Planimetrie pro studijní obory
|
|
- Denis Vaněk
- před 9 lety
- Počet zobrazení:
Transkript
1 Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na
2 1. Planimetrie Planimetrie je geometrie zabývající se rovinnými útvary (= rovinná geometrie). 2. Základní geometrické prvky a útvary Bod - nejmenší geometrický útvar Znázorňujeme: Přímka - rovná čára spojující dva body; každými dvěma body je jednoznačně určena právě jedna přímka. Přímku značíme buď malým písmenem (např. p) nebo dvěma body (např. AB) Znázorňujeme: Pozn.: Dvěma body může být dána i polopřímka nebo úsečka Polopřímka Znázorňujeme: Zapisujeme: AB Pozn.: Platí, že AB BA Úsečka Znázorňujeme: Zapisujeme: AB Pozn.: Potřebujeme-li vyjádřit délku (velikost) úsečky AB, pak zapisujeme AB = 20 cm Rovina - geometrický útvar, který je určen třemi nekolineárními body, případně přímkou a bodem, který na této přímce neleží. 2
3 Znázorňujeme: nebo Zapisujeme: ABC nebo pc Pozn.: Obdobným způsobem vyjadřujeme i polorovinu. Zapisujeme: ABC nebo pc Úhel - je část roviny, která je ohraničena dvěma polopřímkami se společným počátečním bodem. Znázorňujeme: Zapisujeme: = Úhel může být: nulový (velikost 0 ) 3
4 kosý (velikost 0 < < 180 ) pravý (velikost 90 ) přímý (velikost 180 ) 4
5 plný (velikost 360 ) Jiné dělení: úhel konvexní (velikost 0 < < 180 ) úhel konkávní (někdy též nekonvexní) (velikost 180 < < 360 ) 5
6 Dvojice úhlů v rovině: 1. Dvojice úhlů vrcholových (oba úhly mají stejnou velikost) 2. Dvojice úhlů vedlejších (jejich součet je 180 ) 6
7 3. Dvojice úhlů souhlasných nebo střídavých (mají stejnou velikost) 4. Dvojice úhlů výplňkových 5. Dvojice úhlů doplňkových 7
8 6. Dvojice úhlů styčných 3. Trojúhelníky Trojúhelník je nejjednodušší rovinný útvar, má tři vrcholy, tři strany, tři vnitřní úhly a tři vnější úhly. Součet všech vnitřních úhlů v trojúhelníku je vždy 180. Součet vnitřního úhlu a vnějšího úhlu při stejném vrcholu je 180. Vnější úhel má vždy stejnou velikost jako součet obou vnitřních úhlů při zbývajících dvou vrcholech. Pro každý trojúhelník musí platit trojúhelníková nerovnost (součet každých dvou stran musí být vždy větší než strana třetí). 8
9 Strany v trojúhelníku značíme podle jejich protějších vrcholů. Každý trojúhelník má tři výšky (kolmice spuštěná z vrcholu k protější straně); průsečík výšek se nazývá orthocentrum. Každý trojúhelník má tři těžnice (úsečka spojující vrchol se středem protější strany); průsečík těžnic se nazývá těžiště; těžiště rozděluje těžnici na dva úseky, které jsou v poměru 1 : 2, větší díl je blíže k vrcholu. 9
10 Každý trojúhelník má tři střední příčky (úsečka spojující dva středy stran); střední příčka je vždy rovnoběžná s jednou stranou trojúhelníka a má vůči ní poloviční velikost. Každý trojúhelník má střed kružnice opsané (průsečík os stran); kružnice opsaná prochází všemi vrcholy trojúhelníka. Každý trojúhelník má střed kružnice vepsané (průsečík os vnitřních úhlů); kružnice vepsaná se dotýká všech tří stran. obvod trojúhelníka se vypočte podle vzorce o = a + b + c obsah trojúhelníka se vypočte podle vzorce S = (1/2).a.v a obsah trojúhelníka se může též vypočítat podle vzorce S = (1/2).a.b.sin 10
11 pro obsah trojúhelníka platí též Heronův vzorec: Rozdělení a vlastnosti trojúhelníků: A. Obecný trojúhelník nemá žádné specifické vlastnosti, platí pro něj vlastnosti výše uvedené B. Ostroúhlý trojúhelník 11
12 trojúhelník, který má všechny vnitřní úhly ostré C. Pravoúhlý trojúhelník trojúhelník, který má jeden vnitřní úhel pravý a zbývající dva vnitřní úhly ostré zvláštní význam má rovnoramenný pravoúhlý trojúhelník, který má jedem vnitřní úhel velikosti 90 a zbývající dva vnitřní úhly shodné - velikosti 45. u pravoúhlého trojúhelníka nazýváme nejdelší stranu (proti pravému úhlu) přepona a zbývající dvě strany odvěsny u pravoúhlého trojúhelníka je střed kružnice opsané vždy středem přepony; tato vlastnost vyplývá z Thaletovy věty pro výpočet obsahu pravoúhlého trojúhelníka, který má odvěsny a, b a přeponu c, platí vzorec S = (1/2).a.b; je to proto, že odvěsny jsou v tomto typu trojúhelníka zároveň výškami v pravoúhlém trojúhelníku platí Pythagorova věta c 2 = a 2 + b 2 (při označení přepony písmenem c) v pravoúhlém trojúhelníku, kde c je přepona, platí též goniometrické funkce: D. Tupoúhlý trojúhelník 12
