j, i, j = 1, 2, 3, kde V i, i = 1, 2, 3 jsou vrcholy prvku K. Takto vyjádřené báze na konkrétním prvku nazýváme lokální. 35

37 Při řešení budeme hledat tzv. elementární matice a vektory pro jednotlivé prvky za pomoci lokálních bází. Z nich potom sestavíme globální matice pro soustavu obyčejných diferenciálních rovnic. Diskretizace úlohy ve 2D Diskrétní formulace úlohy je tvaru: Najít u h S h splňující kde (u t,h, v h ) = K T h K a(u h, v h ) = K T h L(v h ) = K T h K K (u t,h, v h ) + a (u h, v h ) = (f, v h ), v h S h, cu t,h v h dxdy, (p u h v h + qu h v h ) dxdy + fv h dxdy + S T S h S h 2 v h ds. S T S h S (h 1 u h v h ) ds, Diskretizaci úlohy rozdělíme na diskretizace na prvcích a diskretizace na stranách, kde musí být splněna předepsaná okrajová podmínka. Diskretizace na prvcích Řešení úlohy u h na prvku K zapíšeme pomocí lokálních bázových funkcí ve tvaru 3 u K h (x, y, t) = αi K (t)ω i (x, y) = N K α K. Pomocí takto vyjádřené funkce budeme hledat vyjádření matic a vektorů na prvcích dle následujích předpisů: ( ) N K T c(t)n K dxdy B K (t) = ( N K, N K) = K A K (t) = a(n K, N K ) = K F K (t) = L(N K ) = ( (N ) ) K T f(t) dxdy K ( ( N K ) T p(t) N K + ( N K) T q(t)n K) dxdy 36

38 Při řešení těchto integrálů budeme využívat některé numerické formule, např. g dxdy = S(K)g(x T, y T ), K nebo K g dxdy = 1 3 S(K) (g(x 1, y 1 ) + g(x 2, y 2 ) + g(x 3, y 3 )), kde (x 1, y 1 ), (x 2, y 2 ), (x 3, y 3 ) jsou souřadnice vrcholů trojúhelníka K, (x T, y T ) jsou souřadnice těžiště tohoto trojúhelníku a S(K) je obsah trojúhelníka K. Aplikací těchto integrálních formulí na integrály pro elementární matice a vektory dostáváme B K (t) = vk 6 A K 1 (t) = p(x T, y T, t) 2v K A K 2 (t) = vk 6 kde A K = A K 1 + A K 2, c(x 1, y 1, t) c(x 2, y 2, t), c(x 3, y 3, t) r1 K r2 K r1 K r2 K r1 K r1 K r3 K r3 K r2 K r3 K r2 K r3 K q(x 1, y 1, t) q(x 2, y 2, t), q(x 3, y 3, t) 1 F K (t) = vk 6 f(x T, y T, t) 1, 1 v K = (y 3 y 1 )(x 2 x 1 ) (x 1 x 3 )(y 1 y 2 ), r K 1 = (x 3 x 1 )(x 2 x 3 ) + (y 2 y 3 )(y 3 y 1 ), r K 2 = (x 3 x 2 )(x 2 x 1 ) + (y 3 y 2 )(y 2 y 1 ), r K 3 = (x 2 x 1 )(x 1 x 3 ) + (y 1 y 3 )(y 2 y 1 )., Diskretizace na stranách Řešení úlohy u h musí na stranách S splňovat předepsanou Neumannovu okrajovou podmínku. 37

