em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "em do konce semestru. Obsah Vetknutý nosník, str. 8 Problém č.8: Průhyb nosníku - Ritzova metoda"

Transkript

1 Zápočtové problémy Na následujících stránkách naleznete druhou sérii zápočtových problémů věnovanou nosníkům. Ti, co ještě nemají žádný problém přidělený, si mohou vybrat libovolný z nich. Řešení můžete předat osobně či zaslat em do konce semestru. Obsah Problém č.5: Průhyb nosníku - metoda sítí/metoda konečných diferencí Vetknutý nosník, str. 2 Problém č.6: Průhyb nosníku - metoda sítí/metoda konečných diferencí Prostě podepřený nosník, str. 3 Problém č.7: Průhyb nosníku - Ritzova metoda Vetknutý nosník, str. 4 Problém č.8: Průhyb nosníku - Ritzova metoda Prostě podepřený nosník, str. 5 Problém č.9: Průhyb nosníku - metoda konečných prvků Vetknutý nosník, str. 6 Problém č.10: Průhyb nosníku - metoda konečných prvků Prostě podepřený nosník, str. 7 Problém č.11: Průhyb nosníku - kvartický spline Vetknutý nosník, str. 8 Problém č.12: Průhyb nosníku - kvartický spline Prostě podepřený nosník, str. 9 Problém č.13: Průhyb nosníku - kvartický spline Vetknutý nosník, str. 8 Problém č.14: Průhyb nosníku - kvartický spline Prostě podepřený nosník, str. 9

2 Problém č.5: Průhyb nosníku - metoda sítí/metoda konečných diferencí Vetknutý nosník EIu = qx v intervalu 0,l, 5.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 5.1 můžeme interpretovat jako dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 5.1 metodou sítí s krokem sítě h = 1/4, tedy x i = ih pro i = 0,1,2,3,4. Řešíme-li diferenciální rovnici metodou sítí konečných diferencí, nahradíme derivace vhodnými diferencemi. Pro čtvrtou derivaci funkce u lze odvodit následující diferenční náhrady: u 12 x 11h 4 2ux h+h 2 u x h+5ux 4ux+h+ux+2h, 5.2 u 12 x 11h 4 ux 2h 4ux h+5ux+h 2 u x+h 2ux+h, 5.3 u 2 x 3h 4 11ux h 6hu x h+18ux 9ux+h+2ux+2h, 5.4 u 2 x 3h 4 2ux 2h 9ux h+18ux+6hu x+h 11ux+h, 5.5 u x 1 ux 2h 4ux h+6ux 4ux+h+ux+2h h Vyberte 3 diferenční náhrady vhodné pro uvedenou diferenciální rovnici. Sít je tvořena 5 uzly, z toho jsou 3 uzly vnitřní. Diferenční náhrady vybereme tak, abychom pro každý vnitřní uzel x i mohli aproximovat hodnotu u x i pomocí hodnot funkce u ve vnitřních uzlech sítě nebo pomocí známých okrajových podmínek. 2. U vybraných diferenčních náhrad ověřte jejich přesnost pro všechny funkce ux {1,x,x 2,x 3,x 4 }. Tzn. dosad te vždy konkrétní u z uvedené množiny do pravé strany některých vybraných rovnic a výraz co nejvíce zjednodušte. Následně spočítejte u x a ověřte,že získáte to samé. Přitěchto výpočtech NEdosazujte za h konkrétní hodnotu. 3. Ve vnitřních bodech sítě nahrad te derivace vhodnými diferenčními náhradami a dosad te za okrajové podmínky. Ze tří rovnic u x i = qx i, i = 1,2,3, tak získáte soustavu tří rovnic pro tři neznámé hodnoty U i ux i, i = 1,2,3. Soustavu rovnic vyřešte. 4. Přenásobte každý řádek předchozí soustavy rovnic vhodným číslem tak, aby vektor u 1 = 1,2,1 T byl vlastním vektorem matice takto vzniklé soustavy rovnic a aby stopa této matice byla rovna 42. Nalezněte vlastní čísla a zbývající vlastní vektory této matice. 5. Diferenciální rovnici vyřešte přesně a spočtěte max 1 i 3 U i ux i. Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciálnírovniceaporovnánímlevéapravéstranydiferenciální rovnice spočtete některé z koeficientů µ i. Zbylé koeficienty pak zjistíte z okrajových podmínek.

