Jedenapůlrozměrný prostor MATEMATIKA JIŘÍ FIALA. 734 Vesmír 84, prosinec

Rozměr: px
Začít zobrazení ze stránky:

Download "Jedenapůlrozměrný prostor MATEMATIKA JIŘÍ FIALA. 734 Vesmír 84, prosinec"

Transkript

1 MATEMATIKA Jedenapůlrozměrný prostor JIŘÍ FIALA Jedním z mocných prostředků, jichž matematici používají k objevování nových zákonitostí i teorií, je zobecnění. Běžnější podobu zobecnění sdílí matematika s jinými vědami: na základě nějakého počtu případů (konečného i nekonečného) se formuluje obecná zákonitost, hypotéza. Připomíná to indukci, ale na rozdíl od jiných věd se matematici nikdy nespokojí se sebevětším počtem potvrzení (verifikací), nýbrž usilují o důkaz nebo vyvrácení pomocí protipříkladu. Tak třeba Pierre Fermat ( ) usoudil, že rovnice x n + y n = y n nemá celočíselná řešení pro n > 2, a zřejmě tak učinil na základě velmi malého počtu příznivých případů. V dalších staletích se nahromadila obrovská 734 Vesmír 84, prosinec

2 evidence ve prospěch této hypotézy a nedařilo se najít protipříklad. Všichni byli přesvědčeni o platnosti této hypotézy, jenže přesvědčení matematikům právem nestačí. Ulevilo se jim, až když před nějakými deseti lety tuto hypotézu řádně dokázal Andrew Wiles (viz Vesmír 73, 31, 1994/1). Týž Fermat se domníval, že 2 2n + 1 je prvočíslo pro každé n: = 5, = 17, = 257, = 65537, a všechno to skutečně prvočísla jsou. Příběh této hypotézy byl kratší, ne však tak krátký, jak bychom snad čekali. Trvalo nějakých dalších sto let, než Leonharda Eulera ( ) napadlo vyzkoušet hned další případ: = , který tuto hypotézu vyvrátil; toto číslo je dělitelné 641, přijít na to ovšem vyžaduje jistou vynalézavost. Někteří matematici a filozofové (zvláště pak Imre Lakatos) z takových případů soudili, že matematika má kvaziempirickou povahu, že aspoň k některým objevům se dochází podobně jako v empirických vědách indukcí z jednotlivých případů. V obou případech je to klam, protože skutečný objev předchází použití indukce: napřed musíme mít hypotézu, abychom vůbec věděli, na co máme indukci použít. Klam pochází ze zpětné rekonstrukce: předvede se řada příznivých případů a každý hned vidí podobě jako v testech IQ jak to bude pokračovat a jak to zobecnit. K tomu, abychom to jako klam rozpoznali, stačí si jen položit otázku: tak proč na to přišel až Fermat, Euler Matematika však používá zobecnění i jiným způsobem, který se v jiných vědách nevyskytuje a který by bylo možno nazvat spíše rozšíření. Tím se zde myslí rozšíření na větší oblast platnosti, na oblast obecnější. Taková zobecnění neslouží jen k projasnění předpokladů (například co je skutečně zapotřebí předpokládat k důkazu nějaké věty), nýbrž napomáhají téměř zázračně k vyřešení problémů, které se v původní zúžené podobě zdály být obtížně řešitelné. Příkladů takových úspěšných (a začasté neobyčejně krásných) zobecnění je v matematice mnoho, nikdy jsem však nenašel žádné kloudné vysvětlení úspěšnosti takových zobecnění; říci, že se při nich potlačí nepodstatné konkrétnosti, které mohly působit jako zábrana, mi připadá spíše jako odbytí. Někdy je takové zobecnění nejen krásné a pomůže vyjasnit a vyřešit dřívější problémy, nýbrž otevře zcela novou oblast poznání. Jedno takové