39 Pro strany triangulace platí, že existují právě 2 báze, které jsou zde nenulové. Restrikce těchto bází na dané straně S označíme jako N S = {ω 1, ω 2 }. Na základě zvolené báze zapíšeme hledanou funkci u h na straně jako u S h(t, x, y) = 2 αi S ω i (x, y) = N S α S. Pomocí tohoto zápisu budeme hledat matice a vektory na stranách podle předpisu A S (t) = a(n S, N S ) = ( (N ) S T α(t)n S) dxdy, S F S (t) = L(N S ) = ( (N ) S T h2 (t)) dxdy. S Při výpočtu integrálů využijeme opět integrálních formulí, např. lichoběžníkovou formuli g dxdy = d 2 (g(xs 1, y1) s + g(x s 2, y2)) s dxdy, S kde (x s 1, y1), s (x s 2, y2) s jsou krajní body strany S a d = (x s 2 x s 1) + (y2 s y1) s je délka strany. Aplikací této formule dostáváme matici a vektor pro strany ve tvaru A S (t) = d 2 ( ) h1 (x s 1, y1, s t) h 1 (x s 2, y2, s, F S (t) = d t) 2 ( ) h2 (x s 1, y1, s t) h 2 (x s 2, y2, s t) Sestavení globálních matic a vektoru Pomocí nalezených matic pro prvky a strany můžeme zapsat úlohu ve tvaru B K α K + A K α K + K T h K T h K S α S = F K + S T S h K T h S T S h F S. 38

40 Při sestavování budeme postupovat dle tzv. eliminačního algoritmu. Rovnice příslušné uzlům na hranici Γ 1 nesestavujeme a za řešení dosadíme hodnoty předepsané podmínkou. Na základě tohoto vyjádření můžeme sestavit globální matice B, A a vektor F, pro něž platí Bα + Aα = F Bα() = U. Užitím popsaného postupu jsme získali řídké pásové matice, jejichž zaplnění vidíme na obrázku 7. Matice B je v tomto případě dokonce diagonální. Zobrazené matice jsou převzaty z příkladu nz = 24 (a) Matice hmotnosti B nz = 1 (b) Matice tuhosti A. Obrázek 7: Schéma globálních matic soustavy Soustavu budeme řešit některou z metod popsaných v kapitole 4.2. Příklady Příklad 4.3. V tomto příkladě si ukážeme řešení parabolické úlohy tvaru u t u + u = x + y (x, y) (, 2.5) (, 2), t (, 1) u(x, y, ) = (x, y) (, 2.5) (, 2), u(x, y, t) = y =, x [, 2.5] u(x,y,t) n = 1 x =, x = 2.5, y = 2. 39

41 Máme zadánu parabolickou úlohu na obdélníku s nulovou počáteční podmínkou a smíšenou okrajovou podmínkou. Triangulace Nejprve vytvoříme síť pro zadanou oblast dle obrázku 8. Osu x i osu y jsme rozdělili s krokem h x = h y =.5, čímž jsme dostali 4 prvků. Těmi jsou rovnoramenné trojúhelníky Obrázek 8: Triangulace zadané oblasti. Řešení Dle postupu v kapitole Diskretizace úlohy ve 2D na straně 36 sestavíme matice a vektory pro soustavu obyčejných diferenciálních rovnic. Vzniklou soustavu budeme řešit θ-metodami (tj. implicitní Eulerovou, explicitní Eulerovou a Crank- Nicholsonovou metodou) s krokem τ =.1. Úloha je řešena v přiloženém M-filu Semi2D_Pr1.m. Výsledky Na obrázku 9 jsou zakreslena v grafech řešení jednotlivých metod v konečném čase 1s. Z obrázku vidíme, že výsledky úlohy získané implicitní Eulerovou metodou a Crank-Nicholsonovou metodou jsou velmi podobné. Lepší náhled získáme zhlédnutím celého průběhu řešení úlohy na videích Semi2D_Pr1_iEM.avi (implicitní Eulerova) a Semi2D_Pr1_CN.avi (Crank-Nicholsonova). 4

42 Crank Nicholsonova metoda Cas: t= Implicitní Eulerova metoda Cas: t= Explicitní Eulerova metoda Cas: t= Obrázek 9: Řešení úlohy v čase 1s. 41