3 Problém č.6: Průhyb nosníku - metoda sítí/metoda konečných diferencí Prostě podepřený nosník EIu = qx v intervalu 0,l, 6.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 6.1 můžeme interpretovat jako je na obou koncích prostě podepřený. dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 6.1 metodou sítí s krokem sítě h = 1/4, tedy x i = ih pro i = 0,1,2,3,4. Řešíme-li diferenciální rovnici metodou sítí konečných diferencí, nahradíme derivace vhodnými diferencemi. Pro čtvrtou derivaci funkce u lze odvodit následující diferenční náhrady: u 12 x 11h 4 2ux h+h 2 u x h+5ux 4ux+h+ux+2h, 6.2 u 12 x 11h 4 ux 2h 4ux h+5ux+h 2 u x+h 2ux+h, 6.3 u 2 x 3h 4 11ux h 6hu x h+18ux 9ux+h+2ux+2h, 6.4 u 2 x 3h 4 2ux 2h 9ux h+18ux+6hu x+h 11ux+h, 6.5 u x 1 ux 2h 4ux h+6ux 4ux+h+ux+2h h Vyberte 3 diferenční náhrady vhodné pro uvedenou diferenciální rovnici. Sít je tvořena 5 uzly, z toho jsou 3 uzly vnitřní. Diferenční náhrady vybereme tak, abychom pro každý vnitřní uzel x i mohli aproximovat hodnotu u x i pomocí hodnot funkce u ve vnitřních uzlech sítě nebo pomocí známých okrajových podmínek. 2. U vybraných diferenčních náhrad ověřte jejich přesnost pro všechny funkce ux {1,x,x 2,x 3,x 4 }. Tzn. dosad te vždy konkrétní u z uvedené množiny do pravé strany některých vybraných rovnic a výraz co nejvíce zjednodušte. Následně spočítejte u x a ověřte,že získáte to samé. Přitěchto výpočtech NEdosazujte za h konkrétní hodnotu. 3. Ve vnitřních bodech sítě nahrad te derivace vhodnými diferenčními náhradami a dosad te za okrajové podmínky. Ze tří rovnic u x i = qx i, i = 1,2,3, tak získáte soustavu tří rovnic pro tři neznámé hodnoty U i ux i, i = 1,2,3. Soustavu rovnic vyřešte. 4. Přenásobte každý řádek předchozí soustavy rovnic vhodným číslem tak, aby vektor u 1 = 1,2,1 T byl vlastním vektorem matice takto vzniklé soustavy rovnic a aby stopa této matice byla rovna 4. Nalezněte vlastní čísla a zbývající vlastní vektory této matice. 5. Diferenciální rovnici vyřešte přesně a spočtěte max 1 i 3 U i ux i. Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciálnírovniceaporovnánímlevéapravéstranydiferenciální rovnice spočtete některé z koeficientů µ i. Zbylé koeficienty pak zjistíte z okrajových podmínek.