zobecnění zde chci vyložit. Je to zobecnění matematikům a duším spřízněným dobře známé; jim ovšem tento článek určen není. Určen je spíše těm, kteří z tohoto zobecnění znají jen některé vedlejší důsledky, mámivé obrázky, a cílem je ukázat, že se za těmito obrázky, pod jejich povrchním povrchem, skrývá něco mnohem krásnějšího. Zkrátka poukázat na rozdíl mezi krásou, která sousedí s pravdou, a mámivostí, která je hned vedle mamu a klamu. Doc. RNDr. Jiří Fiala (*1939) vystudoval Přírodovědeckou fakultu MU v Brně. Zabývá se filozofií matematiky a logiky. Přednáší analytickou filozofii a epistemologii na Západočeské univerzitě. Zde také vydal tři čítanky textů analytických filozofů, kromě jiných textů přeložil knihu Karla Poppera Logika vědeckého bádání, knihu Paula K. Feyerabenda Rozprava proti metodě, knihu B. Mandelbrota Fraktály, René Descarta Regulae ad directionem ingenii Pravidla pro vedení rozumu a řadu dalších textů. 1 1 Na protější straně: Václav Boštík, olej na plátně, 1990, cm, všechny snímky Stanislav Vaněk. DIMENZE VÁCLAVA BOŠTÍKA Patrně všichni jsme byli aspoň na chvíli okouzleni krásou fraktálů. Možná jste viděli i video, v němž těmito proměňujícími se mámivými útvary sestupujeme do nekonečných hlubin, zpravidla za doprovodu meditační hudby. Myslím si, že pokud jste se dívali dosti dlouho, začali jste se, stejně jako já, nudit. Postupně se vyjevovalo, že zdánlivý pohyb do stále větších hlubin je jen mamem, že zůstáváme stále na povrchu. Tu skutečnou krásu, která se za fraktály skrývá, těch několik vlastně prostých matematických myšlenek, jsem se pokusil naznačit v článku o neceločíselných dimenzích. Kvantový fyzik David Bohm hovořil o implikátním řádu, neviditelném, avšak skutečnějším a základnějším než jeho rozvinutí do řádu explikátního, do toho, co vnímáme povrchně smysly. Věda, pokud nechtěla zůstat na úrovni popisné, usilovala vždy o proniknutí do toho skutečného, implikátního řádu věcí. Pro filozofii to odvždy byl úkol prvořadý. Umění o to usilovalo od počátků. Václav Boštík, jeden z nejvýznamnějších českých malířů, byl malířem implikátních řádů snad více než kterýkoli jiný český malíř. Psal už jsem o tom kdysi ve Vesmíru ( Skrytý řád, Vesmír 70, 118, 1991/2). Zde už jen dodám, že dimenze Boštíkova implikátního řadu, dimenze, které můžeme v jeho obrazech tušit, rozhodně nebyly celočíselné. Třeba mi dáte za pravdu, podíváte-li se na několik reprodukcí jeho obrazů, které tato vzpomínka doprovází. Měl jsem možnost s ním o implikátním řádu i o mnoha jiných myšlenkách často hovořit na vernisážích nezávislých výstav a několikrát i v jeho ateliéru v Pařížské ulici v Praze. Václav Boštík dokonce chodíval na některé z našich pololegálních přednášek, na nichž se mluvilo o Bohmovi (a také o V. V. Nalimovovi, který v Moskvě o Boštíkovi pro nás nepochopitelným způsobem věděl a jehož jsme při jeho první návštěvě Prahy v roce 1988 do Boštíkova ateliéru zavedli). Všechna tato setkání s Václavem Boštíkem i jeho obrazy či kresbami byla mimořádným a nezaslouženým darem, za nějž mu budu stále vděčný. Václav Boštík odešel letos 7. května do řádu nejimplikátnějšího. Jiří Fiala Václav Boštík ve svém ateliéru v Praze, 8. srpna Vesmír 84, prosinec