43 Zvolený krok nebyl dostatečný pro explicitní Eulerovu metodu, což je patrné z obrázku 9 i ze záznamu řešení na videu Semi2D_Pr1_eEM.avi. Správné řešení získáme například volbou kroku τ =.1. Můžeme se o tom přesvědčit na videu Semi2D_Pr1_eEM2.avi. Příklad 4.4. Ukážeme si řešení parabolické úlohy tvaru Řešení u t u + u = x + y (x, y) (, 2.5) (, 2), t (, 1) u(x, y, ) = (x, y) (, 2.5) (, 2), u(x, y, t) = y =, x [, 2.5] u(x,y,t) n = 1 x =, x = 2.5, y = 2. Vidíme, že se jedná o stejné zadání jako v předchozím příkladu, ale použijeme jemnější síť dle obrázku 1. Osu x rozdělíme s krokem h x =.1 a osu y s krokem h y =.25. Tímto dostaneme triangulaci o 4 prvcích Obrázek 1: Jemnější triangulace zadané oblasti. 42

44 Na rozdíl od předchozího příkladu, kdy jsme triangulaci vytvořili ručně, byla nyní použita matlabovská funkce DelaunayTri, proto je síť nepravidelná. Při řešení použijeme Crank-Nicholsonovu metodu s krokem délky τ =.5. Úloha je řešena v přiloženém M-filu Semi2D_Pr2.m. Výsledky Na obrázku 11 vidíme řešení úlohy v konečném čase 1s. Lépe uvidíme průběh zadané úlohy na přiloženém videu s názvem Semi2D_Pr2_CN.avi. Na videu Semi2D_Pr2_CN2.avi potom vidíme řešení včetně prvků triangulace. Crank Nicholsonova metoda Cas: t= Obrázek 11: Řešení úlohy Crank-Nicholsonovou metodou v čase 1s. 43

45 5 MKP pro parabolické rovnice II - Rotheho metoda Druhá metoda, kterou se budu ve své práci zabývat, se jmenuje Rotheho metoda, někdy nazývaná také jako metoda časové diskretizace. Stejně jako v předchozí kapitole se budeme věnovat řešení lineární parabolické úlohy v jedné a dvou prostorových dimenzích. Zápis úlohy v obecném tvaru u u = f na Ω I u = na Γ I u(, ) = u na Ω. Při řešení budeme vycházet ze semidiskrétního přepisu úlohy (4.1). Tedy nejprve je nutné zvolit triangulaci T h = {K} oblasti Ω podle kapitoly 3.1. Označme si P U počet uzlů. Dále nad zvolenou triangulací uvažujeme prostor S h spojitých a po částech lineárních funkcí s bázovými funkcemi {ϕ i (x)} P U, které byly popsány v kapitole 3.2. Semidiskrétní schéma úlohy zní Najít u h S h splňující (u t,h, v h ) + a (u h, v h ) = L (v h ), (u h (), v h ) = (u h, v h), v h S h. Nyní zvolme dělení časového intervalu [, T ]. Tedy najdeme posloupnost bodů {t n = nτ; n =, 1,..., M} s krokem τ = T M. Poté si označíme restrikce funkce u h v daných časových bodech t n jako u n h (x) = u h(x, t n ), x Ω. Podobně označíme f n = f(, t n ) a L n (v h ) = (f n, v h ). Tím dostaneme soustavu rovnic ve tvaru (u n t,h, v h ) + a(u n h, v h ) = L n (v h ) v h S h, n = 1,..., M. (5.1) Hodnotu funkce u h známe, neboť je dána počáteční podmínkou, tj. u h = u h(). Prostorové derivace neměníme, ale je potřeba odstranit v úloze časovou derivaci. Tu můžeme nahradit pomocí různých diferenčních podílů. V následujících kapitolách si ukážeme použití některých numerických metod při časové diskretizaci úlohy. 44

