Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)"

Transkript

1 Řešení úlo elostátnío kola 60. ročníku fyzikální olympiády Úloy narli J. Tomas 1,, 3) a V. Wagner 4) 1.a) Z ronosti ydrostatiký tlaků 1,5Rρ 1 g = 1 ρ g 1 = 1,5R ρ 1 = 3 R = 3,75 m. ρ 8 1 b) Označme ýšku kapaliny praém rameni. Pak platí: Rρ 1 g = ρ g = R ρ 1 ρ = R. bod Rozraní mezi kapalinami se posune o d = 1 = R 3 8 R = 1 R = 1,5 m. 8 ) Protože setračná odstřediá síla, která působí na obě kapaliny e odoroné části trubie, záisí na jeji motnosti, posune se rozraní mezi kapalinami dopraa. Při otáčení U-trubie působí na každý element motnosti dm = Sρdr setračná odstřediá síla, jejíž elikost záisí na zdálenosti r od osy otáčení df = dm ω r = Sρdr ω r. Celkoá setračná odstřediá síla působíí na kapalinu e odoroné části trubie naázejíí se e zdálenosti od r 1 do r od osy otáčení je určena integrálem r F = Sρω rdr = Sρω r r1. r 1 Na odoroný sloupe kapaliny o déle R a ustotě ρ 1 působí setračná odstřediá síla o elikosti F o1 = Sρ 1 ω R směrem dolea, na odoroný sloupe kapaliny o déle x a ustotě ρ 1 pak působí setračná síla o elikosti F o = Sρ 1 ω x směrem dopraa. Konečně na odoroný sloupe kapaliny o déle R x a ustotě ρ setračná síla o elikosti F o3 = Sρ ω R x směrem dopraa. Protože ladina praé části nádoby o zdálenost x stoupne a leé části nádoby o stejnou zdálenost klesne, musíme zít úau i změnu ydrostatiké tlakoé síly. Hydrostatiká tlakoá síla působíí zlea se sníží o F 1 = xρ 1 gs, tlakoá síla působíí zpraa se zýší o F = xρ gs. V ronoáze na rozraní kapalin nyní bude platit F o1 + F 1 = F o + F o3 F.

2 Po dosazení a zkráení ρ 1 ω R ρ 1ω x ρ ω R x + xρ 1 g + xρ g = 0, ρ 1 ω R ρ 1 ω x ρ ω R x ) + xgρ 1 + ρ ) = 0. Úpraou získáme kadratikou ronii x + xgρ 1 + ρ ) ω ρ ρ 1 ) R = 0, x + 0,081 75x 0,01 = 0. Ronii youje kladný kořen x = 6,7 m..a) Označme zdálenost pístu od leé základny a, od praé základny b a ýšku ále l. Na počátku děje platí: y 1 y = b 1) a a po jeo skončení y y = b 1. ) a 1 Ze zobrazoaí ronie 1 a + 1 b = a 1 b 1 a z ronie a + b = a 1 + b 1 zjistíme, že ostrý obraz podrué znikne, když bude a 1 = b a b 1 = a. Ze ztaů 1) a ) plyne y = y 1 y aa 1 bb 1 = y 1 y y = y 1 y =,0 m. b) Označme V 1 počáteční objem leé části a V počáteční objem praé části nádoby, n 1 látkoé množstí jednoatomoéo plynu leé části nádoby a n látkoé množstí douatomoéo plynu praé části nádoby. Pro elkoý objem platí V = V 1 + V. 3) Protože poměr elikosti obrazu a předmětu je na počátku pokusu : 1 a na koni pokusu 1 : a průřez ále je stálý, je i poměr V V 1 =. V okamžiku zniku druéo ostréo obrazu na stínítku bude objem leé části nádoby V a praé části V 1. Protože tlak a teplota leé i praé části nádoby byly na počátku stejné, bude ze staoé ronie platit k = V V 1 = n n 1 =. 4)