13 má jeden vnitřní úhel tupý a zbývající dva vnitřní úhly ostré dvě výšky tohoto trojúhelníka leží mimo trojúhelník; mimo trojúhelník leží i orthocentrum E. Rovnoramenný trojúhelník 13
14 má dvě strany shodné - nazývají se ramena, a zbývající strana se nazývá základna vnitřní úhly při základně jsou shodné trojúhelník je osově souměrný, osa souměrnosti půlí základnu výška spuštěná z hlavního vrcholu (tj. z vrcholu proti základně) je kolmá k základně střed kružnice opsané i vepsané leží na ose souměrnosti výška spuštěná z hlavního vrcholu je zároveň i těžnicí na ose souměrnosti leží i těžiště rovnoramenný trojúhelník může být i ostroúhlý i tupoúhlý, ale i pravoúhlý obvod rovnoramenného trojúhelníka se vypočte podle vzorce o = 2a + c F. Rovnostranný trojúhelník má všechny strany stejně dlouhé má všechny vnitřní úhly stejně velké a mají velikost 60 má všechny vnější úhly stejně velké a mají velikost 120 je osově souměrný - má tři osy souměrnosti střed kružnice opsané je zároveň i středem kružnice vepsané a zároveň i orthocentrem a těžištěm výšky jsou zároveň i těžnice obvod rovnostranného trojúhelníka se vypočte podle vzorce o = 3.a výška se vypočte podle vzorce v = a. 3/2 14
15 4. Čtyřúhelníky A. Obecný čtyřúhelník má čtyři strany, čtyři vrcholy, ale jinak žádné specifické vlastnosti čtyřúhelníky zpravidla značíme ABCD, jejich strany pak a, b, c, d a úhlopříčky AC = e, BD = f součet všech vnitřních úhlů ve čtyřúhelníku je 360 Pozn.: Různoběžník B. Rovnoběžník čtyřúhelník, který má každé dvě protější strany rovnoběžné a shodné obvod rovnoběžníku se vypočte podle vzorce o = 2.(a + b) obsah rovnoběžníku se vypočte podle vzorce S = a. v a každé dva protější vnitřní úhly jsou shodné součet dvou sousedních vnitřních úhlů je
16 úhlopříčky se navzájem půlí je středově souměrný - střed souměrnosti je průsečík úhlopříček a) čtverec má všechny strany stejně dlouhé, všechny vnitřní úhly shodné - velikosti 90 úhlopříčky čtverce jsou shodné, půlí se a jsou navzájem kolmé průsečík úhlopříček je středem kružnice opsané i středem kružnice vepsané je středově souměrný - střed souměrnosti je průsečík úhlopříček je osově souměrný, má čtyři osy souměrnosti (2 osy stran a 2 prodloužené úhlopříčky) obvod se vypočte podle vzorce o = 4.a obsah se vypočte podle vzorce S = a 2 nebo také S = u 2 /2 úhlopříčka se vypočte podle vzorce u = a. 2 b) obdélník má každé dvě protější strany rovnoběžné a shodné má všechny vnitřní úhly pravé úhlopříčky obdélníka jsou shodné, navzájem se půlí průsečík úhlopříček je střed kružnice opsané je středově souměrný podle středu úhlopříček je osově souměrný - má dvě osy souměrnosti, kterými jsou osy stran 16
17 obvod se vypočte podle vzorce o = 2.(a + b) obsah se vypočte podle vzorce S = a.b pro výpočet délky úhlopříčky platí Pythagorova věta c) kosočtverec má všechny strany stejně dlouhé každé dva protější vnitřní úhly jsou shodné každé dva sousední vnitřní úhly mají součet velikostí 180 úhlopříčky se navzájem půlí a jsou na sebe kolmé je středově souměrný - střed souměrnosti je průsečík úhlopříček je osově souměrný, má dvě osy souměrnosti, které jsou prodlouženými úhlopříčkami obvod se vypočte podle vzorce o = 4.a obsah se vypočte podle vzorce S = a.v a nebo také S = u 1.u 2 /2 lze vepsat kružnici - středem je průsečík úhlopříček d) kosodélník má každé dvě protější strany rovnoběžné a shodné má každé dva protější vnitřní úhly shodné každé dva sousední vnitřní úhly mají součet velikostí 180 úhlopříčky se navzájem půlí je středově souměrný - střed souměrnosti je průsečík úhlopříček C. Lichoběžník 17
18 čtyřúhelník, který má dvě protější strany rovnoběžné a zbývající dvě protější strany různoběžné; rovnoběžné strany nazýváme základny, zbývající dvě strany nazýváme ramena obvod lichoběžníka se vypočte podle vzorce o = a + b + c + d obsah lichoběžníka se vypočte podle vzorce a) rovnoramenný lichoběžník má obě ramena shodná má oba vnitřní úhly při každé základně shodné úhlopříčky jsou shodné je osově souměrný - má jednu osu souměrnosti, kterou je osa obou základen lze mu opsat kružnici b) pravoúhlý lichoběžník 18
19 má právě dva vnitřní úhly pravé jedno rameno je kolmé k oběma základnám D. Deltoid má dvě a dvě strany shodné úhlopříčky jsou na sebe kolmé nestejně dlouhé strany svírají stejné úhly je osově souměrný - má 1 osu souměrnosti může, ale také nemusí, mít jeden pravý úhel obvod se vypočte podle vzorce o = 2.(a + c) obsah se vypočte podle vzorce S = e. f / 2 Jiné dělení a) Čtyřúhelník konvexní 19