4 Problém č.7: Průhyb nosníku - Ritzova metoda Vetknutý nosník Uvažujme obyčejnou diferenciální rovnici čtvrtého řádu s 4 xu +s 3 xu +s 2 xu +s 1 xu +s 0 xu = qx v intervalu 0,l, 7.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Za určitých podmínek viz úkol č.1 níže lze rovnici 7.1 převést do divergentního tvaru p2 xu + p1 xu +p0 xu = qx v intervalu 0,l. 7.2 Speciálním případem obyčejné diferenciální rovnice čtvrtého řádu zapsané v divergentním tvaru je rovnice EIu = qx v intervalu 0,l, 7.3 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 7.3 můžeme interpretovat jako dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 7.3 Ritzovou metodou. 1. Odvod te podmínky, jaké musí splňovat funkce s i x, i = 0,1,...,4, aby bylo možné převést rovnici 7.1 do divergentního tvaru Zapište rovnici 7.3 v operátorovém tvaru, ukažte že příslušný operátor A je symetrický na svém definičním oboru DA a s využitím Friedrichsovy nerovnosti rovněž ukažte, že je na DA pozitivně definitní. 3. Nalezněte polynom Px čtvrtého řádu, který splňuje okrajové podmínky P0 = Pl = 0 a P 0 = P l = Odvod te tvar funkcionálu energie Fv a minimalizujte jej po řadě na množinách M 1,M 2,M 3 a M 4, kde M 1 = {α 11 Px, α 11 R}, M 2 = {α 21 Px+α 22 xpx, α 21,α 22 R}, M 3 = { α 31 Px+α 32 xpx+α 33 x 2 Px, α 31,α 32,α 33 R }, { M 4 = αsin 2 π } l x,α R. Funkce, v nichž se minima nabývají, označme u i = arg min v M i Fv, i = 1,2,3 a Pro funkci u 1 spočtěte odhad chyby u u 1 L 2 0,l 1 c q Au 1 L 2 0,l, kde c je konstanta pozitivní definitnosti Au,u c u 2 L 2 0,l. 6. Diferenciální rovnici vyřešte přesně a spočtěte přesnou chybu u u 1 L2 0,l = l 0 ux u 1x 2 dx 1/ Výsledek porovnejte se spočteným odhadem chyby. Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 7. Pomocí matematického softwaru sestrojte grafy funkcí u, u i a u u i, i {1,4}. Z grafu pak odečtěte přibližnou hodnotu u u i L 0,l = max x [0,l] ux u ix, i {1,4}.

5 Problém č.8: Průhyb nosníku - Ritzova metoda Prostě podepřený nosník EIu = qx v intervalu 0,l, 8.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 8.1 můžeme interpretovat jako je na obou koncích prostě podepřený. dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 8.1 Ritzovou metodou. 1. Zapište rovnici 8.1 v operátorovém tvaru, ukažte že příslušný operátor A je symetrický na svém definičním oboru DA a s využitím Poincarého 1 a Friedrichsovy nerovnosti rovněž ukažte, že je operátor A na DA pozitivně definitní. 2. Nalezněte polynom Px čtvrtého řádu, který splňuje okrajové podmínky P0 = Pl = 0 a P 0 = P l = Odvod te tvar funkcionálu energie Fv a minimalizujte jej po řadě na množinách M 1,M 2,M 3 a M 4, kde M 1 = {α 11 Px, α 11 R}, M 2 = {α 21 Px+α 22 xpx, α 21,α 22 R}, M 3 = { α 31 Px+α 32 xpx+α 33 x 2 Px, α 31,α 32,α 33 R }, { π } M 4 = αsin l x,α R. Funkce, v nichž se minima nabývají, označme u i = arg min v M i Fv, i = 1,2,3 a Pro funkci u 1 spočtěte odhad chyby u u 1 L 2 0,l 1 c q Au 1 L 2 0,l, kde c je konstanta pozitivní definitnosti Au,u c u 2 L 2 0,l. 5. Diferenciální rovnici vyřešte přesně a spočtěte přesnou chybu u u 1 L2 0,l = l 0 ux u 1x 2 dx 1/ Výsledek porovnejte se spočteným odhadem chyby. Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 6. Pomocí matematického softwaru sestrojte grafy funkcí u, u i a u u i, i {1,4}. Z grafu pak odečtěte přibližnou hodnotu u u i L 0,l = max x [0,l] ux u ix, i {1,4}. 1 Poincarého nerovnost je nutné využít, nebot nelze na člen u 2 L 2 použít Friedrichsovu nerovnost. Není totiž splněna 0,l podmínka u 0 = 0 nebo u l = 0. Nejčastěji používaná verze Poincarého nerovnosti zní: Pro všechny funkce v C 1 [a,b] je v v 2 L 2 0,l 1 2 b a2 v 2 L 2 0,l, kde v = 1 b b a a vxdx. My ji tu použijeme na funkci v = u. Čemu se potom rovná v?