3 Václav Boštík, olej na plátně, 1978, cm. Začneme příkladem dobře známých zobecnění. Vlastně, jsou opravdu dobře známá? Je jasné, že třeba a 5 je zobecněním? Přece není nic jednoduššího: a a značíme a 2, součin tří a pak a 3 a obecně a n součin n čísel či veličin a. A hned je také jasné, že součin n čísel a vynásobený součinem m čísel a je totéž jako součin (n+m) čísel a: a n a m = a (m+n). To je vše samozřejmé. Opravdu? Tak jak je možné, že neschopnost udělat takové zobecnění dokázala zablokovat rozvoj geometrie na téměř dvě tisíciletí? Proč se muselo čekat až na Descarta? Za okamžik se k tomu vrátím. Teď se podívejme na další zobecnění: co by mohlo být třeba a 1,5? Nemůžeme na to jít otázkou: co to znamená vynásobit 1,5krát a samo sebou. Lepší je říci si: mocniny s neceločíselnými exponenty by měly splňovat táž pravidla, která splňují mocniny s celočíselnými exponenty. Tak by mělo platit a 1,5 a 1,5 = a 1,5 + 1,5 = a 3. Pak ovšem mám hned důsledek: a 1,5 =. Odtud je už jen krůček k obecnému případu: ( ) n = = a m, takže =. Pokračování je v učebnicích. Vraťme se k původnímu zobecnění mocninám s libovolným celočíselným exponentem. Mocniny se vykládaly geometricky: je-li x délka úsečky, je x 2 plošný obsah čtverce se stranou x a x 3 je objem krychle. Co je ale x 4? Měl by to být objem čtyřrozměrné krychle, jenže tomu nic v přirozené geometrii neodpovídá. To byl problém řecké geometrie, kterou trápil i obecnější problém, totiž jak geometricky interpretovat součin čtyř úseček. Takový součin se v geometrii vyskytl jen jednou, a to ve slavném Hérónovu vzorci pro plošný obsah trojúhelníku (připomenu: má-li tento trojúhelník strany a, b a c a polovinu jeho obvodu si označíme s =1 2( a + b + c), pak je plošný obsah roven ). Descartova revoluce v matematice spočívala v nastoupení přesně obrácené cesty: z x 2, x 3, x 4 atd. udělal úsečky a začal s nimi algebraic- 736 Vesmír 84, prosinec