20 b) Čtyřúhelník nekonvexní 5. n-úhelníky Pravidelný pětiúhelník 20
21 má všechny strany shodné má všechny vnitřní úhly shodné postup konstrukce: sestrojíme kružnici se středem S a v ní navzájem dva kolmé průměry AB a CD najdeme střed K úsečky SB sestrojíme úsečku KC obloukem kružnice o středu K a poloměru KC protneme průměr AB a získáme tak bod L úsečka LC je pak délkou strany pravidelného pětiúhelníku; tuto úsečku naneseme kružítkem na původní kružnici a získáme tak vrcholy hledaného pravidelného pětiúhelníku Pravidelný šestiúhelník má všechny stany shodné je středově souměrný je osově souměrný - má 6 os souměrnosti sestrojíme-li všechny úsečky spojující střed s vrcholy, rozdělíme pravidelný šestiúhelník na 6 shodných rovnostranných trojúhelníků každý vnitřní úhel má velikost 120 lze opsat i vepsat kružnici postup konstrukce: sestrojíme kružnici se středem S a poloměrem r na kružnici zvolíme libovolný bod A z bodu A postupně naneseme na kružnici poloměr r a získáme tak zbývajících pět vrcholů hledaného šestiúhelníka Pravidelný osmiúhelník má všechny strany shodné je středově souměrný je osově souměrný - má osm os souměrnosti lze opsat i vepsat kružnici 6. Kruh, kružnice a jejich části Základní pojmy: Kružnici označujeme k, kruh označujeme K. Často zapisujeme k(s; r) nebo K(S; r), což znamená kružnice (resp. kruh) o středu S a poloměru r. Kružnice je množina bodů, které mají od jednoho pevného bodu stejnou vzdálenost. Tento pevný bod nazýváme střed a konstantní vzdálenost bodů od středu nazýváme poloměr kružnice. Kruh je množina všech bodů, které mají od jednoho pevného bodu vzdálenost, která je menší nebo rovna poloměru obvodové kružnice. Jinými slovy lze též vyjádřit, že kruh je část roviny, která je ohraničena kružnicí. 21
22 Poloměr označujeme nejčastěji r. Dvě délky poloměru tvoří průměr kružnice - označujeme d. Přímka a kružnice mohou mít několik vzájemných poloh: 1. Přímka a kružnice nemají žádný společný bod, pak přímku nazýváme vnější přímkou kružnice (nesečnou). 2. Přímka a kružnice mají právě jeden společný bod, pak přímku nazýváme tečnou. 22
23 Tečna je vždy kolmá na poloměr. 3. Přímka a kružnice mají dva společné body, pak přímku nazýváme sečna. Část přímky, která v tomto případě leží uvnitř kružnice, nazýváme už zmíněnou tětivou. Tětiva kružnice je úsečka, jejíž krajní body leží na kružnici. Nejdelší tětivou kružnice je její průměr. Osa tětivy vždy prochází středem kružnice. Úhel nazýváme obvodový úhel; úhel nazýváme středový úhel. Platí pravidlo, že úhel středový je dvojnásobkem úhlu obvodového. Kružnice Pro výpočet délky kružnice platí vzorce: l = 2..r nebo l =.d Kruh Pro výpočet obvodu kruhu platí vzorce: o = 2..r nebo o =.d Pro výpočet obsahu kruhu platí vzorce: S =.r 2 nebo S =.d 2 /4 Kruhový oblouk 23
24 Pro délku kruhového oblouku a platí: nebo Soustředné kružnice Jedná se u dvě nebo více kružnic, které mají stejný střed, ale různý poloměr. Kruhová výseč Jedná se o rovinný útvar. Pro obsah kruhové výseče S platí: Kruhová úseč nebo 24
25 Jedná se opět o rovinný útvar. Mezikruží Rovinný útvar. Obsah mezikruží: S =. (r r 1 2 ) 7. Shodnost trojúhelníků, důkazy Shodnost trojúhelníků O dvou útvarech říkáme, že jsou shodné, lze-li je v rovině přemístit tak, že se kryjí. 25
26 Shodnost rozlišujeme: 1. Útvary přímo shodné (posunutím v rovině se navzájem kryjí) 2. Útvary nepřímo shodné (nelze je posouváním ztotožnit, ale lze je ztotožnit převrácením) Uvedené vlastnosti platí analogicky i v prostoru. Můžeme ztotožnit tělesa - např. krychle, kvádry, apod.; nelze ale ztotožnit např. levou a pravou ruku. Proto i zde hovoříme o nepřímé shodnosti, někdy též tzv. zrcadlení. Věty o shodnosti trojúhelníků: Věta sss. Pro každé dva trojúhelníky ABC, A B C platí: Shodují-li se trojúhelníky ve všech třech stranách, jsou shodné. Věta sus: 26
27 Shodují-li se dva trojúhelníky ve dvou stranách a v úhlu jimi sevřeném, pak jsou shodné. Věta usu: Shodují-li se dva trojúhelníky v jedné straně a v obou úhlech k této straně přilehlých, pak jsou shodné. Věta Ssu: Dva trojúhelníky jsou shodné, shodují-li se ve dvou stranách a v úhlu ležícím proti větší z nich. 27