6 Problém č.9: Průhyb nosníku - metoda konečných prvků Vetknutý nosník EIu = qx v intervalu 0,l, 9.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 9.1 můžeme interpretovat jako dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešmediferenciální rovnici 9.1 Galerkinovou metodou konečných prvků. K aproximaci řešení použijeme hermitovské kubické konečné prvky, jejichž bázové funkce mají tvar: ϕ j x = 3 x h j x h j x h j 2 +2 x h j 3 pro x [j 1h,jh], pro x jh,j +1h], jinak. j 1h jh j+1h ψ j x = h x h j +1 3 x h j +1 2 pro x [j 1h,jh], h x h j 3 2 x h j 2 + x h j pro x jh,j +1h], jinak. j 1h jh j+1h Při výpočtech využijte vztahy: ϕ j,ϕ j = 24 h ϕ 3 j,ψ j+1 = 6 h ψ 2 j,ψ j+1 = 2 h ϕ j,ϕ j+1 = 12 h ϕ 3 j,ψ j 1 = 6 h x,ϕ 2 j = jh 2 ϕ j,ψ j = 0 ψ j,ψ j = 8 h x,ψ j = h Zapište rovnici 9.1 v operátorovém tvaru, ukažte že příslušný operátor A je symetrický na svém definičním oboru DA a s využitím Friedrichsovy nerovnosti rovněž ukažte, že je na DA pozitivně definitní. 2. Necht N = 2 a h = l N+1. Přibližné řešení rovnice 9.1 hledejte ve tvaru u hx = 2N j=1 α jv j x, kde v j x = ϕ j x a v N+j x = ψ j x, pro j = 1,2,...,N. Koeficienty α j, j = 1,2,...,2N, získáte řešením soustavy 2N rovnic o 2N neznámých Au h,v j = q,v j, pro j = 1,2,...,2N. 3. Diferenciální rovnici vyřešte přesně a spočtěte přesnou chybu u u h L 2 0,l = l 0 ux u hx 2 dx 1/ Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 4. Pomocí matematického softwaru sestrojte grafy funkcí u, u h a u u h. Z grafu pak odečtěte přibližnou hodnotu u u h L 0,l = max x [0,l] ux u hx.

7 Problém č.10: Průhyb nosníku - metoda konečných prvků Prostě podepřený nosník EIu = qx v intervalu 0,l, 10.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 10.1 můžeme interpretovat jako je na obou koncích prostě podepřený. dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 10.1 Galerkinovou metodou konečných prvků. K aproximaci řešení použijeme hermitovské kubické konečné prvky, jejichž bázové funkce mají tvar: 1.2 ϕ j x = 3 x h j x h j x h j 2 +2 x h j 3 pro x [j 1h,jh], pro x jh,j +1h], jinak. j 1h jh j+1h x h h j x h j pro x [j 1h,jh], 0.6 x ψ j x = h h j 3 2 x h j 2 + x h j pro x jh,j +1h], jinak. j 1h jh Při výpočtech využijte vztahy 1 j N: ϕ j,ϕ j = 24 h 3 ψ j,ψ j = 8 h x,ϕ N+1 = 10lh 3h2 20 x,ϕ 0 = 3h2 20 ϕ j,ϕ j+1 = 12 h 3 ψ j,ψ j+1 = 2 h x,ψ N+1 = 2h3 5lh 2 60 x,ψ 0 = h3 30 ϕ j,ψ j =0 ψ j,ψ j 1 = 2 h ϕ N+1,ϕ 12 N+1 = 0,ϕ 12 0 = h 3 ϕ ϕ j,ψ j+1 = 6 h 2 x,ϕ j =jh 2 ψ N+1,ψ N+1 = 4 h ψ 0,ψ 0 = 4 h ϕ j,ψ j 1 = 6 h 2 x,ψ j = h3 15 ϕ N+1,ψ N+1 = 6 h 2 ϕ 0,ψ 0 = 6 h 2 1. Zapište rovnici 10.1 v operátorovém tvaru. Předpokládejte, že u 0 = a 0, u l = b 0 a DA = {v C 4 0,l C[0,l], v0 = vl = 0} a formulujte úlohu slabě, tj. ve tvaru u,v A = Fv, kde, A je bilineární forma a Fv spojitý funkcionál na DA. Funkcionál Fv je tvořen nejenom členem q,v, ale i některými členy, které vznikly použitím metody per partes. S využitím Friedrichsovy a Poincarého 1 nerovnosti ukažte, že bilineární forma u,v A je skalárním součinem na prostoru V = {v C 2 0,l C[0,l], v0 = vl = 0} Necht a = b = 0, N = 1 a h = l N+1. Přibližné řešení rovnice 10.1 hledejte ve tvaru u hx = 2N+2 j=1 α j v j x, kde v j x = ϕ j x, pro j = 1,2,...,N, a v N+j+1 x = ψ j x, pro j = 0,1,...,N + 1. Koeficienty α j, j = 1,2,...,2N +2, získáte řešením soustavy 2N +2 rovnic o 2N +2 neznámých u h,v j A = Fv j, pro j = 1,2,...,2N Diferenciální rovnici vyřešte přesně a spočtěte přesnou chybu j+1h h 3 u u h L2 0,l = l 0 ux u hx 2 dx 1/ Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 4. Pomocí matematického softwaru sestrojte grafy funkcí u, u h a u u h. Z grafu pak odečtěte přibližnou hodnotu u u h L 0,l = max x [0,l] ux u hx. 1 Poincarého nerovnost je nutné využít, nebot nelze na člen u 2 L 2 použít Friedrichsovu nerovnost. Není totiž splněna 0,l podmínka u 0 = 0 nebo u l = 0. Nejčastěji používaná verze Poincarého nerovnosti zní: Pro všechny funkce v C 1 [a,b] je v v 2 L 2 0,l 1 2 b a2 v 2 L 2 0,l, kde v = 1 b b a a vxdx. My ji tu použijeme na funkci v = u. Čemu se potom rovná v? 2 Hermitovské konečné prvky sice neleží v prostoru V, ale pouze v {v C 1 [a,b], v0 = vl = 0}, lze však ukázat, že, A je rovněž skalárním součinem na H0 20,l = {v L2 0,l; v L 2 0,l, v0 = vl = 0}, ve kterém hermitovské konečné prvky leží.