3 V praé části nádoby se plyn izotermiky stlačil, tedy podle Boyle Mariotteoa zákona bude jeo konečný tlak V n p = p 0 = p 0 = kp 0 = 10 5 Pa, 5) V 1 n 1 stejný tlak bude i leé části nádoby. body ) Energie získaná z žároky se spotřebuje na zýšení nitřní energie plynu leé části nádoby a na prái nější sil při izotermikém stlačení praé části nádoby s yužitím ztaů 3), 4) a 5): Q = U + W = = 3 pv p 0 V 1 ) + p 0 V ln V = 3 V 1 [kp 0V V 1 ) p 0 V 1 ] + p 0 V V 1 ) ln k = = 3 [kp 0 V V ) ] V p k p k V V ) ln k = k + 1 [ ] [ 3 k ln k 3 = p 0 V k 1) + = p k V + ] 3 ln = 390 J. Pro tepelný ýkon žároky platí P = U I = Q t = Q t UI = p [ ] 0V 3 k ln k k 1) + = UI k + 1 [ 3 = p 0 V + ] 3 ln = 310 s. body 3.a) Teplo se na rezistoru uolňuje s ýkonem P = U R = U S = U πr. Tento ρl ρl ýkon je přímo úměrný elikosti poru rezistoru bez podsta a rozdílu teplot mezi rezistorem a okolím P = α πrl t. Poronáním ztaů t = U πr α πrρl = U r α ρl. Zětší-li se rozměry rezistoru dakrát, bude teplotní rozdíl dakrát menší, tedy teplota rezistoru bude 5 C. body b) Doba olnéo pádu tělesa záisí na ýše a na tíoém zrylení τ = g. Tíoé zrylení záisí na motnosti planety a na jejím poloměru g = G M 4 R = G 3 πr3 ρ = G 4 3 πrρ. R Bude-li poloměr planety poloiční, bude tíoé zrylení dakrát menší a doba olnéo pádu ze stejné ýšky krát ětší. body

4 ) Označme t stálý teplotní rozdíl zduu a ody, S por rybníka, l t měrné skupenské teplo tání ledu, λ součinitel tepelné odiosti ledu a ρ jeo ustotu. V daném okamžiku má led tloušťku x a za elmi krátkou dobu dτ znikne na jeo spodním poru rstička ledu tloušťky dx. Současně se lineární rozložení teplot ledu předozí tloušťky x změní na noé lineární rozložení teplot ledu na tloušťe x + dx. Teplo uolněné při obou proese odebere zdu nad jeo porem. l t dm + Sρ t dx = l tsρdx + Sρ t t dx = λs x dτ dτ = l tρ ρ xdx + λ t λ xdx τ = lt ρ λ t + ρ ) λ 0 xdx = l tρ λ t + ρ 4λ = k. Jestliže za 1 den znikla rsta o tloušťe, znikne za da dny rsta o tloušťe. d) Teplo, které dodáá zdroj stáléo proudu, slouží k ypařoání ody. Označme a šířku, b délku a počáteční ýšku kapalinoéo tělesa. Za krátkou dobu dt se ýška x ladiny změní o dx dx < 0) odpařením kapaliny o motnosti dm = ρ k ab dx. Za stejnou dobu zdroj dodá energii RI dt = ρ b ax I dt = l dm = l ρ k ab dx xdx = ρi l ρ k adτ = kτ. Integroáním ] τ0 [ x xdx = k dτ 0 Všena kapalina se ypaří za dobu τ 1 : 0 τ1 [ ] x 0 xdx = k dτ 0 Druá poloina obsau nádoby se odpaří za dobu = 8 = kτ 0 = 8 3 kτ 0. = = kτ 1 τ 1 = k = 4 3 τ 0 = 13 min. τ 1 τ 0 = k τ 0 = 4 3 τ 0 τ 0 = 1 3 τ 0 = 3,3 min. 4.a) Z kinetiké energie jádra železa určíme s yužitím nerelatiistiký ztaů jeo rylost ) ) E ki = m 0 = m 0 = Eki. =,