28 Pozn.: Každá matematická věta se skládá ze dvou částí - z předpokladu a z tvrzení. Po vyslovení každé matematické věty by měl následovat její důkaz. V tom se také matematická věta liší od definice. Definice je obecně platné tvrzení, které už nedokazujeme. Pro důkazy matematických vět používáme obvykle 3 typy důkazů: 1. Přímý důkaz - na základě předpokladu uvedeného v matematické větě a na základě obecně platných vlastností vyplývajících z definic nebo z jiných už dokázaných vět, vyvozujeme tvrzení vyslovené matematické věty. 2. Nepřímý důkaz (důkaz sporem) - předpokládáme, že platí negace tvrzení stanoveného v matematické větě. Na základě obecně platných definic nebo už dokázaných matematických vět dojdeme ke sporu, tj. k závěru, který neplatí. V důsledku toho pak vyslovíme závěr, že negace původně stanoveného tvrzení neplatí a musí tedy platit původní tvrzení. 3. Důkaz matematickou indukcí - s tímto typem důkazu se seznámíme později; založen je na tom, že dokážeme, že věta platí pro n = 1, pak pro libovolné n + 1 a v závěru na základě získaných poznatků větu dokážeme. Důkazové úlohy: Příklad 1: Nad stranami AC a BC rovnostranného trojúhelníka ABC jsou sestrojeny rovnostranné trojúhelníky ACD a BCE tak, že každý z nich leží vně trojúhelníka ABC. Dokažte, že trojúhelník AEC je shodný s trojúhelníkem DBC. Řešení: AC = CD.. vyplývá z předpokladu věty a z vlastností rovnostranného trojúhelníka BC = CE.. vyplývá z předpokladu věty a z vlastností rovnostranného trojúhelníka AC = BC.. vyplývá z vlastností zadaného rovnostranného trojúhelníka... (1) Z uvedených tří vlastností vyplývá, že CD = CE... (2) úhel = 60.. vyplývá z vlastností zadaného rovnostranného trojúhelníka úhel DCB = + 60 úhel ACE = + 60 Z uvedených dvou vlastností vyplývá, že úhel DCB = úhel ACE... (3) Ze závěrů (1), (2), (3) vyplývá, že trojúhelníky jsou tedy shodné podle věty sus. CBD Příklad 2: 28
29 Je dán čtverec ABCD. Veďte v něm dvě libovolné příčky k sobě kolmé, z nichž jedna protíná strany AD a BC v bodech P a Q a druhá protíná strany AB a CD v bodech U a V. Dokažte, že platí PQ = UV Řešení: BCE je shodný s ABF (Ssu) Odtud vyplývá, že: EC = FB = UV = PQ Závěr: PQ = UV CBD 8. Shodnost trojúhelníků - procvičovací a důkazové úlohy 1. Je dán rovnoramenný trojúhelník ABC a bod D, který je středem jeho základny AB. Bodem D jsou vedeny kolmice k ramenům AC a BC trojúhelníka ABC a jejich paty označeny M, N. Dokažte, že DMC je shodný s DNC. 2. Je dána kružnice k(s; r) a bod P, který leží vně kružnice k. Veďte bodem P ke kružnici k tečny t 1, t 2 a označte jejich dotykové body T 1 a T 2. Dokažte, že PT 1 = PT 2 a úhel SPT 1 = úhel SPT Rovnoramenný trojúhelník ABC má při základně AB úhel 30. Dokažte, že osy ramen tohoto trojúhelníka rozdělují jeho základnu AB na tři stejné díly Na ose o ostrého úhlu AVB zvolte bod S uvnitř úhlu AVB a sestrojte kružnici k(s; r) tak, aby r > SV. Dokažte, že platí MN = PQ, kde M, N jsou body, ve kterých přímka AV protíná kružnici k a P, Q body, ve kterých přímka VB protíná kružnici k Nad stranami AB a AC ostroúhlého trojúhelníka ABC jsou sestrojeny čtverce ABPQ a ACRT tak, že leží vně trojúhelníka ABC. Dokažte, že CQ = BT Podobnost trojúhelníků Podobnost trojúhelníků Definice: Trojúhelníky ABC, A B C jsou podobné, jestliže pro jejich strany platí: 29
30 a = k. a b = k. b c = k. c Číslo k nazýváme koeficientem (poměrem) podobnosti. Koeficient podobnosti je vždy větší než nula. Je-li k > 1, hovoříme o tzv. zvětšení, je -li 0 < k < 1, hovoříme o tzv. zmenšení. Pozn.: Pokud by bylo k = 1, nastala by shodnost. Shodnost je tedy zvláštní případ podobnosti. Věty o podobnosti trojúhelníků: Věta sss: Dva trojúhelníky jsou podobné, jestliže jejich poměry každých dvou odpovídajících si stran jsou shodné. Věta sus: Dva trojúhelníky jsou podobné, jestliže se shodují v jednom úhlu a poměry odpovídajících si stran, které svírají uvedený úhel, jsou shodné. Věta uu: Dva trojúhelníky jsou podobné, jestliže se shodují ve dvou odpovídajících si úhlech. Poznámka: Pro podobné útvary tedy platí: - odpovídající si úsečky jsou ve stejném poměru - odpovídající si úhly jsou shodné Důkazové úlohy: Příklad 1: Věta: Jestliže dva libovolné trojúhelníky ABC, A B C jsou rovnostranné, pak jsou podobné. Důkaz: Vnitřní úhly při vrcholech A, B, C mají velikost vyplývá z vlastností rovnostranného trojúhelníka Vnitřní úhly při vrcholech A, B, C mají velikost vyplývá z vlastností rovnostranného trojúhelníka Vnitřní úhel při vrcholu A je tedy shodný s vnitřním úhlem při vrcholu A, vnitřní úhel při vrcholu B je shodný s vnitřním úhlem při vrcholu B. Oba trojúhelníky jsou tedy podobné podle věty uu. CBD Příklad 2: Věta: Jestliže dva pravoúhlé trojúhelníky jsou rovnoramenné, pak jsou podobné. Důkaz: 30