8 Problém č.11: Průhyb nosníku - kvartický spline Vetknutý nosník EIu = qx v intervalu 0,l, 11.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 11.1 můžeme interpretovat jako dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 11.1 konstrukcí kvartického splinu čti splajnu. Rozdělme výpočetní oblast na N = 4 intrvaly I j = [x j 1,x j ], kde x j = jh, j = 0,1,...,N a h = l/n. Na každém intervalu I j aproximujme funkci ux polynomem čtvrtého stupně p j x = a j x 4 +b j x 3 +c j x 2 +d j x+c j. Funkci p C 3 [0,l] takovou, že p Ij = p j pak nazveme kvartickým splinem aproximujícím řešení diferenciální rovnice11.1. Pozn.: Kvartický spline p je tedy spojitá funkce, která má spojitou první, druhou a třetí derivaci a na každém z intervalů I j je rovna polynomu p j. Z uvedených podmínek na funkci p tak zíkáme následující sadu rovnic Spojitost ve vnitřních bodech p j x j = p j+1 x j, j = 1,2,...,N 1, 11.2 Diferenciální rovnice x j 1 p j x j = p j+1 x j, j = 1,2,...,N 1, 11.3 p jx j = p j+1x j, j = 1,2,...,N 1, 11.4 p j x j = p j+1 x j, j = 1,2,...,N 1, 11.5 dx ExIxp jx = qxdx, j = 1,2,...,N x j 1 Na každém z N intervalů potřebujeme nalézt 5 neznámých koeficientů, celkem tedy 5N neznámých. Rovnice však poskytují pouze 5N 4 rovnic. Zbylé 4 rovnice získáme z okrajových podmínek, konkrétně: p 1 0 = u0, p 1 0 = u 0, p N l = ul a p N l = u l. Ačkoli by se mohlo zdát, že řešit soustavu 5N rovnic o 5N neznámých může být náročné, lze k řešení soustavy poměrně jednoduše dospět následujícím algoritmem. 1. Nejprve uvažujte nekonstantní funkce Ex a Ix a zjednodušte levou stranu rovností 11.6 obsahují integrál z derivace. Následně dosad te konkrétní data a spočtěte tak koeficienty a j, j = 1,2,...,N. 2. Využijte znalosti koeficientů a j a z rovnic 11.5 odvod te závislost mezi koeficienty b j a b j+1. Obdobně postupujte u rovnic 11.4, 11.3 a Vždy využijte znalosti již spočtených koeficientů, či vztahu mezi nimi a odvod te závislost mezi koeficienty c j a c j+1, d j a d j+1 a nakonec e j a e j Z okrajových podmínek v bodě x = 0 spočtěte koeficienty d 1 = p 1 0 a e 1 = p 1 0. Využijte odvozených vztahů mezi koeficienty d j,d j+1 a e j,e j+1 a spočtěte koeficienty d j,e j, j = 2,3,...,N. Následně vyřešte soustavu dvou rovnic p N l = ul a p N l = u l o dvou neznámých b N a c N. Nakonec využijte odvozených vztahů mezi koeficienty b j,b j+1 a c j,c j+1 a spočtěte koeficienty b j,c j, j = 1,2,...,N Diferenciální rovnici vyřešte přesně a spočtěte jedná se jen o integrály z polynomů u p 2 L 2 0,l = N j=1 u p j 2 L 2 I j = N j=1 x j 1 ux p j x 2 dx Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 5. Pomocímatematického softwaru sestrojte grafy funkcí p,p,p,p a u p. Z grafu pak odečtěte přibližnou hodnotu u p L 0,l = max x [0,l] ux px.