5 Po dosazení = 80,0 MeV 57, , , ) MeV = 0, Rylost dopadajíí jader železa určená nerelatiistiky je 0, Při yužití relatiistiký ztaů dostaneme = 1 = + E ki, E ki ). Po dosazení: = 1 1 ) = 0, MeV , , , ) MeV Rylost dopadajíí jader železa určená relatiistiky je 0, body b) Výšku oulomboské bariéry E C získáme ze ztau iz studijní text př. 8): Z Fe Z Pb E C = α R 3 ). 0 AFe + 3 APb Po dosazení: E C = ,3 MeV fm 137 1,3 fm ) = 41 MeV. 08 Kinetiká energie atomů železa je 80,0 MeV a je tedy yšší než oulomboská bariéra. body ) Vypočteme klidoé energie: 58 6Fe ) = 57, , MeV 6 0, MeV = ,17 MeV, 08 8Pb ) = 07, , MeV 8 0, MeV = ,11 MeV, Hs ) = 66, , MeV 108 0, MeV = ,378 MeV. Energie reake je pak Q = [ A 58 r 6Fe ) + A 08 r 8Pb )) A 66 r 108Hs )] m u Po dosazení: Q = [57, ,976 65) 66, ] 931, MeV = = 05,040 MeV.

6 Pro sloučení jader platí zákon zaoání energie E ki + Q = E kf + E x, kde E x je exitační energie složenéo jádra. Vzledem k tomu, že na praé straně ronie jsou dě neznámé eličiny, použijeme ještě zákon zaoání ybnosti. Protože klidoá energie jádra železa je řádu 10 4 MeV a jeo kinetiká energie řádu 10 MeV, použijeme nerelatiistiký zta mezi ybností a kinetikou energií. E k = p p = E0 E k m 0 E k =. m 0 Zákon zaoání ybnosti pro naši reaki bude mít tar: p i = p f p i 58 6Fe ) = p f Hs ), E Fe) E ki = E Hs) E kf, E Fe ) E ki = E Hs ) E kf =E Hs ) E kf. V ronii jsme yužili poznatek, že klidoé energie jádra assia základním a exitoaném stau si jsou téměř rony. Z ronie yjádříme E kf Ekf = E Fe ) E ki Hs) a dosadíme do zákona zaoání energie E x = E ki + Q E Fe ) E ki Hs) = E ki Fe ) 108 Hs) ) + Q. Po dosazení ) ,17 MeV E x = 80,0 MeV ,040 MeV) = 14,0 MeV ,378 MeV Exitační energie jádra assia je 14,0 MeV. 4 body d) Rylost jádra assia určíme z jeo kinetiké energie ,17 MeV 80,0 MeV E kf = = 61,0 MeV, ,378 MeV = E kf Hs) = 61,0 MeV = 0, ,378 MeV Rylost jádra assia je 0,0.

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas

Řešení úloh celostátního kola 59. ročníku fyzikální olympiády. Úlohy navrhl J. Thomas Řešení úlo celostátnío kola 59. ročníku fyzikální olympiády Úloy navrl J. Tomas 1.a) Rovnice rozpadu je 38 94Pu 4 He + 34 9U; Q E r [ m 38 94Pu ) m 4 He ) m 34 9U )] c 9,17 1 13 J 5,71 MeV. body b) K dosažení

Více

12. SEMINÁŘ Z MECHANIKY

12. SEMINÁŘ Z MECHANIKY - 79 - SEMINÁŘ Z MECHANIKY O jaký úel se odcýlí od odoroné roin ladina kapalin cisternoém oze, který brzdí se zpomalením 5 m s? d s a = a dm Pro jejic ýslednici platí α d d s d d = d + d = a dm s t a 5

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Základní škola Kaplice, Školní 226

Základní škola Kaplice, Školní 226 Základní škola Kaplice, Školní 6 DUM VY_5_INOVACE_Y5 autor: Mical Benda období vytvoření: 0 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okru: téma: Člověk a příroda yzika

Více

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4) Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

Hydrostatika a hydrodynamika

Hydrostatika a hydrodynamika Hydrostatika a hydrodynamika Zabýáme se kaalinami, ne tuhými tělesy HS Ideální tekutina Hydrostatický tlak Pascalů zákon Archimédů zákon A.z. - ážení HD Ronice kontinuity Bernoullioa ronice Pitotoa trubice

Více

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice).

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice). Náze a adresa školy: třední škola průysloá a uělecká, Opaa, příspěkoá organizace, raskoa 399/8, Opaa, 74601 Náze operačního prograu: O Vzděláání pro konkurenceschopnost, oblast podpory 1.5 Registrační

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.