4 ky počítat. Tak vytvořil algebraickou geometrii (nikoli analytickou, jak se stále chybně opakuje). Toto zobecnění mu nejen dovolilo vyřešit problémy, které trápily řeckou geometrii, ale i otevřít cestu k obrovskému rozvoji jak geometrie, tak matematiky vůbec. Současně to však dovolilo se vrátit (ovšem až v 19. století) k původní interperetaci a tu zobecnit, tj. zobecnit pojem prostoru. Můžeme-li ztotožnit rovinu s uspořádanými dvojicemi reálných čísel (souřadnic bodů) a vytvořit prostor s trojicemi, můžeme n-rozměrný prostor ztotožnit prostě s uspořádanými n-ticemi reálných čísel a přenést tam i ostatní pojmy z rovinné a prostorové geometrie. (Občas někoho napadne, že by se v takovém čtyřrozměrném prostoru dobře kradlo z uzavřených skladů, nenapadne ho však, že by se v takovém prostoru změnila i fyzika a mimochodem, že by takto krást mohl jen maximálně třírozměrné předměty, které mu ve čtyřrozměrné zastavárně nevezmou.) Potud to bylo vše dobře známé a bylo to spíše jen připomínkou, jak se v matematice zobecňuje a jak nám připadá samozřejmé to, co vůbec samozřejmé nebylo. A také to byla příprava na následující otázku. Co je x 1,5 v Descartově algebraické geometrii, víme (je to opět úsečka). Ale co by to mohlo být v druhé interpretaci, v níž exponent n v x n je dimenze prostoru (či geometrického útvaru)? Existuje nějaký jedenapůlrozměrný útvar a jak by mohl vypadat? A lze tomu vůbec dát nějaký smysl? Uvidíme, že ano, ale že budeme muset nejprve nalézt nějakou jinou charakterizaci dimenze, která by se pak dala zobecnit. Bude to ovšem muset být nějaká hodně neobvyklá charakterizace a přitom charakterizace, která až bude prozkoumána nám bude připadat přirozená. Tato charakterizace se zakládá na tom, že při změnách měřítka zůstává něco nezměněno. Začněme úsečkou. Zmenšíme-li ji k-krát, dostaneme úsečku, která se podobá úsečce původní, do níž se vejde N-krát; zde je ovšem N = k. Vejde zde znamená, že původní úsečku bezezbytku pokryjeme N-zmenšenými úsečkami. U obdélníku je tomu podobně: dostaneme menší obdélník, který je podobný původnímu, do nějž se vejde N = k 2 -krát (obr. v tomto odstavci). U kvádru bude N = k 3. A mohli pokračovat obecně n-rozměrným prostorem, bylo by tam N = k n. Všimněme si dvou věcí, které jsou zde tak samozřejmé, že se upozornění na ně zdá být ostudné. Zaprvé tento postup můžeme opakovat; výsledný útvar (třeba mřížku výše) můžeme opět zmenšit (na obrázku výše bylo zmenšení 1 : 4, teď bude 1 : 4 2 ) a výsledkem pokrýt opět výchozí obdélník teď bude mřížka mnohem hustší. Zadruhé dimenze n vystupuje jako exponent ve vztahu N = k n. Právě tyto dvě vlastnosti nabízejí cestu k zobecnění, které by nás přivedlo k útvarům s neceločíselnou dimenzí. Jak by takový útvar musel vypadat? Zaprvé by musel splňovat podmínku, že po (vhodném to ještě upřesníme) zmenšení jím bude možné pokrýt původní útvar, a navíc že to budeme moci opakovat donekonečna (pro stále menší zmenšeniny) tedy že výsledný útvar bude soběpodobný, jeho sebemenší části budou podobné původnímu útvaru. A zadruhé by měl platit vztah mezi počtem N zmenšenin nutných k pokrytí a zmenšením k samým, totiž vztah N = k d, v němž by d už nebylo celé číslo. Toto d bychom pak mohli nazvat dimenzí výsledného útvaru. To je ovšem jen hrubá idea a její popis, ale následující příklad do toho (snad) vnese jasno. Vyjdeme z úsečky, kterou rozdělíme na čtyři stejné části a prostřední dvě části zalomíme tak, jak je to ukázáno na následujícím obrázku: Výsledek nyní zmenšíme třikrát (k = 3): Touto zmenšenou kopií dokážeme pokrýt původní útvar (musíme použít N = 4 kopií): Zmenšený původní útvar můžeme znovu zmenšit třikrát (tj. výchozí útvar devětkrát) a opět jím pokrýt druhý výsledný (už jednou pokrytý) útvar. Budeme k tomu potřebovat N = 4 2 = 16 podruhé zmenšených útvarů: Tak můžeme pokračovat do nekonečna. Ukážeme si ještě jednu iteraci, u níž potřebujeme N = 4 3 = 64 zmenšenin: Každý jednotlivý útvar v této řadě iterací je obyčejná lomená čára a má přirozeně dimenzi 1. Žádný z nich nesplňuje naši podmínku, že sám se uvnitř opakuje donekonečna, že je soběpodobný. Tuto podmínku splňuje až limita těchto křivek, tedy výsledek iterací dovedený myšlenkově donekonečna, a teprve pro tento výsledný útvar můžeme počítat dimenzi. Máme N = 4 a k = 3 (při dalších zmenšeních je N = 4 n a k = 3 n ) a podle našeho zobecnění je dimenze tohoto útvaru exponentem d ve vztahu N = k d, tj. 4 = 3 d. Numerickou hodnotu d dostaneme jednoduše logaritmováním: Vesmír 84, prosinec