9 Problém č.12: Průhyb nosníku - kvartický spline Prostě podepřený nosník EIu = qx v intervalu 0,l, 12.1 s okrajovými podmínkami u0 = ul = 0 a u 0 = u l = 0. Rovnici 12.1 můžeme interpretovat jako dále uvažujme, že je EI = 1, l = 1 a qx = x. S těmito daty řešme diferenciální rovnici 12.1 konstrukcí kvartického splinu čti splajnu. Rozdělme výpočetní oblast na N = 4 intrvaly I j = [x j 1,x j ], kde x j = jh, j = 0,1,...,N a h = l/n. Na každém intervalu I j aproximujme funkci ux polynomem čtvrtého stupně p j x = a j x 4 +b j x 3 +c j x 2 +d j x+c j. Funkci p C 3 [0,l] takovou, že p Ij = p j pak nazveme kvartickým splinem aproximujícím řešení diferenciální rovnice12.1. Pozn.: Kvartický spline p je tedy spojitá funkce, která má spojitou první, druhou a třetí derivaci a na každém z intervalů I j je rovna polynomu p j. Z uvedených podmínek na funkci p tak zíkáme následující sadu rovnic Spojitost ve vnitřních bodech p j x j = p j+1 x j, j = 1,2,...,N 1, 12.2 Diferenciální rovnice x j 1 p j x j = p j+1 x j, j = 1,2,...,N 1, 12.3 p jx j = p j+1x j, j = 1,2,...,N 1, 12.4 p j x j = p j+1 x j, j = 1,2,...,N 1, 12.5 dx ExIxp jx = qxdx, j = 1,2,...,N x j 1 Na každém z N intervalů potřebujeme nalézt 5 neznámých koeficientů, celkem tedy 5N neznámých. Rovnice však poskytují pouze 5N 4 rovnic. Zbylé 4 rovnice získáme z okrajových podmínek, konkrétně: p 1 0 = u0, p 1 0 = u 0, p N l = ul a p N l = u l. Ačkoli by se mohlo zdát, že řešit soustavu 5N rovnic o 5N neznámých může být náročné, lze k řešení soustavy poměrně jednoduše dospět následujícím algoritmem. 1. Nejprve uvažujte nekonstantní funkce Ex a Ix a zjednodušte levou stranu rovností 12.6 obsahují integrál z derivace. Následně dosad te konkrétní data a spočtěte tak koeficienty a j, j = 1,2,...,N. 2. Využijte znalosti koeficientů a j a z rovnic 12.5 odvod te závislost mezi koeficienty b j a b j+1. Obdobně postupujte u rovnic 12.4, 12.3 a Vždy využijte znalosti již spočtených koeficientů, či vztahu mezi nimi a odvod te závislost mezi koeficienty c j a c j+1, d j a d j+1 a nakonec e j a e j Z okrajových podmínek v bodě x = 0 spočtěte koeficienty c 1 = p 1 0 a e 1 = p 1 0. Využijte odvozených vztahů mezi koeficienty c j,c j+1 a e j,e j+1 a spočtěte koeficienty c j,e j, j = 2,3,...,N. Následně vyřešte soustavu dvou rovnic p N l = ul a p N l = u l o dvou neznámých b N a d N. Nakonec využijte odvozených vztahů mezi koeficienty b j,b j+1 a d j,d j+1 a spočtěte koeficienty b j,d j, j = 1,2,...,N Diferenciální rovnici vyřešte přesně a spočtěte jedná se jen o integrály z polynomů u p 2 L 2 0,l = N j=1 u p j 2 L 2 I j = N j=1 x j 1 ux p j x 2 dx Návod: Jelikož je qx = x, bude přesné řešení ux polynomem pátého stupně. Postupovat tedy můžete tak, že dosadíte funkci ux = µ 5 x 5 +µ 4 x 4 +µ 3 x 3 +µ 2 x 2 +µ 1 x+µ 0 do diferenciální rovnice a porovnáním z okrajových podmínek. Při výpočtu integrálů můžete použít software. 5. Pomocímatematického softwaru sestrojte grafy funkcí p,p,p,p a u p. Z grafu pak odečtěte přibližnou hodnotu u p L 0,l = max x [0,l] ux px.