R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles. 2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?

Více

POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ

POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ Pojekt ŠABLONY NA GVM Gymnázium Velké Meziříčí egistační číslo pojektu: CZ..07/.5.00/4.0948 IV- Inoace a zkalitnění ýuky směřující k ozoji matematické gamotnosti žáků středníc škol POVRCH A OBJEM KOULE

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m.

s 1 = d t 2 t 1 t 2 = 71 m. (2) t 3 = d v t t 3 = t 1t 2 t 2 t 1 = 446 s. (3) s = v a t 3. d = m. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Označme v a velikost rychlosti atleta, v t velikost rychlosti trenéra. Trenér do prvního setkání ušel dráhu s 1

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Vlnění druhá sada Equation Chapter 1 Section 1

Vlnění druhá sada Equation Chapter 1 Section 1 Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla

Více

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému

tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického

Více

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L.

Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Řešení úloh 1. kola 58. ročníku fyzikální olympiády. Kategorie C Autoři úloh: J. Thomas (1, 2, 5, 6, 7), J. Jírů (3), L. Ledvina (4) 1.a) Na dosažení rychlosti v 0 potřebuje každý automobil dobu t v 0

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Identifikátor materiálu: ICT 1 18

Identifikátor materiálu: ICT 1 18 Identifikátor ateriálu: ICT 8 Reistrační číslo rojektu Náze rojektu Náze říjece odory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýstu Klíčoá sloa Dru učenío ateriálu Dru interaktiity Cíloá skuina

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3

w i1 i2 qv e kin Provozní režim motoru: D = 130 P e = 194,121 kw Z = 150 i = 6 n M = /min p e = 1,3 MPa V z = 11,95 dm 3 Sestate základní energetickou bilanci plnícího agregátu znětoého motoru LIAZ M638 (D/Z=30/50 mm, 4dobý, 6 álec) přeplňoaného turbodmychadlem K 36 377 V - 5. pulzačním praconím režimu. Proozní režim motoru:

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Aplikované chemické procesy. Heterogenní nekatalyzované reakce

Aplikované chemické procesy. Heterogenní nekatalyzované reakce plikované hemiké proesy Heterogenní nekatalyzované reake Heterogenní nekatalytiké reake plyn nebo kapalina dostávají do styku s tuhou látkou a reagují s ní, přičemž se tato látka mění v produkt. a ( tekutina

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje rojek realizoaný na SŠ Noé Měo nad Meují finanční podporou Operační prorau Vzděláání pro konkurencecopno Králoéradeckéo kraje Modul 03 - Tecnické předěy In. Jan Jeelík . Mecanická práce oybuje-li e oný

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A

Řešení úloh 1. kola 53. ročníku fyzikální olympiády. Kategorie A Řešení úloh kola 53 ročníku fyzikální olympiády Kategorie A Autořiúloh:JJírů(),MJarešová(2,6),JThomas(4,7),PŠedivý(3,5) a) Vzhledemktomu,že v c,můžemesdostatečnoupřesnostípoužítzákony klasické fyziky Elektrické

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády. Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor pro estabu do střechy Popis ýrobku ČR. 0. 20 Hoal IDKM 250 plochý kolektor ysoce ýkonný plochý kolektor se skleněnou přední stěnou, určený pro termické yužití sluneční energie sestaením několika kolektorů

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Obyčejné diferenciální rovnice

Obyčejné diferenciální rovnice Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

HUSTOTA PEVNÝCH LÁTEK

HUSTOTA PEVNÝCH LÁTEK HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu

Více

S S obsahy podstav S obsah pláště

S S obsahy podstav S obsah pláště Předmět: Ročník: ytořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROÁ 7.. 04 Náze zpacoaného celku: PORCHY A OBJEMY KOMOLÝCH TĚLE, KOULE A JEJÍCH ČÁTÍ PORCH A OBJEM KOMOLÉHO JEHLANU Komolý jehlan: má dě podstay,

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Postřelené špalíky. Veletrh nápadů učitelů fyziky 22 VLADIMÍR VÍCHA *, TOMÁŠ FAIKL **