5 *) Benoît Mandelbrot: Fraktály Tvar, náhoda a dimenze, edice Kolumbus sv. 163, Mladá fronta, Praha Zobecněná dimenze této limitní křivky je tedy neceločíselná (dokonce je iracionální a snadno se to dokáže). Podle očekávání je menší než 2, protože jde o útvar v rovině. Kdyby tomu tak nebylo, mohli bychom naše zobecnění rovnou hodit do koše. Je však větší než 1: limitní křivka je tak jemňounce hrbatá, že je mírně rozmazaná jak moc, to říká právě číslo 1,26186 Kdybychom za výchozí útvar ( generátor ) vzali analogický dvouhrbý útvar (měli tak N = 7, k = 5), dostali bychom méně rozmazanou křivku (s menší dimenzí); se zvětšováním počtu hrbů by se limitní křivka stávala stále méně rozmazaná (dimenze by se blížila 1), až by to v limitě byla prostě úsečka. Právě experimentování s různými generátory nás postupně přesvědčuje, že takové zobecnění vyjadřuje něco hlubšího a není to jen nějaká hříčka. Můžeme se vydat také obráceným směrem a křivky stále více rozmazávat, tj. jejich dimenze zvětšovat až k 2. Uvedeme si hned jeden takový příklad. Výchozím útvarem (generátorem) je tato lomená čára, za ní pak následují první dvě iterace: Máme zde N = 8 (prostřední svislá úsečka generátoru je tvořena dvěma úsečkami) a k = 4, takže dimenze limitní křivky je. Dimenze můžeme zvyšovat až do 2; slavná Peanova křivka zaplňující čtverec má dimenzi přesně 2. Předcházející výklad byl tak trochu rekonstrukcí. Historicky zde byly nejprve některé podivné křivky, teprve daleko později přišel pojem zlomkové či fraktální dimenze. Prv- ní křivka pochází z roku 1904, kdy ji sestrojil H. von Koch jakožto elementární geometrickou konstrukci křivky (funkce), která nemá v žádném bodě tečnu (i když je spojitá, nemá v žádném bodě derivaci). Takovou křivku (jinými prostředky, ne tak elementárními) sestrojil Karl Weierstrass a před ním i Bernard Bolzano. Von Kochova křivka (to byl náš první příklad) se pro větší vizuální působivost kreslívá většinou tak, že se tři její generátory spojí do trojúhelníku, a pak se všechny současně zjemňují; dostane se něco jako sněhová vločka (výsledek si račte představit sami). Von Kochova křivka má řadu dalších zajímavostí. Například je nekonečně dlouhá. Má-li výchozí úsečka délku 1, má generátor délku 4 3. Další iterace se skládá ze 4 částí, z nichž každá je předchozí křivkou třikrát zmenšenou, takže její délka je = ( 4 3) 2. n-tá iterace má pak délku ( 4 3) n a tato délka roste s n do nekonečna. Nekonečná je i vzdálenost kterýchkoli dvou bodů této křivky (je mezi nimi vždy jedna celá zmenšená limitní křivka, jejíž délka je ovšem také nekonečná, neboť zmenšením nekonečna dostaneme zase nekonečno). A nakonec je zde vlastnost soběpodobnosti : jakkoli malý kousek křivky obsahuje v sobě část, která je věrnou zmenšenou kopií původní křivky. Takové křivky byly dlouho vnímány jako monstra či patologické případy, které měly přinejlepším nabádat k opatrnosti při důkazech matematických vět a nespoléhat se na názorné představy a obrázky. Do vlastní matematiky však nepatřily. Známá jsou slova Charlese Hermita (v dopisu Thomasu J. Stieltjesovi), jimiž se s hrůzou a odporem odvrací od funkcí bez derivace. Taková monstra se čas od času objevovala v různých oblastech vědy, bývala však považována v souladu s panující tradicí za něco okrajového a spíše výjimečného. Systematicky je začal rehabilitovat, jak je dobře známo, až Benoît Mandelbrot, který pro ně vymyslel název fraktály. A nejen je rehabilitoval, nýbrž přišel i s myšlenkou, že by tomu mohlo být zcela naopak, totiž že monstry by mohly být spíše přímky, kružnice a dokonale hladké křivky, protože sama podstata přírody je fraktální. Začal pak hovořit o fraktální geometrii přírody. K tomu, aby byl takový obrat úspěšný, je zapotřebí souhry přiznivých okolností a také jisté propagace (či dokonce propagandy). V případě fraktálů k tomu přispěly počítače, které je dovolily barevně vizualizovat. Všichni známe pestrobarevné obrázky podivuhodných útvarů, jimiž lze cestovat do hloubky, abychom tam objevovali další a další podivuhodné útvary. Podmalováno vhodnou hudbou je to velice působivé až do okamžiku, kdy zjistíme, že je to velmi nudné. Pro značnou část matematiků jsou fraktály stále něčím na okraji matematiky; tak silná je jistá tradice (či paradigma). Nepochybně k tomu přispěl i Mandelbrotův styl výkladu: velmi neformální (nikdy se netajil svým odporem k formalizované matematice), plný metafor. Mandelbrotovu původní a stále znovu vydávanou knihu o fraktálech (Les objets fractales 738 Vesmír 84, prosinec