46 5.1 Explicitní Eulerova metoda Nejprve se podíváme na nahrazení časové derivace pomocí explicitní Eulerovy metody tvaru 1 τ u n t,h u h(t n+1 ) u h (t n ) τ = un+1 h u n h. τ Nahradíme-li tímto výrazem derivaci v soustavě (5.1), dostaneme rovnice ve ( u n+1 ) h u n h, v h + a(u n τ h, v h ) = L n (v h ), v h S h, n =,..., M 1. (5.2) Ty můžeme dále upravit ( u n+1 h, v h ) + a(u n h, v h ) = 1 τ (un h, v h ) + L n (v h ), v h S h, n =,..., M 1. Nyní provedeme diskretizaci řešení v prostoru. Řešení potom hledáme jako v klasické MKP ve tvaru lineární kombinace koeficientů α n i {ϕ i } P U S h, tj. u n h = P U αi n ϕ i (x). a bázových funkcí Dosadíme-li toto vyjádření funkce u n h do rovnice (5.2) a současně funkce v h nahradíme bázovými funkce ϕ j, dostáváme soustavu rovnic ve tvaru ( P U ) ( P U ) ( P U ) 1 α n+1 τ i ϕ i (x), ϕ j (x) = 1 α n τ i ϕ i (x), ϕ j (x) a αi n ϕ i (x), ϕ j (x) + +L n (ϕ j (x)), j = 1,..., P U; n =,..., M 1. Soustavu zapíšeme maticově 1 τ Bαn+1 = 1 τ Bαn Aα n + F n, n =,..., M 1, (5.3) 45

47 kde A = (a ij ), a ij = a (ϕ i, ϕ j ) = Ω ϕ i ϕ j dx, B = (b ij ), b ij = (ϕ i, ϕ j ) = Ω ϕ i ϕ j dx, F n = (F n j ), F n j = L n (ϕ j ) = Ω f n ϕ j dx. Jak je vidět, jedná se o matice A, B a vektor pravé strany F, které již byly popsány při řešení parabolické úlohy semidiskrétní metodou. Vlastnosti matic tedy zůstávají stejné, jako byly popsány v Poznámce 4.1. Soustavu můžeme ještě upravit na tvar Bα n+1 = (B τa)α n + τf n, n =,..., M 1, 5.2 Implicitní Eulerova metoda Dále si ukážeme nahrazení časové derivace pomocí implicitní Eulerovy metody u n t,h u h(t n ) u h (t n 1 ) τ = un h un 1 h. τ Dosazením do rovnice (5.1) dostaneme ( u n h u n 1 ) h, v h + a(u n τ h, v h ) = L n (v h ), v S h, n = 1,..., M. (5.4) Rovnici můžeme dále upravit 1 τ (un h, v h ) + a(u n h, v h ) = 1 τ ( u n 1 h, v h ) + L n (v h ), v h S h, n = 1,..., M. Řešení opět hledáme ve tvaru lineární kombinace koeficientů a bázových funkcí u n h = P U αi n ϕ i (x). 46

48 Dosadíme-li toto vyjádření funkce u n h do rovnice (5.4) a současně funkce v h nahradíme bázovými funkce ϕ j, dostáváme soustavu rovnic ve tvaru ( P U ) ( P U ) ( P U ) 1 α n τ i ϕ i (x), ϕ j (x) + a αi n ϕ i (x), ϕ j (x) = 1 α n 1 τ i ϕ i (x), ϕ j (x) + +L n (ϕ j (x)), j = 1,..., P U, n = 1,..., M. Soustavu můžeme zapsat maticově ve tvaru 1 τ Bαn + Aα n = 1 τ Bαn 1 + F n, n = 1,..., M. Jedná se opět o stejné matice, které byly popsány v Poznámce 4.1. Soustavu můžeme ještě upravit na tvar (B + τa)α n = Bα n 1 + τf n, n = 1,..., M. (5.5) 5.3 Crank-Nicholsonova metoda Na rozdíl od předchozích Eulerových metod, budeme nyní celé schéma diskretizovat v čase t n 1 2 = (n 1 )τ. Řešíme tedy soustavu 2 ( u n h u n 1 ) ( h u n, v h + a h + u n 1 ) h, v h = 1 ( L n (v h ) + L n 1 (v h ) ), (5.6) τ 2 2 v h S h, n = 1,..., M. Řešení hledáme ve tvaru lineární kombinace koeficientů a bázových funkcí, tj. u n h = P U αi n ϕ i (x). Dosazením tohoto vyjádření funkce u n h do rovnice (5.6), dostáváme soustavu rovnic zapsanou maticově ve tvaru (B + τ ) 2 A α n = (B τ ) 2 A α n 1 + τ ( F n + F n 1), 2 n = 1,..., M. (5.7) Matice v soustavě opět splňují podmínky popsané v Poznámce