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitoly 3, 4 a 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Nehomogenní okrajové podmínky. Pokračování OÚ pro PDR (jen pro fajnšmekry). Jednoznačnost zobecněného řešení. Metoda sítí v 1D. Přibližné řešení okrajových úloh. Aproximace vlastních

Více

(Poznámka: V MA 43 je věta formulována trochu odlišně.)

(Poznámka: V MA 43 je věta formulována trochu odlišně.) Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy: zúplnění prostoru funkcí přibližné řešení minim. úlohy metoda konečných prvků jiný pohled na zobecněné řešení stejný způsob numerické aproximace

Více

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Předmět: MA4 Dnešní látka Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Literatura:

Více

Interpolace pomocí splajnu

Interpolace pomocí splajnu Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky

Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové podmínky Předmět: MA4 Dnešní látka Diferenciální operátory Variační formulace okrajových úloh. Přibližné řešení minimalizační úlohy Ritzova metoda. Homogenní (nulové) okrajové podmínky Nehomogenní (nenulové) okrajové

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Čebyševovy aproximace

Čebyševovy aproximace Čebyševovy aproximace Čebyševova aproximace je tzv hledání nejlepší stejnoměrné aproximace funkce v daném intervalu Hledáme funkci h x, která v intervalu a,b minimalizuje maximální absolutní hodnotu rozdílu

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Literatura: Kapitola 2 d) ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Metoda sítí v 1D. Myšlenka náhrada derivací diferenčními podíly Přibližné řešení okrajových úloh Aproximace vlastních čísel Literatura: Kapitola 2 d) ze skript Karel Rektorys:

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

1 Polynomiální interpolace

1 Polynomiální interpolace Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Arnoldiho a Lanczosova metoda

Arnoldiho a Lanczosova metoda Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 21 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 21 Řešíme následující úlohu: differencovatelnou funkci f : R R známe jen v konečném počtu bodů x 0,

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení Polynom nad R = zobrazení f : R R f(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, kde a i R jsou pevně daná

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Literatura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3,

Literatura: Text o lineární algebře na webových stránkách přednášejícího (pro opakování). Kapitoly 4 a 5 ze skript Ondřej Zindulka: Matematika 3, Předmět: MA4 Dnešní látka Motivační úloha: ztráta stability nosníku Obyčejné diferenciální rovnice s okrajovými podmínkami a jejich řešitelnost Vlastní čísla a vlastní funkce Obecnější pohled na řešitelnost

Více

Martin NESLÁDEK. 14. listopadu 2017

Martin NESLÁDEK. 14. listopadu 2017 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:

Více

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic.

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic. 1. Přednáška Obsah: Úvod do tvorby matematických modelů jako okrajové úlohy pro diferenciální rovnici. Příklad 1D vedení tepla a lineární pružnost. Diferenciální, variační, energetická formulace úloh.