6 Forme, hasard et dimension) jsem přeložil* a před časem ji vydalo nakladatelství Mladá fronta. V poznámce překladatele jsem napsal právě něco k tomuto nepřesnému Mandelbrotovu stylu a dovolím si to tady na závěr zopakovat: Méně srozumění vyvolává Mandelbrotův odpor vůči přesnosti a přísnosti jak jsme na ni zvyklí v matematice. Nematematický čtenář by si zde mohl s úlevou pomyslet: Díky Bohu, aspoň tomu budu lépe rozumět. Bohužel opak je pravdou: Mandelbrotův styl toho vyžaduje od čtenáře více, než kdyby dodržoval některé zvyklosti. Mnohokrát jsem měl pocit, že leccos mohl říci jasněji (tj. přesněji), někdy jsem měl pokušení napravit to; zůstal jsem ale loajálním překladatelem, a navíc jsem si na víc netroufal. Jenže z druhé strany: právě takovou povahu měla většina paradigmatických matematických (a nejen matematických) děl. Příkladem může být Descartova Geometrie, která jeho učené současníky rozčilovala (zvláště asi jeho opakované už mne nudí podrobně vše vykládat, dodělejte si to sami ) tak, že mu nikdy neotevřeli brány Sorbonny. Dodělali to, udělali z toho učebnice, rozvíjeli to dál, velice to obohatili. Jen Descartes však otevřel zcela nové vidění světa. Dnes jsme tolerantnější. Zpřesňující práce jsou v chodu, jejich výsledek však asi už nebudeme číst s tím potěšením, které nám připravil Mandelbrotův esej. INZERCE 506 Mandelbrot nám také chce otevřít radikálně jiné vidění světa. Nechce nás něčemu naučit. Chce nám ukázat, že příroda je mnohem bohatší, než aby na ni stačila jen stará geometrie, a že tou opravdovou elementární geometrií je fraktální geometrie přírody. Chce změnit naše myšlení. Ö INZERCE Vesmír 84, prosinec

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince

Fraktály. Kristina Bártová. Univerzita Karlova v Praze 9.prosince Fraktály Kristina Bártová Univerzita Karlova v Praze 9.prosince 2008 kristinka.b@tiscali.cz Úvodní informace Fraktální geometrie je samostatná a dnes již poměrně rozsáhlá vědní disciplína zasahující

Více

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy

Počítačové zobrazování fraktálních množin. J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy Počítačové zobrazování fraktálních množin J. Bednář*, J. Fábera**, B. Fürstová*** *Gymnázium Děčín **SPŠ Hronov ***Gymnázium Plasy *jurij.jurjevic@centrum.cz **icarosai@seznam.cz ***barborafurstova7@seznam.cz

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová

Fraktální geometrie. Topologická a fraktální dimenze. Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Fraktální geometrie Vypracovali: Jiří Thoma Jiří Pelc Jitka Stokučová Topologická a fraktální dimenze Fraktální (Hausdorffova - Besicovitchova) dimenze D udává míru nepravidelnosti geometrického útvaru.

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Fraktál Fraktální geometrie Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Fraktální geometrie se zabývá nepravidelností! s názvem přišel matematik B. Mandelbrot

Více

Příklad z učebnice matematiky pro základní školu:

Příklad z učebnice matematiky pro základní školu: Příklad z učebnice matematiky pro základní školu: Součet trojnásobku neznámého čísla zvětšeného o dva a dvojnásobku neznámého čísla zmenšeného o pět se rovná čtyřnásobku neznámého čísla zvětšeného o jedna.