49 5.4 Rotheho funkce Vyřešením získaných soustav diferenčních rovnic dostáváme hodnotu hledané funkce u h v čase t n. Nyní si ukážeme, jak získáme aproximaci přesného řešení u(x, t). Nadefinujeme si pro dělení časového intervalu po částech lineární funkci (t t i 1 ) jestliže t τ i 1 < t t i (t ψ i (t) = i+1 t) jestliže t τ i < t t i+1 jinde. Pomocí těchto funkcí definujeme Rotheho funkci předpisem u τ (x, t) = M u n h(x)ψ(t). Právě Rotheho funkce u τ je hledanou aproximací přesného řešení. n= 5.5 Parabolická parciální diferenciální rovnice v prostoru jedné dimenze Nechť f C([a, b] R + ), u parabolická úloha v 1D má následující tvar C([a, b]) a p, q R. Okrajovo-počáteční u t pu xx + qu = f(t, x), a < x < b a < t < T, u(x, ) = u (x), a x b, u(a, t) = u(b, t) =, t >. Víme, že řešení vychází ze semidiskrétní formulace. Je nutné najít triangulaci oblasti dle kapitoly Triangulace v 1D na straně 27. Interval rozdělíme na konečný počet podintervalů [x i 1, x i ]. Označme si P U počet uzlů x i a P N = P U 2 počet vnitřních uzlů. Řešení poté můžeme hledat na konečně dimenzionálním podprostoru S h V, který se skládá ze spojitých, po částech lineárních funkcí na zvolené triangulaci. 48

50 Prostor je charakterizován bázovými funkcemi, které jsou v 1D definovány předpisem x x j 1 x j x j 1, jestliže x j 1 < x x j x ϕ i (x) = j+1 x x j+1 x j, jestliže x j < x x j+1 jinde Jelikož máme pro úlohu předepsány pouze Dirichletovy podmínky, budeme sestavovat bázové funkce {ϕ i } prostoru S h pouze ve vnitřních uzlech triangulace x i, i = 1,..., P N. Za řešení v hraničních uzlech dosadíme hodnoty předepsané v podmínce. Semidiskrétní formulace pro tuto úlohu poté zní: Najít u h S h splňující (u h,t, v h ) + a(u h, v h ) = L(v h ) v S h, t >, (u h, v h ) = (u h, v h) x S h, t =. (5.8) Rozdělení časové osy Úlohu máme předepsanou na časové ose [, T ]. Tuto osu si rozdělíme na M podintervalů o délce τ, tj. t = {t i } M n=, kde t =, t M = T a τ = t n t n 1. Časová diskretizace úlohy Nyní provedeme diskretizaci úlohy např. pomocí Crank-Nicholsony metody. Hledanou funkci u h nahradíme hodnotami v čase t n 1. Tím dostaneme soustavu (5.6), kterou můžeme dále upravit 2 jako (u n h, v h ) (u n 1 h, v h ) + τ 2 a(un h, v h ) + τ 2 a(un 1 h, v h ) = τ 2 Ln (v h ) + τ 2 Ln 1 (v h ), v h S h, n = 1,..., M, kde hodnota u n h pro n = je definována počáteční podmínkou úlohy. Nyní nás už v rovnici netrápí časová proměnná t, můžeme tedy postupovat jako při klasické MKP pro eliptické úlohy. 49