Postřelené špalíky. Veletrh nápadů učitelů fyziky 22 VLADIMÍR VÍCHA *, TOMÁŠ FAIKL ** Veletrh nápadů učitelů fyziky Postřelené špalíky VLADIMÍR VÍCHA *, OMÁŠ FAIKL ** * Gymnázium, Pardubie, Dašiká 1083; ÚEF ČVU Praha ** Student Gymnázia, Pardubie, Dašiká 1083 Abstrakt Jestliže diabolka

Více

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P ❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Změny skupenství látek - tání, tuhnutí VY_32_INOVACE_F0114.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Změny skupenství látek - tání, tuhnutí VY_32_INOVACE_F0114. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

3.3. Operace s vektory. Definice

3.3. Operace s vektory. Definice Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

VY_32_INOVACE_G 21 11

VY_32_INOVACE_G 21 11 Náze a adresa školy: Střední škola růmysloá a uměleká, Oaa, řísěkoá organizae, Praskoa 99/8, Oaa, 7460 Náze oeračního rogramu: OP Vzděláání ro konkureneshonost, oblast odory.5 Registrační číslo rojektu:

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

Diferenciální rovnice kolem nás

Diferenciální rovnice kolem nás Diferenciální rovnice kolem nás Petr Kaplický Den otevřených dveří MFF UK 2012 Praha, 29. 11. 2012 Petr Kaplický (KMA MFF UK) Diferenciální rovnice kolem nás 1 / 24 Plán 1 Let Felixe B. 2 Pád (s odporem

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

Povrch a objem těles

Povrch a objem těles Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu).

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu). 165 Vodoroný rh Předpoklad: 164 Pomůck: kulička, stůl, případně metr a bara (na měření zdálenosti doapdu a ýšk stolu) Pedaoická poznámka: Stejně jako předchozí i tato hodina stojí a padá s tím, jak dobře

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

Vzorové příklady - 5.cvičení

Vzorové příklady - 5.cvičení Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu:

Student(ka): Písemná část státní závěrečné zkoušky Fyzika (učitelství) červen Bodové hodnocení: Hodnotil(a): Celkové hodnocení testu: Spránou odpoěď zaroužujte. Celoé hodnocení testu: Úloha 1 (3 body) Mějme ýtah o hmotnosti m, terý je poěšen na laně přes penou ladu. Za druhý onec lana tahá silou F čloě, terý stojí onom ýtahu. Jeho hmotnost

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

Vytápění místností a návrh otopných ploch, výpočet tepelných bilancí

Vytápění místností a návrh otopných ploch, výpočet tepelných bilancí yápění mísnosí a návrh oopných ploch, výpoče epelných bilancí PŘEDNÁŠKA Č.. 8 SDÍLENÍ TEPLA 1 PROUDĚNÍ (KONEKCE) ÝKON P =h.s.( p - v ) voda h=500 4000 W/m K vzduch v h=5 5 W/m K RYCHLOST PROUDĚNÍ YŠŠÍ

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10

A x A y. α = 30. B y. A x =... kn A y =... kn B y =... kn. Vykreslení N, V, M. q = 2kN/m M = 5kNm. F = 10 kn A c a b d ,5 2,5 L = 10 Vzorový příklad k 1. kontrolnímu testu Prostý nosník Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A y y q = kn/m M = 5kNm F = 10 kn A c a b d 1 1 3,5,5 L = 10 α B B y x α = 30

Více

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok 58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ]

kde k c(no 2) = 2, m 6 mol 2 s 1. Jaká je hodnota rychlostní konstanty v rychlostní rovnici ? V [k = 1, m 6 mol 2 s 1 ] KINETIKA JEDNODUCHÝCH REAKCÍ Různé vyjádření reakční rychlosti a rychlostní konstanty 1 Rychlost reakce, rychlosti přírůstku a úbytku jednotlivých složek Rozklad kyseliny dusité je popsán stechiometrickou

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Řešení 5. série kategorie Student

Řešení 5. série kategorie Student Řešení 5 série kategorie Student Řešení S-I-5-1 Aby byl daný trojúhelník (ozn trojúhelník A) pravoúhlý, musí podle rozšířené Pythagorovy věty (pravidelné 9-úhelníky jsou podobné obrazce) platit, že obsah

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více