31 Vnitřní úhly při vrcholech A, A mají velikost 90 a jsou tedy shodné (vyplývá z předpokladu) AB = AC... vyplývá z předpokladu a z vlastností rovnoramenného trojúhelníka A B = A C... vyplývá z předpokladu a z vlastností rovnoramenného trojúhelníka Trojúhelníky jsou tedy podobné podle věty sus. CBD Výpočtové úlohy: Příklad 3: Les tvaru trojúhelníka ABC je na mapě v měřítku 1 : zakreslen jako trojúhelník A B C o stranách délek 3,2 cm, 4,8 cm 5,4 cm. Určete skutečné velikosti stran trojúhelníka. Řešení: A B = 3,2 cm B C = 4,8 cm A C = 5,4 cm k = 1 : AB =? [cm] BC =? [cm] AC =? [cm] AB = (1/k). A B AB = 3, cm = cm = 1,6 km BC = 4, cm = cm = 2,4 km AC = 5, cm = cm = 2,7 km Rozměry lesa jsou 1,6 km, 2,4 km, 2,7 km. 10. Podobnost trojúhelníků - procvičovací příklady Jsou dány dva podobné trojúhelníky, jejichž koeficient podobnosti je k. Určete, v jakém poměru jsou jejich obvody. k 2. Trojúhelníky EFG a MNK jsou podobné a platí, že: EF = 5 cm MN = 7 cm EG = 6 cm NK = 4 cm Vypočtěte délku strany MK. 8,4 cm
32 3. Trojúhelníky EFG a MNK jsou podobné a platí, že: EF = 5 cm MN = 7 cm EG = 6 cm NK = 4 cm Vypočtěte délku strany FG. 2,86 cm Dva rovnoramenné trojúhelníky mají základny c, c a výšky v, v. Dokažte, že jsou trojúhelníky podobné, platí-li c : v = c : v 5. Z vrcholu pahorku 80 metrů vysokého je vidět na vodorovné rovině za sebou dvě tyče pod hloubkovými úhly 62 a 42. Určete vzdálenost obou tyčí. 46,3 m Jsou dány dva podobné trojúhelníky, jejichž koeficient podobnosti je k. Určete, v jakém poměru jsou jejich obsahy. k 2 7. Trojúhelníkové pole o rozměrech 162,5 m, 117,5 m a 180 m je na mapě zakresleno jako trojúhelník se stranami 6,5 mm, 4,7 mm, 7,2 mm. Určete měřítko mapy. 1 : Jsou dány trojúhelníky ABC a A B C a platí: a = 6 b = 8 c = 9 a = 5 b = 6 2/3 c = 7 1/2 Rozhodněte, zda jsou trojúhelníky podobné. Jsou podobné Dokažte, že trojúhelník ABC a trojúhelník A B C, který má vrcholy ve středech stran trojúhelníka ABC, jsou trojúhelníky podobné. 10. Rozhodněte, zda trojúhelníky ABC, A B C jsou podobné, je-li zadáno: a = 5/3 b = 11/6 vnitřní úhel při vrcholu C je 70 a = 5/2 b = 11/4 vnitřní úhel při vrcholu C je 70 Jsou podobné 11. Nepřátelská pozorovatelna je vzdálena metrů a je položena o 180 metrů výše než postavení dělostřelecké baterie. Jak daleko lze umístit dělo za krytem, aby nebylo vidět z nepřátelské pozorovatelny? Kryt před baterií je 15 metrů vysoký. 350 m 12. Rozhodněte, zda trojúhelníky ABC, A B C jsou podobné, je-li zadáno: a = 2,5 b = 7 vnitřní úhel při vrcholu C je 90 a = 5 b = 13,9 vnitřní úhel při vrcholu C je 90 Nejsou podobné 13. Školní budova vrhá na rovinu dvora stín 16 m dlouhý a v téže době vrhá svislá tyč stín 132 cm dlouhý. Určete výšku budovy. 12,12 m
33 Přímá cesta rovnoměrně stoupá na každých dvou metrech o 46 cm. O kolik metrů stoupne cesta na vzdálenosti 270 metrů? 62,1 m 11. Pythagorova věta 12. Pythagorova věta - procvičovací příklady 13. Eukleidovy věty Eukleidovy věty 1. Věta o výšce Pata výšky C rozdělí stranu c na dvě části: c a, c b. Tvrzení: Trojúhelník AC C je podobný s trojúhelníkem CC B. Důkaz je zřejmý podle věty uu, neboť oba trojúhelníky obsahují úhly alfa a beta. Pozn.: Dva úhly, které mají na sebe kolmá ramena, jsou shodné. Z podobnosti trojúhelníků vyplývá: Rovněž by se dalo vyjádřit se stejným závěrem: Vzniklý závěr nazýváme Eukleidovou větou o výšce a můžeme ji slovně vyjádřit následující větou: Obsah čtverce sestrojeného nad výškou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou úseky strany c. Každou větu je nutno dokázat - důkaz už byl ale vlastně proveden výše. 2. Věta o odvěsně 33