51 Diskretizace úlohy v 1D Řešení úlohy u n h v čase t n můžeme pomocí bázových funkcí prostoru S h zapsat u n h(x) = P N αi n ϕ i (x). Takto vyjádřenou funkci u n h dosadíme do schématu (5.8). Po úpravě dostáváme soustavu (B + τ ) 2 A α n = (B τ ) 2 A α n 1 + τ ( F n + F n 1), n = 1,..., M, 2 kde matice A, B a vektory F n = F (t n ), U jsou definovány stejně jako v Poznámce 4.3. Pouze vektor pravé strany není v tomto případě funkcí proměnné t, ale pracujeme s jeho hodnotami v čase t n. Odtud dostaneme posloupnost vektorů {F n } M n=. Tímto jsme dostali soustavu diferenčních rovnic, kterou můžeme vyřešit pomocí Matlabu nebo jiného výpočetního programu. Jedná se o stejnou rovnici, kterou dostaneme při semidiskrétní metodě užitím Crank-Nicholsonovy metody pro soustavu obyčejných diferenciálních rovnic. Příklady Příklad 5.1. V této úloze budeme řešit rovnici vedení tepla s nenulovou pravou stranou a nenulovou počáteční podmínkou na intervalu [ π, π] v čase [, 1]. u t 5u xx u = sin(x) cos(x) (x, t) ( π, π) (, 1) u(, t) = u(1, t) = t (, 1) u(x, ) = sin(x) x ( π, π) Triangulace Nejprve provedeneme triangulaci oblasti, tj. rozdělení intervalu [ π, π] pomocí uzlů {x i ; i =,..., 11} na 1 podintervalů (x i 1, x i ), i = 1,..., 11 o délce h = π. 5 5

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

(Poznámka: V MA 43 je věta formulována trochu odlišně.) Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace

Více

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda

em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic.

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic. 1. Přednáška Obsah: Úvod do tvorby matematických modelů jako okrajové úlohy pro diferenciální rovnici. Příklad 1D vedení tepla a lineární pružnost. Diferenciální, variační, energetická formulace úloh.

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Předmět: MA4 Dnešní látka Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Literatura:

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

úloh pro ODR jednokrokové metody

úloh pro ODR jednokrokové metody Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

Řešení "stiff soustav obyčejných diferenciálních rovnic

Řešení stiff soustav obyčejných diferenciálních rovnic Řešení "stiff soustav obyčejných diferenciálních rovnic Jiří Škvára Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v Ústí n.l.. ročník, počítačové metody ve vědě a technice Abstrakt Seminární

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Čebyševovy aproximace

Čebyševovy aproximace Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Hledání extrémů funkcí

Hledání extrémů funkcí Hledání extrémů funkcí Budeme se zabývat téměř výhradně hledáním minima. Přes nost nalezeného extrému Obecně není hledání extrému tak přesné jako řešení rovnic. Demonstrovat to můžeme na příkladu hledání

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA Dnešní látka: Metoda sítí pro D úlohy. Poissonova rovnice. Vlnová rovnice. Rovnice vedení tepla. Literatura: Kapitola 5 ze skript Karel Rektorys: Matematika 3, ČVUT, Praha,. Text přednášky

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Stabilizace Galerkin Least Squares pro

Stabilizace Galerkin Least Squares pro Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Věta o sedlovém bodu a Fredholmova alternativa

Věta o sedlovém bodu a Fredholmova alternativa Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Integrace. Numerické metody 7. května FJFI ČVUT v Praze

Integrace. Numerické metody 7. května FJFI ČVUT v Praze Integrace Numerické metody 7. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod 1D Kvadraturní vzorce Gaussovy kvadratury Více dimenzí Programy 1 Úvod Úvod - Úloha Máme funkci f( x) a snažíme se najít určitý integrál

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

ODR metody Runge-Kutta

ODR metody Runge-Kutta ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných

Více

Numerické řešení nelineárních rovnic

Numerické řešení nelineárních rovnic Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/ Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/ Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ CZ.1.07/2.2.00/28.0141 Jitka Machalová, Horymír Netuka METODA KONEČNÝCH PRVKŮ Olomouc 2015 Předmluva Tento text vznikl v rámci projektu MATAP určenému ke zkvalitnění výuky

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Princip řešení soustavy rovnic

Princip řešení soustavy rovnic Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

8. Okrajový problém pro LODR2

8. Okrajový problém pro LODR2 8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit.

metody jsou proto často jedinou možností jak danou diferenciální rovnicivyřešit. 7. ODR počáteční úlohy Průvodce studiem Jen velmi málo diferenciálních rovnic, které se vyskytují při popisu praktických úloh, se dářešit exaktně, a i když dokážeme najít vzorce popisující analytickéřešení,

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více