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý

Fraktály. Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý Fraktály Ondřej Bouchala, George Dzhanezashvili, Viktor Skoupý 19.6.2012 Abstrakt Tato práce se zabývá vlastnostmi a vykreslováním fraktálů. Popisuje fraktální dimenzi (soběpodobnostní a mřížkovou), dále

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l

Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Pythagorova věta a pythagorejské trojúhelníky-ondřej Zeman Asi 600 př.n.l Baudhayana (kolem 800 př.n.l) Pythagoras ze Sámu (asi 580 př.n.l asi 500 př.n.l) Motivace: Tato věta mě zaujala, protože se o ní

Více

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série Řešení Páté Série Úloha 1. Máte za úkol zaplnit následující útvar čísly od 1 do 13. Součet těchto čísel musí být v každé řadě trojúhelníků stejný. Je možné útvar takto zaplnit? Zdůvodněte své tvrzení.

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Kreslení grafů na plochy Tomáš Novotný

Kreslení grafů na plochy Tomáš Novotný Kreslení grafů na plochy Tomáš Novotný Úvod Abstrakt. V první části příspěvku si vysvětlíme základní pojmy týkající se ploch. Dále si ukážeme a procvičíme možné způsoby jejich zobrazování do roviny, abychom

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!!

OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!! ZS1MP_PDM2 Didaktika matematiky 2 Katedra matematiky PedF MU v Brně Růžena Blažková, Milena Vaňurová OBVODY A OBSAHY GEOMETRICKÝCH ÚTVARŮ!Text je pracovní obrázky je potřeba spravit a doplnit!!! Text vychází

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

1 Úvod. Zdálo by se, že vyložit, jak je to s lidskou myslí, není až tak obtížné:

1 Úvod. Zdálo by se, že vyložit, jak je to s lidskou myslí, není až tak obtížné: 1 Úvod Zdálo by se, že vyložit, jak je to s lidskou myslí, není až tak obtížné: My všichni lidé jsme myslící bytosti, neboli všichni máme mysl. Do své mysli můžeme každý nahlížet, rojí se nám tam různé

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Aplikace matematiky. aneb Nedokonalosti dokonalé matematiky

Aplikace matematiky. aneb Nedokonalosti dokonalé matematiky Aplikace matematiky aneb Nedokonalosti dokonalé matematiky Petr Pupík 21. září 2015 K čemu je nám matematika? Matematika je jen počítání K čemu je nám matematika? Matematika je jen počítání Vše v matematice

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993

Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993 Ludwig WITTGENSTEIN: Tractatus Logico-Philosophicus, 1922 Překlad: Jiří Fiala, Praha: Svoboda, 1993 l Svět je všechno, co fakticky je. 1.l Svět je celkem faktů a nikoli věcí. l.2 Svět se rozpadá na fakty.

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1

Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Ludolfovo číslo přepočítá z diskrétního do Euklidova prostoru - 1 Bohumír Tichánek 7 Práce zdůvodňuje způsob využití Ludolfova čísla při převodu bodu, a to z diskrétního do Euklidova prostoru. Tím se bod

Více

KMA/GPM Barycentrické souřadnice a

KMA/GPM Barycentrické souřadnice a KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že

N Q Z N N N, kde A Bjesymbolprokartézskýsoučinmnožin A, B(tj.množinuvšechuspořádanýchdvojic [a, b],kde a A, b B).Opětprosímpřijmětejakofakt, 1 že Jak rozeznáváme nekonečné množiny. Nejprve něco o zobrazeních: Nášvýkladbudezaložennaintuitivnípředstavězobrazení f: A Bjakoněčeho,cokaždému prvku a Apřiřazujenějakýprvek f(a) B. Mějmezobrazení f: A B.Řekneme,že

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r.

Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Každá kružnice má střed, označuje se S. Všechny body kružnice mají od středu S stejnou vzdálenost, říká se jí poloměr kružnice a označujeme ho r. Kružnice k je množina všech bodů v rovině, které mají od

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

1.4.6 Stavba matematiky, důkazy

1.4.6 Stavba matematiky, důkazy 1.4.6 tavba matematiky, důkazy Předpoklady: 1401, 1404 Pedagogická poznámka: Tato hodina se velmi liší od většiny ostatních neboť jde v podstatě o přednášku. Také ji neprobíráme v prvním ročníku, ale přednáším

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE

GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE GYMNÁZIUM CHEB SEMINÁRNÍ PRÁCE Pravidelná tělesa Cheb, 2006 Lukáš Louda,7.B 0 Prohlášení Prohlašuji, že jsem seminární práci na téma: Pravidelná tělesa vypracoval zcela sám za použití pramenů uvedených

Více

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018

67. ročník matematické olympiády III. kolo kategorie A. Přerov, března 2018 67. ročník matematické olympiády III. kolo kategorie Přerov, 8.. března 08 MO . Ve společnosti lidí jsou některé dvojice spřátelené. Pro kladné celé číslo k 3 řekneme, že společnost je k-dobrá, pokud

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

O dělitelnosti čísel celých

O dělitelnosti čísel celých O dělitelnosti čísel celých 9. kapitola. Malá věta Fermatova In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 98 105. Persistent URL: http://dml.cz/dmlcz/403572

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1

Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1 Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní

Více

O dynamickém programování

O dynamickém programování O dynamickém programování 9. kapitola. Cauchy-Lagrangeova nerovnost In: Jaroslav Morávek (author): O dynamickém programování. (Czech). Praha: Mladá fronta, 1973. pp. 65 70. Persistent URL: http://dml.cz/dmlcz/403801

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

3.2.3 Podobnost trojúhelníků I

3.2.3 Podobnost trojúhelníků I .. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

RNDr. Martin Pivokonský, Ph.D.

RNDr. Martin Pivokonský, Ph.D. Jak souvisí fraktální geometrie částic s vodou, kterou pijeme? RNDr. Martin Pivokonský, Ph.D. Ústav pro hydrodynamiku AV ČR, v. v. i., Pod Paťankou 30/5, 166 12 Praha 6 Tel.: 233 109 068 E-mail: pivo@ih.cas.cz

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

RENESANCE A OSVÍCENSTVÍ

RENESANCE A OSVÍCENSTVÍ RENESANCE A OSVÍCENSTVÍ pracovní list Mgr. Michaela Holubová Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Michaela Holubová. RENESANCE A VĚK ROZUMU Renesance kulturní znovuzrození

Více

2.8.6 Čísla iracionální, čísla reálná

2.8.6 Čísla iracionální, čísla reálná .8.6 Čísla iracionální, čísla reálná Předpoklady: 0080 Př. : Doplň tabulku (všechny sloupce je možné vypočítat bez kalkulačky). 00 x 0 0,0004 00 900,69 6 8 x 0,09 0, x 0 0,0004 00 x 0 0,0 0 6 6 900 0 00

Více

FREDHOLMOVA ALTERNATIVA

FREDHOLMOVA ALTERNATIVA FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro

Více

MATEMATIKA. Diofantovské rovnice 2. stupně

MATEMATIKA. Diofantovské rovnice 2. stupně MATEMATIKA Diofantovské rovnice 2. stupně LADISLAVA FRANCOVÁ JITKA KÜHNOVÁ Přírodovědecká fakulta, Univerzita Hradec Králové V tomto článku se budeme zabývat některými případy diofantovských rovnic 2.

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

( ) ( ) Rozklad mnohočlenů na součin I (vytýkání) Předpoklady:

( ) ( ) Rozklad mnohočlenů na součin I (vytýkání) Předpoklady: 1.8.6 Rozklad mnohočlenů na součin I (vytýkání) Předpoklady: 010805 Pedagogická poznámka: Na začátku každé rozkládací hodiny jsou přidány příklady na opakování úprav mnohočlenů. Důvod je jediný, čtyři

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy

autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy 9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV

GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV GRAFICKÉ ŘEŠENÍ ROVNIC A JEJICH SOUSTAV Mgr. Jitka Nováková SPŠ strojní a stavební Tábor Abstrakt: Grafické řešení rovnic a jejich soustav je účinná metoda, jak vysvětlit, kolik různých řešení může daný

Více