34 Trojúhelník AC C je podobný s trojúhelníkem ACB. Podobnost lze odůvodnit opět podle věty uu, neboť v obou trojúhelnících jsou opět úhly alfa i beta. Z podobnosti trojúhelníků vyplývá: Rovněž by se dalo vyjádřit: Vzniklé vzorce jsou matematickým vyjádřením Eukleidových vět o odvěsně. Protože každý pravoúhlý trojúhelník má dvě odvěsny, jsou vždy i dvě Eukleidovy věty o odvěsnách. Opět můžeme napsat matematickou větu: Obsah čtverce sestrojeného nad odvěsnou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou přepona a úsek přilehlý k dané odvěsně. Důkaz i této věty už byl vlastně proveden výše. Ukázkové příklady Příklad 1 - určení druhé odmocniny pomocí Eukleidovy věty o výšce: Pomocí Eukleidovy věty o výšce narýsujte úsečku o délce x = 10 Řešení: 1. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např Rovnost x = 10 upravíme do tvaru x 2 = 10, resp. x 2 = Zvolíme-li x = v, c a = 2, c b = 5, pak můžeme snadno použít větu o výšce. 4. Protože platí c a + c b = c, zjistíme, že přepona bude dlouhá = 7 5. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu A o délku Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 8. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 9. Délka úsečky C X pak odpovídá hledané x = 10 Příklad 2 - určení druhé odmocniny pomocí Eukleidovy věty o odvěsně: Pomocí Eukleidovy věty o odvěsně narýsujte úsečku o délce x = 10 Řešení: 34
35 1. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např Rovnost x = 10 upravíme do tvaru x 2 = 10, resp. x 2 = Zvolíme-li x = a, c a = 2, c = 5, pak můžeme snadno použít větu o odvěsně a. 4. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu B o délku Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 7. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 8. Délka úsečky XB pak odpovídá hledané x = Střední geometrická úměrná a čtvrtá geometrická úměrná Střední geometrická úměrná Vraťme se zpět k Eukleidově větě o výšce: v 2 = c a. c b neboli Výška v pravoúhlém trojúhelníku je střední geometrickou úměrnou obou úseků. Eukleidovy věty proto využíváme ke konstrukci algebraických výrazů - zejména odmocnin. Příklad 1: Je dán kruh o poloměru r. Rozdělte jej kružnicí s ním soustřednou na dvě části, jejichž obsahy se sobě rovnají. Řešení: Označme poloměr zadaného kruhu r a poloměr kledané soustředné kružnice r 1. Pak má platit: Hledaný poloměr je tedy střední geometrickou úměrnou Čtvrtá geometrická úměrná Platí-li pro čtyři úsečky o délkách a, b, c, x vztah 35
36 pak úsečka x je čtvrtou geometrickou úměrnou úseček a, b, c v tomto pořadí. Příklad 2: Narýsujte čtvrtou geometrickou úměrnou úseček 3 cm, 5 cm, 2 2 cm Řešení: Ze zadání musí platit vztah: Příklad 3: Narýsujte úsečku, která vyhovuje vztahu: Řešení: Zadaný vztah přepíšeme do tvaru neboli 15. Střední geometrická úměrná - procvičovací příklady 1. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 22. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4,
37 Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 22. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4,69 3. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 23. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 18. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 11. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 17. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 21. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4,58 8. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 28. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 5,29 9. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 10. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 13. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 14. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 11. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 15. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 18. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 12. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 19. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4,36 37