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně

Pozn. 1. Při návrhu aproximace bychom měli aproximační funkci vybírat tak, aby vektory ϕ (i) byly lineárně 9. Řešení typických úloh diskrétní metodou nejmenších čtverců. DISKRÉTNÍ METODA NEJMENŠÍCH ČTVERCŮ použití: v případech, kdy je nevhodná interpolace využití: prokládání dat křivkami, řešení přeurčených

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Podobnostní transformace

Podobnostní transformace Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že

Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování. vypracovanou úlohu podle níže uvedených zadání. To mimo jiné znamená, že Kapitola Zadání Tento dokument obsahuje zadání pro semestrální programy z PAA. Vypracování alespoň jedné úlohy je nutnou podmínkou pro úspěšné složení zkoušky resp. získaní (klasifikovaného) zápočtu (viz.

Více

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní

Více

Numerická matematika Písemky

Numerická matematika Písemky Numerická matematika Písemky Bodování Každá písemka je bodována maximálně 20 body. Celkem student může získat za písemky až 40 bodů, pro udělení zápočtu musí získat minimálně 20 bodů. Písemka č. 1 Dva

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Věta o sedlovém bodu a Fredholmova alternativa

Věta o sedlovém bodu a Fredholmova alternativa Věta o sedlovém bodu a Fredholmova alternativa Petr Tomiczek Fakulta Aplikovaných věd Západočeská univerzita Plzeň 2006 obsah 1 Rozklad Hilbertova prostoru Uzavřený lineární a samoadjungovaný operátor

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

K oddílu I.1 základní pojmy, normy, normované prostory

K oddílu I.1 základní pojmy, normy, normované prostory ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č 1 z předmětu 1RMF čtvrtek 16 ledna 214, 9: 11: ➊ 11 bodů) Ve třídě zobecněných funkcí vypočítejte itu x ) n n2 sin 2 P 1 n x) ➋ 6 bodů) Aplikací Laplaceovy transformace vypočtěte

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých

Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.

Více

Změna koeficientů PDR při změně proměnných

Změna koeficientů PDR při změně proměnných Změna koeficientů PR při změně proměnných Oldřich Vlach oto pojednání doplňuje přednášku M. Šofera na téma Nalezení složek tenzoru napjatosti pro případ rovinné úlohy s povrchem zatíženým kontaktním tlakem

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

11. Skalární součin a ortogonalita p. 1/16

11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita 11. Skalární součin a ortogonalita p. 1/16 11. Skalární součin a ortogonalita p. 2/16 Skalární součin a ortogonalita 1. Definice skalárního součinu 2. Norma vektoru 3.

Více

Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )

Zdrojem většiny příkladů je sbírka úloh   1. cvičení ( ) 2. cvičení ( ) Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1

Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu a, b : 2 ) y i p i+ 1 ODR - okrajová úloha Teorie (velmi stručný výběr z přednášek) Okrajová úloha 2. řádu Budeme hledat řešení y(x) okrajové úlohy pro diferenciální rovnici druhého řádu v samoadjungovaném tvaru na intervalu

Více

8. Okrajový problém pro LODR2

8. Okrajový problém pro LODR2 8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y

Více

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =

rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y = Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení

Více

Aproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +...

Aproximace funkcí. Polynom Φ m (x) = c 0 + c 1 x + c 2 x c m x m. Φ m (x) = c 0 g 0 (x) + c 1 g 1 (x) + c 2 g 2 (x) +... Aproximace funkcí 1 Úvod Aproximace funkce - výpočet funkčních hodnot nejbližší (v nějakém smyslu) funkce v určité třídě funkcí (funkce s nějakými neznámými parametry) Příklady funkcí používaných pro aproximaci

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení

3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,

Více

Přednášky z předmětu Aplikovaná matematika, rok 2012

Přednášky z předmětu Aplikovaná matematika, rok 2012 Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019 Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6) 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními

Více

Michal Bulant. Masarykova univerzita Fakulta informatiky

Michal Bulant. Masarykova univerzita Fakulta informatiky Matematika III 3. přednáška Funkce více proměnných: derivace vyšších řádů, lokální a absolutní extrémy Michal Bulant Masarykova univerzita Fakulta informatiky 6. 10. 2010 Obsah přednášky 1 Literatura 2

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok. DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením

Více

INTEGRACE KOMPLEXNÍ FUNKCE

INTEGRACE KOMPLEXNÍ FUNKCE INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje

Více