38 17. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 2, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 21. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = 19. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = 13. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Čtvrtá geometrická úměrná - procvičovací příklady 1. Narýsujte úsečku délky x = (abc)/d 2, kde a, b, c, d jsou velikosti daných úseček. Pomocná úsečka y je čtvrtou geometrickou úměrnou úseček b, a, d. Úsečka x je pak čtvrtou geometrickou úměrnou úseček y, a, d Nechť a, b, c jsou délky tří daných úseček. Sestrojte čtvrtou úsečku délky x, která vyhovuje rovnici x = bc/a Úsečka x je čtvrtou geometrickou úměrnou úseček a, c, b Výpočty rovinných útvarů Výpočty rovinných útvarů Tato kapitola obsahuje řešení příkladů s využitím všech teoretických vlastností, se kterými jsme se seznámili v předcházejících kapitolách z planimetrie. Převážnou většinu příkladů budeme vždy řešit nejprve obecně, pak teprve dosadíme číselné hodnoty a na kalkulačce spočítáme výsledek, který vhodně zaokrouhlíme. Obecné řešení považujeme za hotové tehdy, obsahuje-li vzorec pouze proměnné, které máme v zápisu příkladu a výraz už nelze dále zjednodušit. 18. Výpočty rovinných útvarů - procvičovací příklady 1. Obvod rovnoramenného trojúhelníka je 112 cm. Základna je o 20 % delší než rameno trojúhelníka. Vypočtěte: a) délku ramene i základny b) obsah trojúhelníka a = b = 35 cm, c = 42 cm, obsah trojúhelníka je 588 cm Čtvercové hřiště má obvod 125 m. Jaký má obsah? 977 m
39 3. Ve čtverci ABCD o straně a = 4 cm je sestrojena lomená čára ASRC. Vypočítejte její délku jako součet AS + SR + RC ,18 cm 4. Obvod obdélníka je 28 cm, délka je o 2 cm větší než jeho šířka. Určete délku úhlopříčky tohoto obdélníku. 10 cm Pole osázené zeleninou má tvar rovnoramenného pravoúhlého trojúhelníka. Jeho odvěsny mají délku 24 m. Ve vrcholech trojúhelníka jsou umístěny otáčecí postřikovače o dosahu 12 m. Jak velká část pole není těmito postřikovači zavlažována a jak veliká je třetí strana pole? Není zavlažováno 61,81 m 2, třetí strana pole je 33,94 m Kolik trojúhelníků je na obrázku? Na plánu v měřítku 1 : je zakresleno pole tvaru obdélníka. Jeho rozměry na plánu jsou 30 cm a 4 cm. Určete skutečnou výměru pole v hektarech. 7,5 ha Vypočtěte obsah rovnoramenného trojúhelníka, jehož základna má délku 10 cm a rameno je o 3 cm delší než základna. 60 cm 2 9. Kolik trojúhelníků je na obrázku? Je dán pravoúhlý lichoběžník ABCD, kde vnitřní úhly při vrcholech A, D jsou pravé a AB = 13 cm, CD = 5 cm, AD = 6 cm. Vypočtěte obsah lichoběžníka ABCD. 54 cm
40 11. Pravoúhlý trojúhelník má odvěsny 6 cm a 8 cm. Vypočítejte velikost nejmenší výšky v trojúhelníku. 4,8 cm Je dán trojúhelník ABC s úhly = 30, = 60 a stranou c = AB = 10 cm. a) Vypočtěte velikost úhlu. b) Vypočtěte délku strany AC c) Vypočtěte délku výšky na stranu AC = 90 AC = 8,66 cm v = 5,00 cm Drát délky 1,2 m ohneme do tvaru obdélníka tak, aby jeho strany byly v poměru 2 : 1. Vypočtěte délky stran obdélníka a určete obsah obdélníka, a to v m 2 a v cm 2. a = 0,4 m, b = 0,2 m; S = 0,08 m 2 = 800 cm V rovnostranném trojúhelníku narýsujte všechny výšky a zjistěte, kolik trojúhelníků je možné na obrázku vidět. 16 trojúhelníků Je dán obdélník ABCD, v němž je BC = 12 cm a úhlopříčka měří 15 cm. Na straně AB vyznačte bod R tak, že RC = 13 cm. Určete délku těžnice ke straně AR v trojúhelníku ARC. 13,9 cm Do polokružnice je vepsán obdélník SABC. Určete velikost úsečky AC, jsou-li dány velikosti úseček SA a AD cm 17. Je dán obdélník ABCD, v němž je BC = 12 cm a úhlopříčka měří 15 cm. Na straně AB vyznačte bod R tak, že RC = 13 cm. Určete, o kolik procent je obsah trojúhelníka ARC menší než obsah obdélníka ABCD. 77,8 % Kolem bazénu s rozměry 25 m a 12 m je pás trávy široký 4,5 m. Vypočítejte obsah travnaté plochy - viz obrázek m 2 40
M - Planimetrie pro studijní obory
M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
VíceM - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Více5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
VíceRozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
VícePLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
VíceTrojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
VícePLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
VíceRůznostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna
16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná
Více2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
VíceOpakování ZŠ - Matematika - část geometrie - konstrukce
Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny
VíceOmezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Vícen =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram
4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme
Více- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:
1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.
VíceGEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
VíceČtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník
Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky
VíceTéma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30
Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151
VíceDIDAKTIKA MATEMATIKY
DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body
VícePRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.
Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ
VíceTrojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
Více6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)
6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,
Více1. Planimetrie - geometrické útvary v rovině
1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma
VícePLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
VíceÚsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.
Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.
VíceTROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik
TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající
VíceÚvod. Cílová skupina: 2 Planimetrie
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matemati ky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování
VíceZákladní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
VícePředmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny
VíceKružnice, úhly příslušné k oblouku kružnice
KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím
VíceP L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Více10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )
Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina
VíceGEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi
VíceA STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.
PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceMáme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.
8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových
Více9. Planimetrie 1 bod
9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Více( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
VíceZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
VíceICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný
Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace
VíceKlíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
Více2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VícePlanimetrie úvod, základní pojmy (teorie)
Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie
VíceShodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
VíceSHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
VíceTest Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
VíceSčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444
ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní
VíceStřední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceZáklady geometrie - planimetrie
Základy geometrie - planimetrie Základní pojmy - bod (A, B, X, Y...), přímka ( p, q, a... ), rovina ( α, β, π... ) - nedefinují se Polopřímka: bod dělí přímku na dvě polopřímky opačně orientované značíme
VíceSyntetická geometrie I
Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB
VíceÚlohy domácí části I. kola kategorie C
63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +
VícePLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky
VíceSHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky HODNÁ PODOBNÁ ZOBRZENÍ V ROVINĚ Pomocný učební text Petra Pirklová Liberec, září 2013
VíceSyntetická geometrie II
Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD
VícePODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ
VíceFebruary 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace
Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název
VícePříklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Více[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
VíceTrojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011
MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován
VíceObrázek 13: Plán starověké Alexandrie,
4 Geometrické útvary v rovině Obrázek 13: Plán starověké Alexandrie, https://commons.wikimedia.org Jestliže rovinu chápeme jako množinu bodů, potom uvažované geometrické útvary jsou jejími podmnožinami.
VícePřípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem
VíceM - Příprava na 2. čtvrtletní písemnou práci
M - Příprava na. čtvrtletní písemnou práci Určeno pro třídu ODK. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na
Více8 Podobná (ekviformní) zobrazení v rovině
Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme
Víceod zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem
Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.
VíceUniverzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ
VíceKonstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
VíceSyntetická geometrie I
Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní
VíceDoučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy
Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník
VícePlanimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s.
Planimetrie Část matematiky, zabývající se studiem rovinných geometrických objekt (rovinná geometrie). bstrakcí z hmotných objektů vznikly základní geometrické pojmy bod přímka Bod Body označujeme velkými
VíceM - Řešení pravoúhlého trojúhelníka
M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl
VícePojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
VíceTémata absolventského klání z matematiky :
Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný
VíceM - Planimetrie - řešení úloh
M - Planimetrie - řešení úloh Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
Více6. Úhel a jeho vlastnosti
6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol
Více6. Čtyřúhelníky, mnohoúhelníky, hranoly
6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,
VíceNěkolik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
VíceÚterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů
Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst
VíceShodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
VíceFunkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
Víceje-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceGEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
Více1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceVýukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
VíceUžití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
VíceČtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
VíceObrázek 101: Podobné útvary
14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body
VícePředmět: MATEMATIKA Ročník: 6.
Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceÚlohy k procvičení kapitoly Obsahy rovinných obrazců
Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených
VíceKapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Víceprostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného
Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose
Více3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem
Číselné obory 1. Přirozená čísla vyjadřují počet. 1,2,3, 2. Celá čísla Kladná: nula Záporná: Kladná + nula = nezáporná čísla Celá čísla = přirozená + nula + záporná celá 3. Racionální čísla = celá čísla
VíceM - Příprava na 9. zápočtový test
M - Příprava na 9. zápočtový test Určeno pro studenty dálkového studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceNávody k domácí části I. kola kategorie C
Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,
VícePracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Více